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ON SEMIGROUPS IN Rn X Lp CORRESPONDING 
TO DIFFERENTIAL EQUATIONS WITH DELAYS 

C. BERNIER AND A. MANITIUS 

1. I n t r o d u c t i o n . In this paper we s tudy some properties of the semigroups 
associated with the linear retarded functional differential equations ( F D E ) in 
the sett ing of Banach spaces Rn X Lp( — h} 0, Rn), 1 < p < oo. Earlier investi
gations of these equations via semigroups defined on the customary space 
C([ — h, 0], Rn) played an impor tant role in problems of stabili ty, oscillations, 
bifurcation, asymptot ic behavior etc. [15]. More recently, developments in 
control theory have indicated some distinct advantages of representing re
tarded F D E ' s as abst ract evolution equations in the spaces Rn X Lp( — h,0, Rn) 
(especially for p = 2) . These spaces have been previously used in studies of 
F D E by N. N. Krasovski [19], Coleman and Mizel [8], Borisovic and Turbab in 
[5], Delfour and Mit ter [13] and by several other authors . Borisovic and 
Turbabin were apparent ly first to s ta te some basic properties of the semigroups 
in Rn X Lp corresponding to linear retarded F D E ' s (their paper contains no 
proofs, however). These or similar ideas were subsequently employed in other 
papers or reports [2; 10; 26; 27] and, were also applied to some problems of 
control theory (e.g. [2; 2 1 ; 23]; for more references on related works using 
other types of evolution equations see e.g. [9]). 

In this paper we consider four possible semigroups associated with the auto
nomous linear retarded F D E : the usual semigroup {S(t), t ^ 0} corresponding 
directly to the equation, the semigroup \S+(t), t ^ 0} corresponding to the 
equation with transposed matrices, the semigroup {S(t), t rg 0} corresponding 
to the differential adjoint equation, and the dual semigroup S* (t). An impor tan t 
point of this paper is the introduction of a certain bounded linear operator F, 
related to the equation, which turns out to play a key role in the semigroups 
listed above. By using this operator we explain the relation between the general 
linear functional defined on Rn X Lp( — h, 0;Rn) and the known special bilinear 
form associated with the F D E , and we prove a few new relationships, holding 
in the dual space, involving semigroups mentioned above and their infinitesimal 
generators. In addition, it is shown tha t the property of commuta t iv i ty of the 
semigroup operator S(t) with its infinitesimal generator has as its consequence 
the commuta t iv i ty of the fundamental matr ix with the matrices defining the 
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898 C. BERNIER AND A. MANITIUS 

FDE. Finally, in the Appendix we collect proofs of some basic properties of 
the semigroup S(t) which are not readily available in the published literature. 

2. Pre l iminar ies . We consider the linear retarded function differential 

equation 

N no 
(2.1) x(t) = Y, Aix(l ~ hi) + I Aoi(d)x(t + 8)de a.e. for / ^ 0 

i=0 J -h 

(2.2) x(0) = 4>°,x(6) = ct>\d)f 6£ (-/*, 0), 

where x 6 Rn, </>° £ Rn, 01 6 Lp(-h, 0; Rn) ; A „ i = 0, . . . , TV, are n X n real 
matrices; the n X n real matrix valued function 6 —> A0i(6) is bounded mea
surable; and 0 = ho < hi < . . . < hN = h. We adopt the customary notation 
xt = xt(6) = x(t + 6),0 G l-h,0]. 

The solutions of this equation will be treated as elements of the space X = 
Rn X Lp(-h, 0; i?w), that is (x(/), x<) G X, or x(i) G i?n, x, 6 Lp(-h, 0; i^71). 
Elements f U will be denoted (^°, i^1), where ^° G iîn, ^ Ç Lp(-h,0; Rn). 
X is a Banach space with the norm 

IK*0,*1)!!* = ll*°ll«» + II^IUn-, ,0,-^. 

The dual space of X will be denoted by X*. The scalar product between 
* G X* and 0 Ç X will be denoted by (*, </>). Occasionally, the scalar product 
between *x G L*(-&, 0; Rn) and 01 G Lp(-h, 0; 7?n), l / £ + l/q = 1, will be 
used and denoted by (\pl, 01)LP. W1,p(a, b; Rn) will denote the Sobolev space of 
x Ç L^(a, 6; Rn) with derivative x in Lp(a, b;Rn). Abbreviations A.C. and B.V. 
will denote absolutely continuous and bounded variation functions, respective
ly. Superscript T will denote transposition of a vector in Rn. 

Let x(t\<i>) and xt( • , 0) denote the solution of (2.1) (2.2) in Rn and Lp(-h, 
0; i£w) respectively. Existence and uniqueness of solution x(t, 0) with the 
initial conditions (2.2) (0 £ X) has been asserted in [13]; moreover one has 
that / -> x (/, 0) is in Wl 'p (0, r;Rn) for all fixed r > 0, and 

(2.3) | | * ( . , 0 ) | U I . P g c||0||x 

where c depends on r (see Appendix). 
In order to keep formulas concise we will use the Stieltjes integral notation. 

Extend A 0i ( • ) to ( — GO , oo ) by putting A 01 (s) = 0 for 5 (L [ — h, 0], and define 

(2.4) G(6) = - £ Aa^,-hi](p) - f ^01(5)^ 

where X(o,&) denotes the characteristic function of the interval (a, b). Define 

(2.5) N(6) = -^oX(-„,o)W + G(fi). 

Both G( • ) and N( • ) are B.V. functions; more specifically, they are piecewise 
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A.C. with finite number of jumps. For 0 G C([ — h, 0]; Rn) one can define 
L:C-*Rn 

(2.6) £(</>) = I dN(0)4>(0). 
J -h 

For / ^ 0 define the operator 5 (/) : X —> X by 

(2.7) 5(/)0 = (*(/ ;«),*,(• ,0)) 0 G X. 

The following proposition summarizes the known properties of S(t) : 

PROPOSITION 2.1. (i) / w a// / ^ 0, 5 (0 w a linear bounded operator; 
(ii) the family \S{t), t ^ 0} is a strongly continuous semigroup of operators; 

(iii) for allt ^ h,S(t) is compact; 
(iv) the infinitesimal generator A of {S(t), t g: 0} is given by 

(2.9) ^ ( 4 ) = {0 G XI01 G ^ ' ' ( - / ^ O ; ^ ) , * ^ ) = 0°Î 

(2.10) ^ 0 = ( L ( 0 O , 0 1 ) forte® (A). 

Proof. See Appendix. 

3. Operator F, its dual F* and its relation to semigroup S(t). We now 
introduce the operator F : X —» X which will play an important role in this 
paper, as well as in other related developments [21]. First, let 01 G Lp( — h,0; 
Rn) and define the operator H : L"(-A, 0; Rn) -+ Lp(-h, 0\Rn) by the formula 

(3.1) (fl>x)(0) = I dG(s)<l>1(s-e) 

or, more explicitly 

(3.2) = T, AiXi(0)<t>\-hi-d)+ I ^ o i W * 1 ^ - ^ ) ^ 
z = l ^ -h 

where xt( ' ) is the characteristic function of the interval [ — ht, 0]. We note 
that iiT is related to the strictly retarded part of equation (2.1), that is H does 
not depend on A0. The operator H will enable us to represent in a concise 
notation the contribution of the initial function 01 to the solution x(t) of (2.1). 
We also note that H<j>1 is a convolution of 01 with the real measure G( • ). 
From the explicit form of Hcf)1 given by (3.2) it follows immediately that H is 
a linear bounded operator. More importantly, its dual H* is an operator of 
the same type, as shown by the following result. 

PROPOSITION 3.1. Let ^ G Lq(-h, 0; Rn), \/p + 1/q = 1. Then 

(3.3) (H*^)(0) = f6 dGT(s)^(s-6). 
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Proof. Take arbitrary <t>1 € Lp(-h, 0; Rn) and j 1 £ L«(-fc, 0; #"), and 
compute 

(l^.-ff^V = J ^ > ) [ J dG(s)4>\s - 8)jdd 

(3.4) = J^ ^ i rw[ g AiXi(e)4>\-ht - e)jde 

/

o /»e 

-h J -h 

Since ^4oi(£) = 0 for £ < — h, the second term can be rewritten as 

^ (0 ) I ^ ( s + ^ ^ K ^ . 

We now show that the order of integration can be changed by using the 
Fubini theorem; in fact, this is a part of a standard result concerning the 
convolution of functions in L1, [18, 21.31; 14, VIII.1.24]. By virtue of argu
ments given in [18, p. 395-396], the function (s, 6) -> \^lT(6)A^{s + d)<f>l(s)\ 
is measurable with respect to the completion of Lebesgue's product cr-algebra 
on [ — h, 0] X [ — h, 0]. We then compute 

\^lT(e)A0l(s + e)<i>\s)\dsde 
-h J -h 

^ J H ^ W I U » f \\An{s ^ B)\\R^\\4>\s)\\Rndsde 

^ ll^oill^-H^IUi-ll^lUi. 
Hence we may apply Fubini's theorem [18, 21.13 and 21.17], obtaining that 
(3.5) is equal to 

(3.6) 
^lT(d)An(s + e)de<i)

1(s)ds 

= J [/_' AoxT(9)^(d-s)dd 
T 

</> (s)ds. 
-h \- *s -h J 

The first term of (3.4) can be transformed without difficulty. Adding it to 
(3.6) we obtain that (3.4) is equal to 

If 01 e A.C. ([-h, 0], i?w), then the explicit expression for i7 (3.2) indicates 
that the function 6 —> (H<t>l)(6) is A.C. in ( — hi+i, —hi), with possible jumps 
at 6 = -ft, , i = 1, . . . , N. 

Define F : X — •> X by F = |~/ 0~| , where J is the identity operator on Rn. 
0 HJ 
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That is, for any (/> f I 

[ 7 t y ] ° = <t>°, [F<t>Y = H<t>\ 

We note again that F is linear bounded, and that 

(3.7) .0 H*J ' 

Let us now give some introductory motivation for the operator F. We show 
below that F is closely related to the well known bilinear form (a, <j>) described 
by Hale [15, § 7.3, Eq. (3.1)] and that for t = h F is a part of S(t). 

The bilinear form (a, <j>) is given in [15] as a mapping C([0, h], Rn*) X 
C([ — h, 0], Rn) —> i^ where i?w* is the space of transposed (i.e. row) vectors. 
For a e C([0, h], Rn*), <t> e C([-h, 0], Rn), (a, 0) is defined by 

J -h J 0 
(3.8) ( « , « ) = a ( 0 ) * ( 0 ) - I I aft - 5)diV(s)*(É)# 

«̂  -a •/ o 
where the inner integration is with respect to £ and the outer one with respect 
to s; (the order of a, N, <j> cannot be changed due to the matrix notation). The 
form (a, <j>) is important in the theory for several reasons [15, Chapters 6, 7]. 
In particular the spectral projections on eigenmanifolds can be expressed as 

m 

where 0xy, faj are, respectively, the eigenfunctions associated with Eq. (2.1) 
and with its adjoint equation, corresponding to some eigenvalues X;-, 7 = 1, 
. . . , m ([15, Lemma 3.4]; see also [3]). We now show that (3.8) is closely 
related to F. 

Define a special bilinear form associated with F. Let (( • , • )) : X* X X —» R 
be given by 

(3.9) « * , * » ^ (^F$) = (F*4,,4>). 

Let 0 \ ^ e C([-h, 0], Rn) and 0° = ^ ( 0 ) , ^° = ^(0). Then by using 
previous calculations we obtain (the superscripts 1 are dropped) 

<(*, </>» = V(0)<P(0) + P f\T(s-d)dG(s)<p(e)de 

where the underlined elements belong to the inner integral (The order of 
i/s G, <t> cannot be changed due to the matrix notation.). Since for 5 = 0 this 
integral is equal to zero, one can replace dG{s) in the outer integral by dN(s) 
(which differs from dG(s) only by the jump — A0 at 5 = 0). Therefore 

(3.10) «*, 0 » = ^(0)0(0) + P f *T(s - d)dN(s)<t>(d)dO 
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which coincides with (3.8) if we let \pT(6) = a( — d). Therefore (3.9) is an 
analog of (3.8). 

By making use of the known variation of constants formula (see e.g. [15, 
p. 150], or [13, Theorem 5.2]) one can now obtain an explicit expression for 
S(t). Let X(t) denote the fundamental matrix of Eq. (2.1), i.e. X(t) = 0 for 
t < 0, X(0) = I, X(t) = L(Xt) a.e. where Xt( • ) denotes X,((9) = X(t + 6), 
6 Ç [ — h, 0], [15, Theorem 2.5]. Columns of X t can be regarded as elements of 
Lp( — h, 0; Rn). Taking the variation of constants formula, given by [15, § 6.3, 
Eq. (3.10)], one obtains the following expression for x(t, </>): 

(3.ii) x(t, 0) = x(t)<t>° + I ut(e)ct>\e)dd 
J —h -h 

where 

N re 
(3.12) Ut(d) = £ X(t - 6 - ht)AiXi(0) + X(f-0 + s)A0i(s)ds. 

i= l J -h 

Let us introduce the following notation. Let £j(/), £t
j, ut

j denote the j - th 
column of XT {t),XT

t ,U
T

t respectively. Let & = (f>(*), £tj) a n d l [ = [f,1,. • . | , n ] . 
By the rules of matrix multiplication, if a\ b3 denote the columns of n X n 
matrices A} B, the statement A = CB, where C is an n X n matrix, is 
equivalent to a3 = Cb3, j = 1, . . . , n. The symbol (Xt , <t>) will be under
stood as a row vector of scalar products (£/, </>), j = 1, . . . , n. Let Xj(t, </>) 
denote the j-th. component of x(t, $). Then, by transposing (3.12) we obtain 

ut
3 = H*£t

3' 
and 

(3.13) Xj(t, 0) = <£>(*), $°)Rn + (utj, 4>1)LV 

= <!,', H)-
Hence 

(3.14) x(t,4>) = (X^Fcj>)T, t ^ 0. 

From (2.7) we have now 

(3.15) [S(0*]« = (Xl F*)* 

(3.16) [S(t)<i>y(d) = (xT
t+ih F<t>y + <p(t + e)xi-k.-t>(o). 

Note that for t ^ h the last term on the right hand side disappears. Define 
the following linear operator & t from Rn X Lp( — h,0; Rn) into itself: 

(3.17) {[^ '*] l W = X(* + *>*° + / _ V ( / + S + 6)*1{s)ds 
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Then (3.15) and (3.16) can be rewritten as 

(3.18) S(t)<f> = % tF<t> + s{t)4> 

where [s(t)^]a = 0 and [s(t)4>Y(6) = ^(t + 0)XI-H,-t)(fi), i.e. s(t) = 0 for 
t ^ h. As a conclusion we obtain that for 2 ^ h the operator ,S(/) is a composi
tion of operators & t and 7\ Consequently 

(3.19) Ker FC Ker S(t), t ^ h. 

The operator & t (or t = h along with the T7 play an important role in the 
problem of completeness of eigenfunctions — see [22]. 

4. A consequence of commutativity of S(t) and A. It is well-known 
(e.g. [25]) that 

(4.1) S(t)A<l> = AS(t)<t> for all <j> £ ^(^4) and for all * ^ 0. 

A direct consequence of this identity is 

LEMMA 4.1. The following identity holds: 

/

o ro 

dN(d)X(t + 6) = I X(t + 6)dN(d) for all t ^ 0, 
-h J -h 

where N( • ) is given by (2.5), and X(t) is the fundamental matrix of Equation 
(2.1). 

Note that for a system with one delay, (TV = 1) and AQ\{6) = 0, (4.2) takes 
the form 

A0X(t) + AxX{t - h) = X(t)A0 + X(t - h)Ax t è 0. 

Proof. Consider the /^-components of identity (4.1). For </> £ ^(^4) one 
has, by virtue of (2.10) and (2.6) 

[AS(t)4>]° = L([S(t)<t>]1) = P dN(d)[S(t)<p]\d), 

and, by using (3.16) 

(4.3) •̂  — [^5(0*] = f dN{6)X{t + e)<f 

+ P rfiv(e)!(H*zr+e, « i > J / + *x(* + tf)X[_fti_„(9)}. 
The integral in the second term can be switched with ( , ) by using the same 
reasoning as in the proof of Proposition 3.1. Using the fact that dG{6) = 
dN(0) for d G [-h, ~t),t > 0, we obtain, 

[AS(t)4>]° = I dN(9)X(t + d)<t>0 

J —h 

I gi(s)<t>\s)ds+ I tdG(d)4>\t + 6) 
J -h • ' -h 

(4.4) 

+ 
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where the last term is present only for t < h, and 

(4.5) gi(s)= P dN(d)[(H*Xr+e)r(s)} 
J -h 

On the other hand, for 0 6 9(A), A<t> = (L^1) , 01) and, by using (3.11), 
one has 

(4.6) [S(t)Act>f =X(t)L(ct>l)+ f Ut(0)<j>l(0)dO. 
J -h 

We now claim that 0 —» ?7*(0) is B.V. on [ — h, 0]. Indeed, by inspecting formula 
(3.12) one finds that the first term on the right hand side of that formula is 
piece-wise A.C. with finite number of jumps at 6 = —hi1i = l,...JN—l, 
and 6 = t — hi (if / — ht G [ — A, 0)), i = 1, . . . , N\ denoting these jumps 
by AUt(6) = £7,(0+) - Ut(d~) we have 

(4.7) AUt(-ht) = X(t)At; AUt(t - ht) = -AiX[-n,o)(t ~ &<)• 

The second term on the right hand side of (3.12) is Lipschitz, hence A.C. Let 
rj( • ) denote the A.C. part of Ut( • ). From (3.12) 

(4.8) v(6) = X(t)A01(0) - Aoi(0 - t) - g2(6) 

where the presence of A0i(6 — t) follows from the fact that the lower limit of 
integration in (3.12) is, for 6 — t ^ —h, actually equal to 6 — t (because 
X (a) = 0 for a < 0) ; the last term equals 

gi(fi) = J Xt(s-9)dG(s), 

where the integration is taken on the interval [a, 0], a = max { —h, 6 — /}. 
Since Ut( • ) is B.V., one can use for (4.6) the following integration by parts 

formula [24] 

(4.9) f ut(6)<j>\o)do=ut(e)<i>\e)\ - P [deut(e)]<i>\o). 

Using (3.12) (4.7) and (4.8) to compute the right hand side of (4.9) and re
arranging terms one obtains 

/

o ro ro 

Ut(d)4>\0)dd = X(t + s)dG(s)<t>° -X(t) dG(s)4>\s) 
-h J —h J —h 

+ I 'dG(e)4>\t + e)+ j gi{d)4>\e)de. 
J -h J -h 

Substituting (4.10) into (4.6) and using (2.5) we finally obtain 

[S(t)A<t>)° = I X(t + s)dN(s)cj)0 + I dG(d)ct>\t + e) 
J —h J -h 

+ I gM4>\e)de. 
•> -h 

https://doi.org/10.4153/CJM-1978-078-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-078-6


SEMIGROUPS 905 

Consequently 

0 = [AS(t)<t>]° - [S(t)Aj>]° 

= \ [ J dN(fi)X(t + 0) - J X(t + 0)dN(0),gl - g2J , (*°f 01)) 

for all (0°, 01) G «^(^4). Since & (A) is dense in X, the conclusion follows. 

Remark 4.1. Formula (4.2) can also be derived by other methods, see e.g. 
[20, Remark 4], or, for the special case of differential-difference equations, [4]. 
What we want to emphasize in the proof above is the connection of this formula 
with the commutativity of S(t) with A. The formula itself has some applica
tions in studies of controllability and observability—see e.g. [23, Sec. 8]. 

5. The semigroups S+(t)> S(t), and the dual semigroup S*(t). In this 
section we consider three other semigroups associated with Eq. (2.1). The dual 
semigroup {S*(t), t ^ 0} plays an important role in many problems, especially 
in control theory (see e.g. [11; 12]). In qualitative theory of functional differen
tial equations one often uses the so-called adjoint equation [15, § 6.3] which 
gives rise to a semigroup denoted by {S(t), t ^ 0}. We now show that both 
S*(t) and 5(/) are closely related to S+ (t), where {S+(t),t ^ 0} is the semigroup 
corresponding to the equation with transposed matrices. The details follow 
below. 

Semigroup S+(t), t ^ 0. Consider the system analogous to (2.1), but with 
all the matrices At transposed, 

(5.1) y(t) = I dNT(d)y(t + 6) a.e. / ^ 0, y G Rn, 
J —h 

(5.2) (y(0), y0) = $ for some ^ 1 * . 

With this system we associate the semigroup S+(t) : X* —» X*, t ^ 0, defined by 

(5.3) £+(*)*= (y(t,iï,yt(-,iï) 
where y( • , \p) is the solution of (5.1) with the initial data (5.2). Clearly, 
S+(t) has all the properties given by Proposition 2.1, with the 2>(A+) now 
given by 

(5.4) 9(A+) = {> e X*^1 £ W1- f l(-A,0;iîB) ,^1(0) = V) 

and 

(5.5) A+* = ( L + ( ^ ) , ^ ) 

where L+ is given by (2.6) with N( • ) replaced by NT( • ). 

Semigroup S (t), t ^ 0. Consider the following equation 

(5.6) z{t) = - f dNT(d)z(t - 6) a.e. for t S 0 
-h 
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with the initial data 

(5.7) (z(0),z f t( .)) = ^ I * 

where zt(-) is still defined by zt(6) = z(t + 6), 6 £ [-h, 0]. Equation (5.G) 
has been used in the control theory literature as the so-called ''adjoint equa
tion". For t è 0 define 

(5.8) 5(0f = ( * ( U ) , * I + A ( - , £ ) ) t £ 0 

where s( • , £) is the solution of (5.6) on (-co, 0] with the initial data (5.7); 
this solution is unique, so that indeed S(t) is a well defined semigroup operator. 
We define A by l im^ 0 - (5(0 - I)/L 

For any r ^ 1 define the operator^/ 1 from Lr( — h, 0; Rn) into itself by 
( / t y ) ( 0 ) = * ( - * - 0),0 £ ( - A , 0 ) , a n d (for r = q) d e f i n e / : X* -> X* by 

^/ = (I,;/1). Obviously^/ is one-to-one, bounded and invertible, a n d ^ 2 is 
an identity on X*. 

We now have the following relations. 

PROPOSITION 5.1. (i) S(-t) = /S+(t)J, for all t ^ 0 
(ii) 9(A) = /9(A+) 

(iii) A = / . 4 + / . 

Proof. Part (i) follows by defining 77: [ — h,co)—>Rnhy the formula rj(t) = 
z(-t, £), * G [-ft, oo). Now 77(0) = z(0) = £°, 77(0) = zh(-h - 0, J) for 
6 e [-&, 0), i.e. rç(0) = (Jlzn){B) = e(0), and, by a simple calculation one 
sees that for t ^ 0, rj(t) satisfies the differential equation (5.1). If now £ = ^/i/s 
one has 77(0) = ^(6), 6 £ [ — /̂ , 0), 77(0) = ^°, and by uniqueness, 77(/) = 3/(2) 
for t ^ 0. Using (5.3) and (5.8) one obtains S(-t)J^ = /S+(t)^, for all 
\p G X*, which gives (i). From this and the properties of^/, (ii) and (iii) follow 
trivially. 

This proposition shows that S+(t) contains all the information about the 
solutions of the ''adjoint equation" (5.6). We now turn to the dual semigroup 
S* (t) and show that it is also closely related to S+(t). 

Since X is a reflexive Banach space (1 < p < 00 ) one has that the dual 
semigroup S* (t) is defined on all of X*, is strongly continuous in the topology 
of X*, and its infinitesimal generator A* is the dual of A, with 9(A*) strongly 
dense in X* [7, § 1.4]. 

To describe A*, define, for ^ = (i£0, x/yl) £ X* 

g{6) = P dGT(s)^ - t\e). 
u -h 

Then, performing some standard manipulations similar to those reported in 
[26] one can prove that 

(5.9) 9 (A*) = {x/y e X*\g G Wl >q(-h, 0; Rn), g(-h) = 0j 
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and, for ) 6 9(A*) 

(5.10) [A**]0 = ^(O) + 4 o V , W Ï W = 7 ^ W -

Our next result exhibits the role played by T7*, and the related bilinear form 

PROPOSITION 5.2. The following relations are true: 
(i) F*9{A+) C@(A*) 

(ii) A*F* = F*A+ on9{A+) 
(iii) « i M « » = « ^ , 0 » > r a / / 0 G W ) , * G 0 ( 4 + ) . 

Proof, (i) Taking an arbitrary </> = (</>°, 01) G 0(^4+) one has that \p = 
F*<f> G F*@(A+) is given b y 

(5.11) ^ = 0°, ^ (0 ) = ( i?V)(0) . 

Now 

(5.12) g(0) = P dGr(s)*° - ^(0) = P d G r W [ / - «.'(s - 6)]. 
J -h J -h 

One verifies without difficulty that g( • ) is absolutely continuous, and 

-f 
J -h 

(5.13) £g(6) = I dGT(s)4,1(s-6). 

Writing the right hand side in detail, one observes that (5.13) belongs to 
L*(-h, 0;Rn), hence g(- ) G Wl>q(-h, 0; Rn). Furthermore 

g(-h) = A ^ - ^ ( 0 ) ] = 0 

so that \p G 9(A*) as claimed. 
(ii) By (4.10) one has that, for 0 G 0 ( ^ + ) , i? = A*F*(t> is given by 

(5.14) T?0 = AU° + (H**1)®) = AU1®) + f d G 2 ^ ) * ^ ) = L+(0X) 
^ - A 

and, by using (5.10), (5.13) and (2.11) 

(5.15) v\6) = jeg{6) = J\GT(S)^(S - 0) S (tf*^)(«) 

for 0 € (-A, 0). Therefore, by using (5.14), (5.15), (2.12) 

(5.16) A*F*<t> = r,= (L+(<t>1), H*4>1) = F*(L+{4>1), j , 1 ) 

= F*A+<t> for all 0 6 9{A+). 

(iii) This follows now easily from (i) and (ii), namely, for \p £ 9{A+), 
<t> e 9(A) 

(5.17) « * , A4»)) = <*, FA<j>) = (F**, A<j>) = (A*F*4>, <j>) = (F*A++, <t>) 

= ((A+i, <!>)). 
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Remark 5.1. The property (iii) is analogous to (3.2) on p. 173 of [15], and indi
cates that A+ is a "dual" operator of A with respect to the bilinear form 
( ( , ) ) . The difference between the present approach and that of [15] is that in 
[15] one has C = C([-h, 0], Rn) and C* = C([0, h], Rn*), with A* of [15] 
defined on & (A*) C C*, where C* is not a dual space of C; in the present 
approach, both ,4+ and A* have their domains in X*, and both X and X* 
involve the interval [ — h, 0]. 

In order to prove similar properties for the semigroups generated by A* and 
A+ we need the following result. 

LEMMA 5.3. Let Y be a Banach space, K £ ££'(Y) and Bu B2 the infinitesimal 
generators of the strongly continuous semigroups { Ti(t)} t^o and { T2(t)} ^o on Y 
respectively. Then 

K9{BX) C 9{B2) and B2K = KB, on 9(BX) 

if and only if 

T2(t)K = KT^t) for all t ^ 0. 

Proof. To prove this result, we use the following fact [25, Theorem 5.5]: 
if {T(t)}t^o is a strongly continuous semigroup on a Banach space F, A its 
infinitesimal generator and Ax the Yosida approximation of A defined by 
Ax = \2R(\; A) - \I for X £ p(A) (the resolvent set of A), where R(\; A) is 
the resolvent operator of A, then for all £ £ F, 

7X0£ = lim ê'AY 
A->+c» 

In fact, since K is a bounded operator this last result gives us immediately that 

KTi(t)f = lim KetBlXyp and r 2 ( / ) i ^ = lim etB^K^ for/ ^ 0, 
X->+oo X->+oo 

^ 6 F. 
Since the resolvent sets p(B\), p(B2) contain (co, GO ) for some co [25, Corollary 
5.3], we have that for X > co, i££i = £2i£ on ^ ( # 0 implies K(\I - Bx)~

l = 
(\I — B2)~

lK on a dense subset of F, hence on all of F. This in turn yields 
KRn(\; Bi) = Rn(\; B2)K for X > co, n = 1, 2, 3, Using this last identity 
we obtain, by a series expansion, that eR{X]B2)K — KeE(X;Bl). Since eu+v = euev 

if U and F are bounded linear operators such that UV = F£/, we have 

^ 2 ^ = ^ « l X , / ^ 0 , X > CO. 

Hence for all \p £ F, 

KT^t)^ = lim i ^ ' B l V = lim e ' * 2 ^ = T2(t)K^, 
X->oo X->oo 

i.e. i£7\(/) = T2(0i£, for all / ^ 0. 
The reverse implication of the lemma follows easily by using only the 

definition of the infinitesimal generator. 
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We now present the relations between S*(t), S+(t) and S( — t), t ^ 0. 

T H E O R E M 5.4. The following relations hold: 

(i) S* (t)F* = F*S+(t) for allt^O 

(ii) ((S+(t)J, </>» = « * , S(t)4>)) for all (<*>, « E l X X*,for all t ^ 0 
(iii) F*\JS(-t)/} = S*(t)F* for all t ^ 0. 

Proof. Pa r t (i) follows directly from Lemma 5.3 by taking X* for Y, S*(t) 
and A* for Tt(t) and B2, S+(t), A+ for Ti(t) and Bu and F* for # . Pa r t (ii) 
results directly from (i) and (3.9), while (iii) follows from (i) and Proposition 
(5.2). 

Remark 5.2. Pa r t (i) of Theorem 5.4 can also be proved by computing directly 
the semigroups S*(t), S+(t) from (3.15), (3.16). In this case, Proposition 5.2 
would become a consequence of Theorem 5.4 via the equivalence s ta tement 
contained in Lemma 5.3. 

The explicit characterization of S*(t), which can be obtained through some 
rather s tandard manipulations, is given below: 

(5.18) £*(/) = F*&t* + s*(t) 

where 

(5.i9) i^**^)= x T { - 1 +^°+r_„ x T ( t +*+v* 1 ^} 

[s*(t)if = 0, [s*(t)t}\d) = +1(0- 0x[o. .+«(0. 

Remark 5.3. One interesting consequence of the above theorem is tha t for 
\f/ Ç Im F* the semigroup S*(t) can be replaced by F*S+(t), t ha t is 

\p g Im .F* => there exists 77 G X*, ^ = F*TJ. 

Then 

S*(/)* = S*(t)F*v = F*S+(t)r1. 

T h e advantage of this is tha t S+(t)-q can be easily obtained by solving the 
differential equation (5.1), while S*(t) in general does not necessarily have 
t ha t type of property. 

In particular, in many optimal control problems involving FDE with targets 
in Rn, the boundary conditions on the adjoint equation (5.6) are of the type 
\p = (xp1, 0) , and such a \p obviously belongs to Im F*. 

There are several other interesting consequences of the relationships pre
sented above, in particular for the spectral analysis of S(t) in Hilbert space 
^ X I 2 ( - M ; Rn), and for applications of 5 ( 0 and S*(t) to control theory. 
Some of them are described in [21; 12], while a more comprehensive t r ea tment 
of spectral analysis will be given in a different paper co-authored by M. C. 
Delfour and one of the present authors (A.M.). 
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One can also observe some analogies between the results of this section and 
those of Henry [17], who developed the dual i ty theory for retarded F D E ' s 
with X = C([-h, 0], Rn) and X* = BV([-h, 0], Rn*). In fact, if F* is in-
vertible, Theorem 5.4(i) asserts t ha t S*(t) and S+(t) are related through a 
similarity transformation, analogously as in the case studied by Henry. A more 
interesting fact is t ha t such a similarity transformation always exists, regard
less of invertibility of F*. For more details on this, see [22]. 

Appendix . We collect below proofs of the assertions (i)-(iv) of Proposition 
2.1. As stated in the Introduct ion, the basic properties of S(t) given by Propo
sition 2.1 were announced in [5] wi thout proofs. Since then, several au thors 
relied on those properties, even though the proofs are still not readily available 
in the published l i terature. Some proofs, e.g. (iv) for p = 2, were given in 
technical reports [26] and [2] (the proof given in [26] is, in our view, unduly 
complicated) . By presenting our versions of the proofs we do not want , in this 
si tuation, to make any claims of novelty, bu t we merely wan t to include these 
proofs for the sake of both completeness and an easy reference for the reader. 

T h e facts tha t S(t) is a bounded linear operator and t ha t it satisfies the 
semigroup proper ty follow easily from the existence, uniqueness and cont inuous 
dependence of solutions of (2.1) on the initial da ta . 

Strong continuity of {S(t)} t^0. W e show tha t 

S(t)ct> -> 0 for all 4> £ X. 
H ° 

For <£ = (0°, 01) G X, we have 

115(0* - *||* = ||*(0 - *°||«» + \\xt - ^WLP. 

But x(0) = </>° and x( • ) is absolutely continuous in [0, oo ). Then 

||*(0 - *°||*»^0o 

and 

/

o /•o 

\xt(s) - ^Wds = \x(t + s) -x(s)\pds->0 
where we used in the last step the well-known fact t ha t 

04.1) lim J \f(s + a) - f(s)\'ds = 0 

f o r / e Lv(a - 5, b + 5), Ô > 0 [16]. 

Compactness ofS(t), t ^ h. Let M = {4 £ X \ \\<l>\\x S K} be a bounded set 
in X. For fixed t > 0, R(t) :<£—>*;(• ; 0) : X -> C([0, t] ; Rn) is continuous. So 
R(t)M is bounded in C([0, /] ; Rn). Also, x( •;</>) Ç W[o,t] with 

\\X\\WI.P S c(t)\\4>\\x 
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(see (2.3) and its proof a t the end of this Appendix), so for s, sf £ [0, / ] , 

| |x(s ') - *(*)| |a» ^ J | | * ( 0 | | * è \s - s'\l/Qc(t)K. 

We thus have tha t R(t)M is a bounded, equi-continuous family in C([0, t] ; Rn), 
and so R(t)M is relatively compact by Ascoli's theorem. We next define, for 
/ ^ h, the operator P(t): C([0, /] ; Rn) -+X given by P{t)x = (x(/), * , ( • ) ) , 
where x = x( • , $) is the solution to (2.1) defined and continuous on [0, / ] . 
We claim tha t P(t) is continuous. Indeed, if x, y are two elements of C([0, i]\ 
Rn), t ^ h, such tha t 

\x — y\ \c < min 
2 ' I W 2 

one easily verifies tha t | | (x( / ) , xt( • )) — (;y(0> 3^( ' ))ILY < £, proving tha t 
P(t) is continuous. Hence P(t)[R(t)M] is relatively compact and we see tha t , 
for / ^ h, S(t) is the composition P(t)R(t). 

The infinitesimal generator A of {S(t)\. We recall t ha t A is defined by 

A <j) = lim • for 4> G <^G4), 

where Siï{A) is precisely the set of points where this last limit exist. We want 
to show: 

@(A) = {<!>= (0°, 01) G X\<p G ^ - ' ( [ - A , 0]), 0i(O) = 0°}. 

Let </> be in this last set. We first note tha t x G A.C. [ — h, T] for all T ^ 0; 
in fact x is absolutely continuous in [ — h, 0], and also on [0, T] for all T > 0 
and (^(O) = 0° = x(0) . In particular, x is uniformly continuous on [ — A, T]. 
This gives us easily tha t 5 —> x,.( • ): [0, 2"] —> C[ — A, 0] is continuous. More
over we know tha t L, defined in (2.6), is continuous. So s —> L(xs) is continuous 
and we have: 

xjà_=:_m = i £ ±{s)ds i P 
- I L(xs)ds ->L(x0), 

i.e. l imjjo (x(t) — x(0))/t exist. Also, since x Ç £p[0, 7'] for all 7' > 0, we have 

t 
x(t + e) - x(e) x(0) 

x(s + 6) - x{6) 

-/* II «^ o 

- 1 X I [ X' ' '* ( s+e> - *w 11*~ d53 
= 7 X [ X ' '•*(* + e) ~ *((?) 'lv d"J 
^ e for / sufficiently small 

d0 

ds 
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where we used successively Holder's inequality, Fubini's theorem and relation 
(A.l). Hence c/> G 9(A). Conversely if 0 G 9(A), there exists (s0, z1) G X 
such that 

x(0 

and 

x t — <t> 

Rn U ° 
0 

LP U ° 
0. 

Hence, for a, 0 G [ — fe, 0], 

1 p+* 1 p+< i p + ' 1 P 
- I x(s)ds — - I x(s)ds = - I x(s)ds — - I x(s)ds 
t J R t J a t J a+i t J a 

= Ĵ  |_ r J<fa - J a z (s)ds. 

And we know that for almost all a G [-A, 0], 

x(s)ds —» x(a) [16]. 

So if we take such an a G [ —r, 0], we have for almost all (3 G [ —/&, 0] that 

p 

Let us redefine x(t) on a set of null measure to obtain: 

x(t) = I zx(s)ds + x(a). 
J a 

In this manner x( • ) G A.C. [ — &, 0] and has a.e. a derivative equal to zl G 
Lp[ — h, 0]. We next check that 0*(O) = 0°. We have already seen that for 
a, 0 G [ - r , 0 ] , 

1 p+< 1 p + ' 
- I x(0)d0 - 7 x ((9)̂ (9 
t J R t J a 

I" 
%J n 

x(t + e) - x(e) (0)d0-

So if j8 = 0 and a G [ — h, 0] we obtain 

1 f ' 1 fa+' 
7 x(<9)̂ <9 - 7 I x ( s ) ^ -> 01(O) - 0 1 (a ) . 

But 

) f'x(fi)d8->tx{0) = 4? 
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since x is continuous for / ^ 0. And 

1 fa+t 

since 0 1 £ A.C. [-h, 0]. So ^(0) = 4>°, and <j>1 € W 1 ' ^ - / * , 0]. Moreover, we 

have seen in this demonstrat ion tha t for <j> £ &(A), 

A<t>= (x(O+),0O = (Lfo 1 ) ,* 1 ) -

Proof of estimate (2.3). The est imate was given in [13, Theorem 3.1 ii]. We 

supply below a brief proof of (2.3). 

From the variation of constants formula (3.11) it is obvious tha t the map

ping 0 —-> x ( • ; <f>), X —• C(0, T; i?n) is continuous. T h a t is there exists a cons tant 

Ci (depending on T, A0j . . . , ^ ^ , 4 0 i ( • ) ) such tha t \\x( • , 0 ) | | c è Ci||</>IU-

Since 0 1 G Lp(0, T; Rn), by splitting the right hand side of (2.1) into two par ts , 

one depending on x{t) for t ^ 0, and one depending on </>, we observe tha t the 

function t —> x(t), t £ [0, T], is in Lp(0, T\ Rn) and there exist constants c2, £3 

(again depending on T, A0, . . . , AN, A0i( • )) such tha t 

| |*( ' i * ) | UP ^ C2||*|U + C3||X( • ; Ct>)\\c ^ C4||*||x. 

where c4 = c2 + C1C3. Now (2.3) follows with c = max (ci, c4). 
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