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Abstract The ratio between rotational angular momentum, / r o t , and orbital angular momentum, 
/ o r b > in close binary systems and its variation with mass ratio is studied. The tables and the graphs 
give this variation for detached systems, contact systems, semidetached systems and for systems 
containing a supernova-remnant component and a contact component. For this study some statistical 
relations of close binary stars were used. 

The ratio / r ot /^orb * s sensitive to the variation of the mass ratio q. If q differs much from unity 
and if the concentration of the stellar matter is moderate (polytropic index n ~ 3) , the neglect of 
rotational angular momentum, 7 r o t , is not justified. 

1. Introduction 

The rotation of the star, characterized by its angular velocity, plays an important role in 
the study of the stellar stability and stellar structure (Ledoux, 1965). The study of the 
rotational angular velocity variations in time can give evidence on some fundamental 
aspects of stellar evolution. As is well known, the problem of rotation is a central one in 
the theory of the formation and evolution of our solar system, as Laplace pointed out 
first. In the modern cosmogonic theories, the rotation is also in the foreground, the solar 
system being, it seems, a result of the interaction between the rotation and the magnetic 
field of the primary nebula. 

In the study of the close binary systems, the rotation was taken into account by 
different authors (Darwin, 1897; Kruszewski, 1963; Huang, 1966). The role of the 
orbital angular momentum, 7 o r b , in the evolution of the close binary systems is well 
known (Huang, 1966; Paczynski, 1966; Svechnikov, 1969; Plavec, 1973). If we denote by 
Mi, M2 the mass of primary and secondary component respectively and by a the semi-
major axis of the relative orbit of eccentricity e and period P, then the (total) orbital 
angular momentum, / o r b , has the expression (Huang, 1966) 

_ MXM2 2na2(\-e2yt2 

o r b Mx+M2' P ( ) 

For the study of the close binary system evolution, different authors (Paczynski, 1966; 
Svechnikov, 1969) take into account only this orbital angular momentum, neglecting the 
rotational angular momentum of the system, / r o t . This is equal to the sum of the rota­
tional angular momenta of the components. In order to justify the neglect o f / r o t , some 
authors cite sometimes a paper of Smak (1964), which shows that for close binary systems 
of WUrsae Majoris type, 7 r o t < 10~2 / o r b and it is expected that for such systems JToX to 
be maximum. 

In this paper we shall study in more detail the r a t i o / r o t / / o r b . There exist three factors 
which lead to the conclusion that « / r o t /^orb c a n s u r P a s s Smak's limit: 

(i) The large variation of JTOt/JOTb with mass ratio q=M2/Mx. For q~~\> Jrot/JOTb 

becomes minimum. 
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'rot •-IiCJi + / 2 c o 2 (2) 

Let Rj (/= 1, 2) be the radii of the components and kjRt their gyration radii, where the 
non-dimensional gyration radii, ki9 are defined by the relation 

= f p t f 2 d r ; / = 1 , 2 , (3) 

where p is the density in a point of the star, situated at the distance d from rotation axis, 
V{ is the volume of the star, while dr is the elementary volume. Let coi = coilojk, where 
(jok = c o o r b = 2nIP is (mean) angular velocity in the Keplerian orbit. 

The total angular momentum J=Jiot
 = ^ 0 r b ~*"^rot ^ a v e ^ e expression 

J = f{j^ft2
 fl2° _ e 2 ) 1 / 2 + ° > +k\R\M^2) (4) 

Further, we shall introduce the mass ratio q=M2/Mi and the fractional radii of the 
components, rfi by the relation R^rfl (/ = 1, 2). Using the third Kepler law 

2 

(5) 
G {Mi + M2)_4n 

a3 " P2 ' 

where G is gravitational constant, and observing that 

Af, = {Mt +M2) - j - , M2 ={M, +M2)-^-~ (6) 
1 + q 1 + q 

expression (4) becomes 

J=G^{Ml + M 2 ) 3 ' V ' 2 ( (1 -e*y'> + 

+ ( l + J l ^ u , +{\+q)k\r\^ (7) 

The ratio between the rotational angular momentum and orbital angular momentum 
will have the expression 

(ii) The non-synchronism between rotation and revolution for some close binary 
systems (for example: UCep, RZ Set). 

(iii) The presence of rings or disks around the components of some close binary 
systems. 

Therefore, in certain cases, the neglect of the rotational angular momentum Jrot is not 
justified. In the present paper we shall concentrate our attention mainly on the variation 
of the ratio JTOt/Jorb with the variation of q. 

2 . Expression of Ratio JJQXIJQ^ 

We shall consider that each component executes a rigid rotation around an axis which is 
perpendicular on the orbital plane. Let I\, I2 be the moments of inertia, and CJI , C J 2 the 
rotational angular velocities of the two components. Then 
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FJ^2L = (1 _e2yil2 11! + l\k2r2 ~x +(1 +q)k2r2 z2 j (g) 
•'orb \ y Qf ' 

This ratio does not depend on the orbital period, the sum of mass of the components, or 
their separation. It depends only on the mass ratio, the internal structure of the compo­
nents, their fractional radii, their relative angular velocities and the shape of orbit. As a 
function of q, the ratio F reaches the minimum for 

* * ^ l s r l ( 9 ) 

In the case of synchronism (£3i = £3 2

 = 1), for systems having components with comparable 
dimensions (rt — r2) and similar internal structure (kx ^k2) (as is the case of WUMa 
systems), it turns out that q* ~ 1; that is the ratio F reaches the minimum for a value of 
q of the order of unity. The corresponding minimal value of F is 

F min=0 - e 2 )~ f ( * t ' «£ i / 2 + *^ / 2 ) 2 - 0°) 
In order to evaluate the ratio F for a given close binary system, we need the non-

dimensional gyration radii of the components. 

3. Non-dimensional Gyration Radii 

We shall neglect the tidal and rotational distortions of the components. Considering that 
these possess a spherical symmetry, relation (3) can be written thus, with the omission of 
the index z, 

R 

0 

3 . 1 . POLYTROPIC MODELS 

By use of the classical notations (Chandrasekhar, 1939), formula (11) becomes 

& 

^ ( / l ) = f ' ^ " 2 P ^ ) a 5 ( , 2 ) { fWW-
(12) 

Introducing the known expression of constant a and using the relation between p c and 
p , the differential equation of Lane-Emden, as well as the mass-radius relation for poly-
tropic models, Equation (12) can be written thus (Motz, 1952) 

*2(") = 1< 
1 

6H(n) 

(13) 

where 
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(14) 

0 

Motz computed the values of k2(n) for some typical values of poly tropic index n, 
namely n = 1; 1.5; 2; 2.5; 3 ; 3.5; 4. Observing that * 2 ( 0 ) = 0.4 and * 2 ( 5 ) = 0, we obtain 
Figure 1, which gives the variation of the non-dimensional gyration radius k as function 
of poly tropic index n. 

3.2. OTHER MODELS 

For other spherical models, the non-dimensional gyration radius k can be directly com­
puted with formula (11), if we know the distribution of the density p along the radius r. 
From Motz's (1952) computations, it results that in Figure 1, the points corresponding to 
different models lay around the curve of poly tropic models. Therefore this curve can be 
approximately used as an interpolation curve in order to obtain the non-dimensional gyra­
tion radius of the star from the known effective polytropic index of the corresponding 
model. 

3.3. USE OF APSIDAL MOTION CONSTANT 

For the close binary systems with known apsidal line motion, we can obtain from the 
observations the value of (mean) apsidal motion constant, /r2 a p s, of the system. Table I 
gives the values of the apsidal motion constant K2 a p s (Russell, 1939; Motz, 1952) and the 
values of the non-dimensional gyration radius k as functions of polytropic index n. 

5 
n 

Fig. 1. Variation o f the non-dimensional gyration radius k with polytropic index n. 
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TABLE I 

Values of gyration radius and of apsidal motion constant 

n k2 Gyration 
radius 
k 

Apsidal 
motion 
constant 
K2 aps 

A 2 aps 

0 0.4 0 .632 5 0.75 0 .930 6 
1 0 .2613 8 0 . 5 1 1 3 0 .2599 2 0 . 7 1 4 0 
1.5 0 .2050 2 0 .452 8 0 . 1 4 4 6 0 0 .616 7 
2 0 . 1 5 7 0 4 0.396 3 0 . 0 7 4 1 0 0 . 5 2 1 7 
2.5 0 .1120 3 0 .334 7 - -
3 0 .0758 3 0.275 4 0 .0144 0 0 .346 4 
3.5 0 .0455 8 0 . 2 1 3 5 0 .0047 0 0.261 8 
4 0 .0235 8 0 . 1 5 3 6 0 .0013 4 0.191 3 
5 0 0 0 0 

Having the value K2 a p s from the observations, we can obtain the effective polytropic 
index, and from this we can obtain the non-dimensional gyration radius. Figure 2 gives 
the variation of the non-dimensional gyration radius k as function of parameter A^aps-1* 
allows the direct determination of the non-dimensional gyration radius k from the 
observed apsidal motion constant. 

4. Statistical Evaluation of ratio F 

It is difficult to obtain, with sufficient accuracy, the non-dimensional gyration radii of 
the components for a real close binary system, because we do not know exactly their 
internal structure. Therefore we shall proceed to a statistical evaluation of the ratio F. 

For the rotational angular velocities of the close binary system components, Kopal 
(1965) gives the following statistical relation 

1+e 

\a>k! (\-e) 

From the relations (8) and (15) it follows that 

1 \coW (1-eY 

where 

f(q) = ( l + - ) * ? # * + ( l + * ) * 2 # i . (17) 

The factor depending on e in the expression (16) has little variation, because the close 
binary systems have orbits with small eccentricities; the majority of the orbits are circular 
or quasicircular. From the catalogue of Kopal and Shapley (1956) it is clear that, generally, 
e<0.2. Therefore we can consider that the factor depending on e in (16) is generally 
between 1 and 2. This means that study of the variation of F is reduced to study of the 
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variation of the function f(q). In order to evaluate the function f(q) we shall consider 
separately the different types of close binary systems. 

4 . 1 . DETACHED SYSTEMS 

In this case we consider some statistical delimitations for the fractional radii of the com­
ponents. Detached system components are generally stars of the main sequence, which 
satisfy the mass-radius relation. We shall use the mass-radius relation given by Svechnikov 
( 1 9 6 9 ) , which can be written approximately thus 

R^\.05M3/4 ( 1 8 ) 

The relation between the semimajor axis of the relative orbit, a, and the sum of the 
masses of the close binary system components, Mx +M2i is given by Svechnikov in a 
diagram, from which we can see that the majority of the detached systems lie between 
the straight lines 

log a= 0 .35 4- 0 .75 l o g ^ + M 2 ) 
( 1 9 ) 

log J = 0 .95 4- 0 .75 log (Af, + M2) 
that is 

2 . 2 4 ( M X 4 - M 2 ) 3 ' 4 < t f < 8 . 9 1 ( M 1 + A / 2 ) 3 ' 4 

From the relations ( 6 ) , ( 1 8 ) and ( 2 0 ) it results that 

( 2 0 ) 
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0-12 0-47 
( 1 + ( ? ) 3 / 4 < ' - I < ( 1 + 9 ) 3 / 4 ^ 

0-12 q 3 ' 4 0.47 q 3 ' 4 

( 1 + ^ ) 3 / 4 < ^ < ( 1 + ^ ) 3 / 4 - ^ 

Considering that the two components have a similar internal structure, we can put, 
approximately, k\ — k\ = k2. From relations (17), (21) and (22) we obtain 

0 . 0 1 4 ( 1 + ^ ) 0 . 2 2 ( 1 + ^ ) 
( L ) q { \ + q ) 1 ' 2 k ~ m ~ q i l + q ) 1 ' 2 ( U ) ( 2 3 ) 

where by (L) is noted the lower limit and by (U) the upper limit for / fa) . One observes 
that in this c a se / (# )= / ( l / # ) , that is in a logarithmic scale we have symmetry with respect 
to the straight line log q = 0. Therefore here it has no importance which component is 
named primary and which secondary. 

In Table II, the numerical values for the lower and upper limits of the function log/fa) 
are given, for logq e [ -2 , 2] and taking the values of k2 corresponding to the polytropic 
indexes 1.5; 3 and 4. The results obtained are presented graphically in Figure 3. 

Let us consider that Jrot is negligible if F=JtotlJoAi < 10% and is not negligible i t V r o t / 
/ o r b > 10%. From the observational data it results that, generally, q is between 0.1 and 
10; that is \o%q is between —1 and 1. On the other hand, from the study of the apsidal 
line motion, it results that the effective polytropic index of the close binary stars is 
between 3 and 4 (Kopal, 1965; Mathis, 1967). So, one observes from Figure 3 that for the 
detached systems, in the great majority of the cases, Jrot is negligible. But there can exist 
detached systems for which q ~ 0 . 1 , the dimensions of the components would correspond 
to the limit (U), and the concentration of the matter would be moderate (n = 3). Then 
log/fa) — -0 .8 and JTOt/JOTb — 16%. This means that the momentum 7 r o t is not negligible. 

4.2. CONTACT SYSTEMS 

In this case both components are in contact with the Roche critical equipotential surface. 
For mean radius of the Roche lobe, we can use the approximate formulae of Paczynski 
(1966, 1971), that is 

rx =0.38 - 0 . 2 logq, r2 =0.38 + 0.2 log q (24) 

TABLE II 

Values of log f{q) as function of log q for detached systems 

^ \ l o g < 7 

l o g / ( < 7 ) \ ^ 

0 ±0.3 ±0.6 ±0.9 ±1.0 ±1.3 ±2.0 

for n= 1.5 (L) - 2 . 4 0 - 2 . 2 6 - 1 . 9 6 - 1 . 6 6 - 1 . 5 7 - 1 . 2 5 - 0 . 5 4 
(U) - 1 . 1 9 - 1 . 0 6 - 0 . 7 8 - 0 . 4 7 - 0 . 3 7 - 0 . 0 6 0.65 

for n = 3 (L) - 2 . 8 2 - 2 . 7 0 - 2 . 4 0 - 2 . 1 0 - 2 . 0 0 - 1 . 6 8 - 0 . 9 8 
(U) - 1 . 6 2 - 1 . 5 0 - 1 . 2 1 - 0 . 9 0 - 0 . 8 0 - 0 . 4 9 0.22 

for n = 4 (L) - 3 . 3 5 - 3 . 2 2 - 2 . 9 2 - 2 . 6 0 - 2 . 5 2 - 2 . 2 2 - 1 . 4 8 
(U) - 2 . 1 6 - 2 . 0 0 - 1 . 7 2 - 1 . 4 1 - 1 . 3 0 - 1 . 0 0 - 0 . 2 9 
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1 

0 

t - 1 

logf (O 

- 2 

-3 

- 2 - 1 0 1 2 

log q — 
Fig. 3. Variation of log fiq) with log q for detached systems. S and I denote upper and lower limits. 

These expressions give an error less than 1% for 02<q< 10. For our qualitative conclu­
sions we can extrapolate these formulae within the limits given by the conditions rx > 0 , 
r 2 > 0; therefore we shall consider — 1.9 < log q < 1.9. 

Taking again k\ — k\ = k2, expression (17) becomes 

/(<?)= ( ( l - r - i ) ( 0 . 38 - 0 . 2 1 o g ^ ) 2 + ( l + ( 7 ) ( 0 . 38 + 0 . 2 1 o g ^ ) 2 j ^ (25) 

In this case we have also f(q)=f(l/q). In the Table III, the numerical values of the func­
tion logf(q) are given for log^e [—1.9,1.9] and taking the values of k2 corresponding to 
the polytropic indexes 1.5; 3 and 4. The results obtained are presented graphically in 
Figure 4. One observes that for # ~ 0 . 1 , (or q~ 10), and n^3 the angular momentum 
Jrot is not negligible. 

4 . 3 . SEMIDETACHED SYSTEMS 

This is an intermediate case with respect to the preceding two. The different positions of 
the close binary system components with respect to the Roche critical equipotential sur-
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TABLE III 

Values of log f(q) as function of log q for contact systems 

l o g / t o ) ^ ^ 

0 ±0.3 ±0.6 ±0.9 ±1.0 ±1.3 ±1.9 

n = 1.5 - 0 . 9 3 - 0 . 8 2 - 0 . 5 6 - 0 . 2 3 - 0 . 1 2 0.25 0.98 
/ != 3 - 1 . 3 6 - 1 . 2 5 - 1 . 0 0 - 0 . 6 6 - 0 . 5 5 - 0 . 1 8 0.55 
n = 4 - 1 . 8 5 - 1 . 7 6 - 1 . 5 0 - 1 . 1 7 - 1 . 0 6 - 0 . 6 9 0.04 

I I I I I 
-1.9 - 1 0 1 1.9 

log. q. -*> 

Fig. 4. Variation of log f{q) with log q for semidetached systems. 

face (Roche limit) will carry to the loss of the symmetry of log/fa) as function of log q. 
On the other hand the internal structure of the components can differ much, but we shall 
neglect this last fact. 

Now we shall define the mass ratio thus: Q=Mcont/MdeV where is the mass of 
the component in contact with the Roche critical equipotential surface and Mdet is the 
mass of the component detached from the same surface. The fractional radii of the 
components are 

'cont = O- 3* + 0.2 logq ) 
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Taking again k\ — k\ — k2, from (17) we obtain 

(L) (1 +<?)(0.38 + 0.2 \ogq)2 + 
0.014 

(1 + ^ ) ( 0 . 3 8 + 0.21og<7)2 + 
0.22 

qH+q)1'2} 

* 2 </(<?)< 

(U) (27) 

where by (L) and (U) the lower and upper limits of the function f(q) are noted. In the 
Tables IV and V, the numerical values of these limits are given, for \ogqe [ -1.9,1.9] and 
taking the values of k2 corresponding to the polytropic indexes 1.5; 3 and 4. The results 
obtained are presented graphically in Figure 5. 

For - 1 . 9 <log<7 < 0 we have the case when the secondary component (the less massive 
one) is in contact (Table IV). If q is sufficiently small, the first terms from the square 
brackets, in (27), are negligible, therefore for l o g ^ - ^ - 1 . 9 Figure 5 is similar to Figure 3 
(the case of detached systems). 

For 0<log<7< 1.9 we have the case when the primary component (the more massive 
one) is in contact (Table V). If q is sufficiently large, the first terms from square brackets, 
in (27), dominate, therefore for log^->1.9 Figure 5 is similar to Figure 4 (the case of 
contact systems). 

TABLE IV 

Values of log f(q) as function of log q for semidetached systems (secondary component in contact) 

l o g / t o ) 

log q 0 - 0 . 3 - 0 . 6 - 0 . 9 - 1 . 0 - 1 . 3 - 1 . 9 

/ != 1.5 (L) - 1 . 2 2 - 1 . 4 4 - 1 . 5 5 - 1 . 5 1 - 1 . 4 6 - 1 . 2 5 - 0 . 6 5 
(U) - 1 . 0 4 - 0 . 9 8 - 0 . 7 5 - 0 . 4 6 - 0 . 3 6 - 0 . 0 6 0.55 

n = 3 (L) - 1 . 6 4 - 1 . 8 9 - 2 . 0 0 - 1 . 9 9 - 1 . 9 6 - 1 . 6 8 - 1 . 0 8 
(U) - 1 . 4 7 - 1 . 4 1 - 1 . 1 8 - 0 . 8 9 - 0 . 8 0 - 0 . 4 9 0.12 

= 4 (L) - 2 . 1 6 - 2 . 4 0 - 2 . 5 2 - 2 . 5 0 - 2 . 4 6 - 2 . 2 2 - 1 . 5 9 
(U) - 2 . 0 0 - 1 . 9 2 - 1 . 6 8 - 1 . 4 0 - 1 . 3 0 - 1 . 0 0 - 0 . 3 9 

TABLE V 

Values of log f(q) as function of log q for semidetached systems (primary component in contact) 

log f(q) 

l o g ? 0 0.3 0.6 0.9 1.0 1.3 1.9 

n = 1.5 (L) - 1 . 2 2 - 0 . 9 2 - 0 . 5 9 - 0 . 2 4 - 0 . 1 2 0.25 0.98 
(U) - 1 . 0 4 - 0 . 8 8 - 0 . 5 8 - 0 . 2 4 - 0 . 1 2 0.25 0.98 

n = 3 (L) - 1 . 6 4 - 1 . 3 6 - 1 . 0 2 - 0 . 6 7 - 0 . 5 5 - 0 . 1 9 0.55 
(U) - 1 . 4 7 - 1 . 3 1 - 1 . 0 1 - 0 . 6 7 - 0 . 5 5 - 0 . 1 9 0.55 

n = A (L) - 2 . 1 6 - 1 . 8 5 - 1 . 5 2 - 1 . 1 7 - 1 . 0 6 - 0 . 6 9 0.04 
(U) - 2 . 0 0 - 1 . 8 2 - 1 . 5 2 - 1 . 1 7 - 1 . 0 6 - 0 . 6 9 0.04 
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If q differs sufficiently from unity, and the concentration of the matter towards the 
star centres is moderate (n^3), then the ratio Jrot/Jorb is not negligible, that is the 
angular momentum JTOt is not negligible. 

4.4. SYSTEMS CONTAINING A SUPERNOVA REMNANT COMPONENT AND A CONTACT 
COMPONENT 

This case can be considered as a limit case of a semidetached system. The radius of the 
supernova remnant component can be neglected, that is r d e t — 0. Then (27) is reduced to 

/(<7) = 0 +Q)(0.38 + 0.2 log?) 2 k2 (28) 

In Table VI, the numerical values of the function log/(g) are given, for \o%qe [0,1.9] and 
taking the values of k2 corresponding to the polytropic indexes 1.5; 3 and 4. The results 
obtained are presented graphically in Figure 6. One observes that for q ̂  10 and n ~ 3 the 
angular momentum Jrot is not negligible. 

For example, for the system HD 153919 (2U 1700-37), taking q = 20 (Wolff and 
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Values of log f{q) as function of log q for systems containing a supernova remnant component 

l o g ? 

l o g / t o ) " ^ 

0 0.3 0.6 0.9 1.0 1.3 1.9 

n = 1.5 - 1 . 2 3 - 0 . 9 2 - 0 . 5 9 - 0 . 2 4 - 0 . 1 2 0.25 0.98 
n = 3 - 1 . 6 6 - 1 . 3 6 - 1 . 0 2 - 0 . 6 7 - 0 . J 5 - 0 . 1 9 0.55' 
n = 4 - 2 . 1 7 - 1 . 8 6 - 1 . 5 3 - 1 . 1 7 - 1 . 0 6 - 0 . 6 9 0 .04 

I I I 
0 1 \9 

log. ^ —* 
Fig. 6. Variation of log f(q) with log q for systems containing a supernova remnant component and a 
contact component. 

Morrison, 1974) and 3 < « < 4 , it results 0 . 6 5 > f ( q ) > 0 . 2 0 . This means t h a t / r o t is com­
parable with / o r b for this system. 

5. Conclusions 

From the results obtained we see that the ratio JTOt/Jorb is sensitive to the variation of the 
mass ratio q. The rotational angular momentum JTOt is not negligible, if q differs much 
from unity and if the concentration of the stellar matter is moderate (n~3). The non-
synchronism between rotation and revolution (if c5, > 1) as well as the presence of rings 
or disks around the components of some close binary systems will contribute to the 
increase of the ratio JTOtlJOTb- During the evolution of a close binary system, this ratio 

TABLE VI 
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varies on the one hand because of the variation of the internal structure (non-dimensional 
gyration radii) and of the dimensions of the components, and on the other hand because 
of the variation of the mass ratio. The last variation begins at the moment when the 
initially more massive component reaches the Roche limit. So, in some phases of the 
evolution, the rotational angular momentum of the system can increase until it becomes a 
considerable fraction of total angular momentum. In such phases the neglect of Jtot is not 
justified. In these phases a redistribution of the angular momentum takes place, the mass 
transfer between the components being accompanied by the angular momentum transfer. 
Evidently, the mass loss from the system will also affect the distribution of the angular 
momentum. 
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