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Abstract

Coupled nonlinear partial differential equations, which describe a nonlinear reson-
ant interaction between the fundamental and its first harmonic on a magnetohydro-
dynamic jet, are derived by the derivative expansion method. We investigate the
spatial behaviour of the amplitude and phases. It is shown that the fluid surface
is unstable in the neighbourhood of the first resonant wavenumber. In the steady
state, it is observed that the general motion consists of both amplitude and phase
modulated waves.

1. Introduction

The capillary instability of a jet has been a subject of considerable interest
and has been investigated by a number of workers since the pioneering work
of Lord Rayleigh [6]. The effect of nonlinear disturbances on the capillary
instability of a hydrodynamic jet was examined by Yuen [8], Wang [7], Nayfeh
[3], Nayfeh and Hassan [4] and Kakutani et al. [1]. It was shown by Kakutani
et al. [1] that the complex amplitude of a quasimonochromatic travelling wave
can be described by a nonlinear Schrodinger equation in a frame of reference
moving with the group velocity. Lardner and Trehan [2] extended this result
to include the effect of a uniform magnetic field. In fact they were the first to
use the full hydromagnetic fluid equations and make no restriction to potential
flows to study the modulational instability of a jet. They showed that the
modulational instability can not be completely suppressed, and that the presence
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of a magnetic field does greatly increase the range of stable wave numbers. It
was observed by them that for a hydromagnetic jet a significant feature of the
analysis is the presence of a second harmonic resonance and the usual analysis
is not valid in its neighbourhood. This type of resonance has been studied by
various authors for capillary gravity waves on deep water, a self gravitating
fluid cylinder and the hydromagnetic waves in a cold collisionless plasma. The
slowly varying amplitudes of the two waves in resonance are described by a set
of dynamical equations involving the fundamental and the first harmonic for a
magnetohydrodynamic jet. It is shown that the jet is unstable in the presence of
a magnetic field.

2. Formulation of the problem

We examine here a cylindrical fluid column of radius R held together by
surface tension; the fluid is assumed to be inviscid, incompressible and perfectly
conducting, with a uniform magnetic field in the axial direction. The motion
is assumed to be axially symmetric and the outer surface of the jet is distorted
to r = 1 + r](z, t), where r](z, t) is the disturbance in the r-direction. In this
discussion all lengths are measured in units of the radius R of the cylinder and
time is measured in units R/Ao, where Ao is the Alfv6n speed. The equations
in the region r < 1 + r) are:

du
— + (u • V)u = - V n + (h • V)h, (la)
dt

^ = (h • V)h - (u • V)h, (lb)
at

v - u = o, y - h = o, n = ^ + .5h2,
p

where u, (47rp)1/2h, p and p represent the velocity field, the magnetic field, the
pressure and the constant fluid density respectively. In the region r > 1 + r), the
magnetic field is expressible in terms of a potential </>, that is,

h(0) = Aoez + ¥4>, V24> = 0. (2)

The boundary conditions at r = 1 + r\ are

ur = — +uz — . (3a)
at az
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i+ih<°»: (3b)

(3c)

where T represents the fluid surface tension and n the unit normal to the surface.
We choose units such that Tip — 1. To determine an approximate solution
to (1) - (3), we shall use the method of multiple time scales. If £ is a small
parameter measuring the size of perturbation, we introduce the space and time
scales z0 = z,zy — ez, t0 = t,t\= st. The partial derivatives are expressed in
terms of slow scales according to

3 _ 3 3

3 3 3
— = — + £ — . (4b)

Moreover, the various physical variables are assumed to possess the following
representations:

2

f{r, z, t) = J2£"Mr< zo, zi, h, >i) + o(£3), (5)

where/(r, z, Oisanyofthevariablesu,h,n,0andr7with(«0, ^o, n0 , 0o» %) =
(0, /40ez, Po/Po + (1/2)AQ, 0, 0). Substituting the expansions (4) - (5) into (1) -
(3), we obtain in the first and second orders respectively the following equations
(in which we use the notation that / „ = df/da).

a) First order equations:

o o = 0 , (6a)

hM o - Aoui,zo = 0, (6b)

«ir,f + r~luw + «i2i20 = 0, (6c)

hir,r + r-lhir+hUtl0=0, (6d)

V̂ </>, = 0, (6e)

and the boundary conditions on r = 1 :

"ir - r)i,tB = 0, (7a)

n,+^,> 1 M,-AoC = O, (7b)
hir-h??=0, (7c)
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b) Second order equations :

- AQh2,Zo - -u, , , , - n l i Z ,e2 + AohhZl - (u, • VQ)ui

+ ( h , - V 0 ) h , , (8a)

h2,,0 - A0u2,20 - - h M , + AouUzi + (h, • V0)m - (u, • Y0)h,, (8b)

u2r,r + r~xu2r + M2z,Zo = -« i Z i Z l , (8c)

h2r,r + r ~ l h 2 r + h2z<Zo = -hUt2l, (8d)

V ^ 2 = -20,,Zo2|, (8e)

and the boundary conditions on r = 1 :

, (9a)

— 2?h,ZoZ| -

,(0)r + ih(0)2
) ( % )

h2r - hf = -r)x{hlr<r - hf}r) + (hu - hfz)r}Uzo, (9c)

where
V0 = e r^-+ez-^- . (10)

or oz0

3. Expansions

The sinusoidal travelling wave solution of the first order problem governed
by (6) - (7) can be written as

/0(*r) /,(*)] ,..
a °> J (lla)

lhir.hu, 0,] = ̂  Uikr), -I0ikr), - l 7 l ^ r ) l Atz^e" + cc,co I kKx(k) J ( U b )

where a = cok/(co2 — k2A%), \j/ = kz0 — cot0, c.c. is the complex conjugate and
the frequency co satisfies the dispersion relation

*(*'-!) kAl

It is clear that (12) allows for an assigned value of Ao, a single positive root
(kc / 0). We find that co2 < 0 for 0 < k < kc. The jet is, therefore, unstable for
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MOOULATIONAL INSTABILITY

LINEAR INSTABILITY
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FIGURE 1. Instability regions in the k — A\ plane. The dashed curve indicates the second
harmonic resonance.

all deformations with wave numbers k < kc, where kc depends on the strength
of the magnetic field Ao. It is observed that the presence of a magnetic field
(Ao # 0) extends the region in which stable linear waves occur below kc = 1,
and in fact co2 > 0 for all wave numbers for Al > 1/2. In this paper, we assume
that co2 > 0 so that the first order solutions represent a uniformly travelling wave
train.

We now investigate the conditions under which the two waves can interact
resonantly. Harmonic resonance will occur for all wave numbers k such that
(k, co) and (nk, nco) for some integer greater than n = 1 satisfy (12). The first
resonant wave number k\ corresponds to n = 2 and is the solution of

(4k2 - 1) - 1 ) 1

/o(2*,)tf-,(2*,) /<>(*,)*,(*,)
= 0, (13a)

where
/6 = /0(2*,)/7,(2*,). (13b)

It is found that for all Al ^ 0, (13a) has roots, which leads to the presence
of a second harmonic resonance. The variation of k\ with Al ^ 0 has been
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calculated and is shown in Figure 1. To describe the resonant interaction at or
near k\, we write

[ulr, «iz , FIi, r){\

[hlr, hu, <pi]

where

L- / 42 \

(15a)

n̂ = /:nz0 - (ont0, (15b)

^ " *2 = 2 * , , co2 = 2cox. (15c)

On substituting the first order solutions into the second order problem governed
by (8) - (9), we obtain for the second order equations:

2

"2uo + n ^ r - A0h2r,20 = i£ (a ( l / , (* J I r )04 I I , I I + MnAn,Zl)e1>n) + c . c , (16a)

Zl }e l V " )+c .c , (16b)

+ XAf A \0 *n 1 —i— f f*

»=• (16c)
2

V~] (7?n/0(/:nr)(/4n>,1+ WnAB,Zl)e
ll'r") + c.c.,(16d)

n = l

2

"2r,r + /"~'M2r + «2Z,z0 = - ^ (unIo(.knr)AniZle"l''>) + ex., (16e)
n = l

2

n=l
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2

</>2z,Z0 = - 2 A 0 > , „ „_ , K0(knr)An,Zle *• + c.c,
0A ^ ( R " ^ k n ) \

iz,z0
 = —^Ao 2__, I -, . l^o(knr)Anzle

 yn I
n=\ \ 1\ «/ /

(16g)

where

+K,(/o(*ir)/o(*2r) + /i(*ir)/,(*2r))A2A,^, (17a)

M = ^ o ^ = ^ L W = ^ ( 1 7 b )

The boundary conditions reduced to r — 1 are:

«2r - »?2,»o

+c.c, (18a)

+c.c, (18b)

- <f>2,r

/ . .2 Q\ J \

Ka2 + h\ + 2/fl2) /42/41e'^1 + c.c, (18c)

where
kn), Ian = lo(kn)/h{kn)- (18d)
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After some straight forward reductions we obtain the uniformly valid solution
of the second order problem as:

= ~i J2 (—2 {h(kn)AnA + (onI2(kn)An,Zl} e'A
n=\ V n /

1
2coi

\2+1f -
+c.c, (19a)

2

«2r = — /_J («n^^2(^«'')AniZ|e'11'") + C.C, (19b)
n = l

2 i- -i

M2Z = i 2_, ~7~ (Io(knr) — knrl\(knr)) Ani2te'^" + c.c, (19c)

h2r = Ao ^2 — (h{knr) {An,2l + W~x AnA} + knrI2{knr)An^) e'*"
n=\ L " J

+cc, (19d)

r i — ' ' ":nr)AnM +knrh{knr)AnAe'^+cc, (19e)

2

(190

02 = Ao

Equations (19) together with (18b) - (18c) lead to the dynamical equations
for the coupled amplitude as

(20)

(21)
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where

Ui = ^ - , i = 1, 2, (22)
dk

x [l - *J {l - .5A2
oa+4KalKa2)} - 2.

,

' ) •

/ a 2}Y (23)

2a2h(k2)

+ °^I2(ki) {1 + .5k2 -to] + .5k2A2
0(K

2
al - 1)}

-S(l-*22)

(24)

and the detuning parameter

_
x —

We have calculated the values of qx and q2 for various values of A\ ^ 0 and it has
been observed that q{ and q2 have opposite signs. If we let Am = (am/2)exp(/0m)
with am and ^m real and slowly varying functions of the slower variables z{ and
r, in (20)-(21), we get

3fli , r , dai axa2 .
—- + Ux — = -qx —- sin(a), (26)
at\ oz\ 1

^ d^4, ill)

, (28)
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qxa
t\ az\ 2a2

d92 d92 qxa\
T7 + Ul^~= o cos(a), (29)

t az 2a
where

a = 02 - 20, + T. (30)

It appears difficult to obtain the solutions of (26) - (29) subject to general
initial conditions; we investigate the spatial variations of amplitude and phases
in the e neighbourhood of the first resonant wave number, i.e., u^ — 2a>\,
k2 = 2k\ + 0(e). In this case, we get after some reductions:

where

a, + va2 =
(dX/dzx)

2 =

v = U2qx/(Uxq2),

X = a\/E, a = {k2

E
G(x),

- l \ L ~E IE

- 2kx)/e.

aU2

)

(31)
(32)

(33)

(34)

(35)

Here E and L are the constants of integration. The stability of the fluid surface
is dependent upon the roots of the algebric equation G(x) = 0 (s e e Nayfeh and
Mook [5]). For the particular initial conditions a\ = E, a2 = 0 at z = zx = 0 ,
we get L = 0 and

(dX/dztf = Rx{(l-vx)2-2nX), (36)

where R = Eq\ll)\ and S2 = a2U\l^lEq\). Therefore, since v < 0, the
motion is stable only if fi > 2\v\. The fluid surface is unstable and the dis-
placement grows if v < 0 and the detuning parameter a is small enough so that
a2 < A\v\Eq\lU\. In particular, at perfect resonance, (i.e., a = 0) and v < 0,
the fluid surface is always unstable. Thus at the second harmonic resonance the
fluid motion becomes unbounded and hence results in an instability. Lardner
and Trehan [2] calculated the modulationally stable and unstable regions which
are shown in Figure 1. We observe that the first resonant wave number where
the solutions of Lardner and Trehan [2] are not valid lies in the modulationally
stable region for some values of A\ ^ 0. We have shown that in that region,
at perfect resonance, the fluid motion results in an instability at the second
harmonic resonance.
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2.0

FIGURE 2. k versus Aj for /S2£r' > °-

We now examine the steady state solutions of (20) - (21) and assume Am =
/m(£)exp0>/nz,), /„,(£) = amexp0'Om), with m = 1, 2 and £ = h - kzx,
where /it and k are real constants. Also am and <J>m are parameters of slow scale
z\ and t\. Equations (20) and (21) with x — 0 leads to

= £«>,

= 0,

(37)

(38)

where /?m = (1 - A.£/M)/<7B, m = 1, 2 and «5 = uPmUftih) ~ U2/(q2Pi)l
Eo and A.o are the constants of integration. In view of the apparent singularity in
(38), where a\ —>• o, Ao = 0, it is convenient to express this result in terms of
energy E, of the Ax oscillator to O(l), with £, = a\/2. Thus (38) reduces to

The solution of (39) exists only if £ f > 0 and is consistent with other integrals
of motion for values of Xo such that /320r' > 0 and 0 < A.̂  < 4
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The values of A. for which /J2/T1 > 0 are calculated for various values of A\ ^ 0
and shown in Figure 2. The motion is bounded when A lies within the shaded
region. These bounded solutions consist of both amplitude and phase modulated
waves (see Nayfeh and Mook [5]).
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