THE FOURIER COEFFICIENTS OF THE MODULAR
FUNCTION x(r)

WILLIAM H. SIMONS

1. Introduction. In [3], H. Rademacher obtained a convergent series for
the Fourier coefficients of the modular invariant J(r). He found that in the
expansion

12 J(T) — ——21”7- _l_z_ocme‘zrimr

the coefficients C,, for m > 1, are given by

27 & Ay(m) (47r \/m>
m = I )
(1) G v'm 2‘:'1 k ! k
where
Ay(m) =3 € —(m"+h), B = — 1 (mod ),
/tmodk

and I,(2) is the Bessel function of the first order with purely imaginary argument.
The 3~/ above indicates the sum with respect to & from 0 to £ — 1 with (k,k) = 1.
The purpose of this paper is to discuss the Fourier coefficients of A(7), the
fundamental modular function of level (Stufe) 2. It may be defined either in
terms of theta-functions by

© 4
(1)
[02 (0 I'r):l4 _ n;mq

A = a0 -
E "

(2)

+ g ; TiT
16g H( _> = 16g[1 — 8¢ + 44¢° .. ], g=¢™",
or by the equivalent definition

3) A7) = &(r) =

— €3
— e

where e;,es,¢3 are given in terms of the Weierstrass elliptic function p(z) and its
periods 2w;, 2ws by
er = P(w1), e2=P(w1+ w), €5 = (w2).

The function A(7) is invariant under the substitutions of the congruence sub-
group I'(2) of the full modular group defined by all substitutions
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/_(LT—i—b
T T+ d

where a,b,c,d are integers with

(ZZ) = <(1) ?) (mod 2) and

For the expansion
Nr) = 2 ang", g=¢",
m=0

ab

cd:1'

it is found that

a, T i Ay (m) I (411' \/m>.

4) - 8/m  w=1 k k
k=2(nod 4)
Moreover, it is found that the coefficients in the expansion of the reciprocal
function
()—L———l——l—b +ib ritm
UZXE T a6 T T
are given by the series
=2 Ap(m) 4m\/m
b = = BT ( 1).
) s =k D\ > 1)
k=0(mod 4)

The method is essentially the same as that used by Rademacher. In §2 the
transformation equations for A(r) are derived. The main result (4) is obtained
in §§3 to 7, and equation (5) is derived in §8.

The following interesting comment was made by the referee of this paper.
“The function j(r) is determined essentially by its pole at 7 = «; it is regular
everywhere else. But 1/j(r) has a pole at an interior point of the upper half-
plane, and so its Fourier coefficients cannot be determined in as simple a manner.
This situation is unavoidable with functions of the full modular group, which
has but one parabolic cusp. On the other hand, the subgroup which Dr. Simons
treats has 3 parabolic cusps, so it is possible to define functions which together
with their reciprocals are regular in the upper half-plane by merely placing the
zero and the pole at the cusps of the fundamental region. A\(7) is such a function.
It is of interest to note that both for A(7) and 1/X(7), the Fourier coefficients are
given by series which, apart from a trivial numerical factor, are composed of
terms taken from the series for 7(r).”

2. The transformation equations.

LemMA 1. Let a, b, ¢, d be integers with ad — bc = 1, and let

_ar+b
T+ d
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Then N(T) and \(7) are related as follows:

10 20 30 40 50 60

(¢ 4) (mod 2) 1 01) G1) &) (10) (10)
A(r) 1 1 el 1
MT) SO b v wa f B vou S & we v f AN v

The lemma is an immediate consequence of the transformation equations for
the theta-functions and definition (2), or of the transformation equations for
e1,es,e3 and definition (3) [cf. 5].

LEMMA 2.

(1=}t = 1]2
(1=} +1
A(2r) = 62(0]27)

05(0[27)

A(27) = [

By definition,

But [5, p. 268],
265(0[27) = 65(0]r) — 65(0|r),

and 263(0[27) = 63(0]r) + 03(0]7),
where

6:07) = 3 (= 1)g" =1 — 29 + 24" — .. ..

Therefore e
\(27) 05— 20305 + 0}
(21) = o 2,2 19
3+ 20305 + 64
A@2r) 41 _ 65+ 065
1 —N27) 2032
A27) + 1]2 03 | 6
20 _o 8,
T—agn) g tg™
Now
4 4 4 4
%‘:03—:0%1——9—2:1—)\(7),
04 03 05

and therefore

A27) + 1]2 L 1 2= AP
4’[1—4@ SRR S o e vou S M e vou g

so that
AN2r)4+1 2 —\0&)
1—N27)  2{1 —A()}¥
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Solving for A (27) gives

2 — \7) -1
A(2r) = 2{; - ;8}%
21— a@p !

_2— ) —2{t —a()}}
T 2=+ 2{1 = A}

_[n—xmﬁ—lT
Lt =A@+

THEOREM 2. Let k be an even integer and h and k' be integers such that (h, k) = 1,
and hh' = — 1 (mod k). Further, let

_ ot _) _<_h_’ )
r—2<k—i—k andT—Zk—{-E.

[ A7) if k= 0 (mod 4),
11/x(7) if b =2 (mod 4).

<a b> B <h 2(—1— hh')/k)
cd/ — \k/2 —h )
Then a, b, ¢, d are integers with ad — bc = 1, and

_ar+b
T+ d

)= () e

and so by Lemma 1, case 1°, A(T) = A(7). If 2 = 2 (mod 4), then

()12 oot

and so by Lemma 1, case 3° A(T) = 1/A(7).

Then
NT) =

Proof. Define

If 2 = 0 (mod 4), then

THEOREM 2. Let k be an odd integer and let h and k' be integers such that
(h,k) =1and hh = — 1 (mod k).

Further, let
o, iz Wood
’—(z+$>' ‘—<%+zﬁ'

[INT) — 1} = A, if = 1 (mod 2),

M) =yt -1
[n@n»+J'

Then

if h = 0 (mod 2).
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(o) =G o)

Then a, b, ¢, d are integers with ad — bc = 1 and

_ar-l—b
T—CT-‘i-d'

(a). Let®” =1 (mod 2) and 2 ='1 (mod 2). Then

(¢2)= (1) eoan,

and so by Lemma 1, case 3°, A\(T) = 1/X(r). Substituting for A(7) in Lemma 2
gives

Proof. Define

{t—1/AM =1 _ [T -1 = NP
A2r) = [{1 IO T 1] = [{A(T) TR {X(T)}%]'

(b). Let k' =1 (mod 2) and & = 0 (mod 2). Then

(¢2)= (:2) o,

and so by Lemma 1, case 6°, AN(7) = 1/(1 — A(T) ). Substituting for A(7) in
Lemma 2 gives

AMT) 3 2
A2r) = {MT> - 1} M [{MTH* ~ [MT) — 1}%]2
{ A(T) }%+1 NORERNOENIN
AMT) — 1

(c). Leth =0 (mod 2) and 2 = 1 (mod 2). Then
ab) (01
(c d) = (1 1) (mod 2)
and so by Lemma 1, case 4°, A(r) = 1 — 1/A(T). Substituting in Lemma 2 gives
_[amyt - 1]2 _ [{x(’r)}* - 1]“’
) = [{xm}-% il =loampFil
(d). Let #’ =0 (mod 2) and 2 = 0 (mod 2). Then

(¢5) = (35) tma

and so by Lemma 1, case 5°, A(r) = 1 — A(T). Substituting in Lemma 2

then gives
_[amypt-ap?
M) = [{MT)H+ 1]'
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By combining the results of (a) with (b) and those of (¢) with (d) the result of
the theorem is obtained.

3. The Farey dissection. ILet

M) = flg) = 2—:1 ang”, g=¢".
Then by Cauchy’s theorem,

1 [ /(@)

= Tt o gt 90

where the integration is in the positive sense around the circle C defined by
—orNT?
lgl = ¢,
N being a positive integer. Using the [Farey dissection of order NV of the circle
C, the integral may be expressed by the sum

[ /@)

m-1 dg’

0 = 1

m = T
2w 0Lh<kS N JEnk q
(h,k)=1

where &, ; is the Farey arc corresponding to the fraction %/k in the Farey series
of order NV, and

q = exp <— 27N+ 27ri%+ 2m'¢>>.

Then
®"’ 9 h .
f<exp{ — 27N "+ 2m % + 2”¢}>
Am = h i
I O )
_d,’
where
C ko ket h 1
. ¢ = 3 E+k  k(k+ER)
v b+ he h 1

Ay S S T S L
hi/ky, h/k, hao/ks being three consecutive terms of the Farey series of order N.

For convenience the double sum over 0 < & < k < N with (hk) = 1 will be
denoted by

>
B

Then
an=exp 2mmN) Y exp| — 2 m’m;
h.k ’

. [ f( exp{ — 272N 4 271-1'é + 27ri¢}) exp ( — 2wim¢)d
J—er k
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= exp (27FWLN~2)Z exp< - 27rim%>
o'’ .
. J_d)’ f( exp -{2 rl(% + %j>}> exp ( — 2mime)d ¢,

where 2 = B(N—2 — i¢). ’

Now let the above summation be broken up into three sums Z;, Z;, s, the
first consisting of those terms for which 2 = 1 (mod 2), the second those for
which & = 2 (mod 4), and the third those for which £ = 0 (mod 4), and let
I, I,, and I3, be the parts of a,, corresponding to =, Zs, Z; respectively. Thus

am = 11+ I+ Is.

4. Evaluation of the integral 7.

Iy = exp QemN ™) E Z exp <— 27rim%>

k= O(mod 4) (hl) -1

. J:yf( exp 12 ri(% + %)}) exp ( — 2wime)d ¢.

Applying the transformation equation of Theorem 1, for £ = 0 (mod 4) gives

N k—1
[Szexp(—ZWmN—Q)Z Z exp<— 27Tim%>
zO(mod 4) (hhlj)o 1

) Jqs” ( {2 : k i>1> - 2 : )d
. f\ exp 2w 5 + ba ( exp ( Timd)d .
But

f(Q) = )‘(T) = Z::lanan q = exp T,

and so, substituting for f(¢), rearranging terms, and putting w = N72— ¢,
2z = kw, gives

I; = }% If J¢" i a, exp ‘jzjr—i(nh' - mh)1 ex <27rmw — g—7ﬂ>alq§
’ =1 e Y R P f P k2w ’
k=0(mod 4) (h,k)=1

Use is now made of a result due to Estermann [2]. Let ¢’ and ¢'’ be defined
by (6), and let

_ )1, for — ¢ << e,
g, ¢, b k) = {0, otherwise.
Then
k
= > b,exp {2wirk [k},
r=1
where %' is an integer satisfying b’ = — 1 (mod k), and b, is independent of
k and
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k
> |6, < log 4k.
r=1

Introducing the function g(N,¢,k,k) into the integral I; gives

N @ 1/k(N+-1) k h'
I; = E > a,,J > b,exp (2 rirk—>
1

k=1 n= —1/k(N+1) r=1
k=0(mod 4)
- exp (2 ™ — ;r n) > exp {m(nh - mh)}d:ﬁ.
k h mod & k

The latter sum is a Kloosterman sum [4;1] and has the estimate O (k¥ 3tem!/3).
Also, the real part of 27n/k% is

ER( 2n ) _ 2anN~ S 27mn
kz(N—2 _ i¢) k2(N_4+ ¢2) Zz kzN—2+ k2N2¢"2

> 12 -:nl I
and
ER(Zrmw) = 27rmN_2.
Therefore
~ © VEWN+D
’131 N Z Z J Z |br! exp (27rmN'2)k2/3+fml/3d¢
kmOimed & —1/k(N41) =1
g 1/k@+1)
= O Z m1/3 2/3+¢ IOg 4kJ d¢
k—Ok(m})d 4) —1/k(N+1)
N 325+ 1
k=0(mod 4)
and so
N
| Is] = (N— E an 1/3)

= 0<N_1/3+°m1’3>.

5. Evaluation of the integral /..

N k—1
I, =exp 2emN ) > > exp <—— 21rim%>
k=2mod &) (n L

. J: f< exp {2 m(% + %)}) exp ( — 2mime)dé.

Now, by Theorem 1, with 2 = 2 (mod 4), and putting ¢ = ¢"*"and ¢’ = €T,
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- N PN FA (0N

for + 2t
n=0

1
1
= Tog + fa(g)-
Therefore
N —1 h
I, = exp QemN™% > > exp( — 27rim—>
k=1 =0 k

k=2(mod 4) (,k)=1

9' b
: J—w f1< exp {2 Wl(% + é)}) exp ( — 2wim¢)d o

= I2,1 + 12,2)

where f1(¢’) is replaced by 1/16¢’ in I, and by f2(¢’) in I, Introducing the
function g(V,¢,k,k) into the integral I, » and proceeding as in §4 gives

N © VE(N+D) &
|Z2.2] =0< 2 ane"’"J > [bf exp QamN TR mY d¢)

k=1 n=0 —1/k(N+1) 7=1
k=2(mod 4)

_ 0(—1 zI:V k2/3+em1/3>
N =1

= O(N"V*m'?).

Next,
N r—1 A
Iy =exp QomN™%) Y > exp (— 27rim}—a
k=2 ZC:OId 4) (h{‘];_;o=l
JHI 1 ex (-—- 2 z{h~+i}> xp (— 2mime)d ¢
i 16 &XP LA} %af ) €XP T
=i i kz_:l ex ( wi mh—i—h})
16 = =P 7
k=2 (mod 4) (n,k)=1
-r” ex (2 me + ﬁ>dq§
-¢’ p \ 2mmw FEm
1: N k—1 27'_1- ,
= — Z E exp\ — = \mh + h
16 =1 =0 k
k=2 (mod 4) (a,k)=1
N+ ig! 27r>
.JN—’_i¢" exp (2 ™MW + % dw
Now,
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’ 1 1
® Tkt k) SENED)
and
¢ = 1 1
k(ky + k) k(N—l— 1)’
and so
1 N k—1 < 27I"Lf /1)
Iy = _Té ; 2230 exp —TVWJL%—/;[
(mod 4) (h,k)=1

(04) ; N b i/ (N
exp \ 2mmw —I— O dw — l
N g’
—N +z/l(7\f+1) —NT'—i/k(N+1) N7 —i/k(NH1)
+ +
Nt z/k(N+1> —NT i/ k(A1) —NT —i/E(NA-1)
N d)” 27r
{ exp \ 2mmw + 55— Jdw
N T —i/k(N+1)/ kiw

i - 1 (0+) 2
(7 =3 ;Ak(m)fﬁ exp \ 2mmw + P de

k=2 (mod 4)

_I_

+ K+ Ky + K + Ky + K5,
where
Ap(m) = Y exp <—— g%Z{mh + k}>

h mod &

Now

i NT 4 i/k (V1) 2
K, = 16 Z Ay, (m) ., exp \ 27mw + o dw

k=1 +id
k=2 (mod 4)

Introducing the function g(N,¢,k,k), and integrating from N—2+ ¢/k(N + k)
to N2+ ¢/k(N + 1) gives

K| = <Z B, V8 log 4k kN) _ O<N\—1/3+em1/3).

Similarly
IKs| = O ¥ m'?).

In Kz,

w=u+i/k(N+1), —N*<u<N?

SR<1> = " < NN + 1) < &,

o) ST RO F 1)

so that

exp <27rmw + %%)’ < exp QamN™ + 21).
Therefore
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IK2] — O<i k2/3+em1/3 —2> — O(N—1/3+eml/3).
r=1

Similarly
K| = O m'?).
Again, in K3,
o1 1
N o= =Nt - T S S 1y
)
R =—-N7*<0
1 1 — N7

ER(Z) B ER(_ N4 iv) SN 4R <O

and hence
exp <27rmw + %%)! <1

Therefore

x
K| = o(kz_1 k2/3+‘m1/3k71\7> = O™ m'?).

Collecting these results together and substituting back into (7) gives

N
I, = ‘785 21 Ay(m)Ly(m) + O(N_I/H_eml/a)»
k=

k=2 (mod 4)

where [6; 3]
(04) 2 1 4
Li(m) = Z_H exp <27rmw + g Mo = g T, % ,

I,(2) being the Bessel function of the first order with purely imaginary argument.
Therefore

_om N A(m) <47r\/m> —1/3+e 173
12_8\/7” ;1 kllT—+O(N m"®).

k=2 (mod 4)
6. Evaluation of the integral ;. In I, consider
b, iz B

=it TTr R

f( exp {2 m(% + g)}) = f(exp {2mir}) = A (27).
Then, by Theorem 2, with ¢ = exp =T,

AN27) =1 4 160t — 128t + . ..
when 4’ = 1 (mod 2), and
N27) =1 — 1688 + 128 — . ..

so that
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when %' = 0 (mod 2). These may be combined by replacing ¢ by
¢ = exp m(T 4+ &) = ¢ exp(wik’), giving
N2r) =1 4166 + 1288 + ...

= 2 ut ™.
n=0

Applying the transformations of Theorem 2 to the integrand of I; gives

N k—1
I, = exp QemN %) > exp <—— Zrim%)
k=1 I(C:;d 2) (h,hk__)il

3" o . , . o
[0, S+ D oo (5) v (- 2mimorae
N © L [vE@+D k X
=2 > (=™ ﬂJ > brexp 27”.’7;>

=1 n=0 —/EVHD =1
k=1 (mod 2)
- ex (2 Mo — ﬂ)f ex jﬂ(nh - 4mh)‘ld¢
PAF™Me = o) & P\ 2% fae
(h,k)=1

Now the latter sum in the integrand is an incomplete Kloosterman sum for
which we have [2; 4] the estimate

O(E”* (4m, &)*) = O(R"*"*m""?).

5)?( 1rn> _ N S T
2k20 - 2(k2N—2 + k2N2¢”2) Z 4

Also

Therefore
N © , 1/k(N+1)
|| = O< STEYH MY uye ™ exp 21rmN_“J d¢>
k=1 h=0

—1/kHD)
A1 N Uste 13
=0 NE k m

=1
- O(N—l/LH—eml/?)).

7. The convergent series for a,. Collecting together the results of §§4, 5,
and 6, we have

n = I+ I+ I3

T N Ak(m) (41r\/m> ~1/3+¢ 173

k=2 (mod 4)

Finally, letting N — o, we get

N 2 Ay(m) (41rx/m>
(4) am_—S\/m kz=:l 2 I % .
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As a numerical example we may compare the actual value of a6 with the

value obtained from the series (4). Thus a1 = — 316342272. Using the series
for a1¢, we have
_m o A406) (16_)
(116—32 ’;1 A I )
k=2 (mod 4)
~y (16)1(-1915> = — 316342253.1678
642 N2/~ '
T 167
o4 (16)Il<—6—> = - 18.6991
T 16T

8. The reciprocal function u(r).

THEOREM 3. Let

B 1 e

- 2

1 = n
164 + ;} bng
Then, for m > 0,
& Aym) (41r\/m>
k=0 (mod 4)

Proof. Since the analysis in this case is essentially the same as for A(7), we
will only outline the proof. The transformation equations for u(r) may be
obtained directly from those for A(r). Now, by Cauchy’s theorem, for m > 0,

1 J 2(q)

"7 2wi)o g

where, as before, C is the circle of radius Igl = exp(—27N—?). Therefore

N k1
by = exp QemN™) >, D exp ( — 27rimk>
o k

r g< exp {Zm'(% + g)}) exp (— 2mim¢)d¢.

Let b, = bm,1 + bm,2 + bnm 3 where b, 1 consists of the terms of b,, for which
k=1 (mod 2), b, » those for which £ = 2 (mod 4), and b5, ; those for which
k = 0 (mod 4). Then it may be shown that
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by = ONHm®), byo = O m"?)

and

T Y Ai(m) <47r\/m> ;~1/3te 173
bm'3 = gw kzzl k Il k + O(A m )'

k=0 (mod 4)
Then letting N — » we get equation (5).

Similar results may be obtained for the Fourier coefficients of powers of A(7)
and p(7). However, these are omitted here since the method used in obtaining
them is merely a repetition of that given for A(7).
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