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Abstract The level l Fock space admits canonical bases Ge and G∞. They correspond to Uv(ŝle)
and Uv(sl∞)-module structures. We establish that the transition matrices relating these two bases are
unitriangular with coefficients in N[v]. Restriction to the highest-weight modules generated by the empty
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1. Introduction

In the classification of finite complex reflection groups by Shephard and Todd [29], there
is a single infinite family of groups G(lp, p, n) parametrized by the triples (l, p, n) ∈ N3 and
34 other ‘exceptional’ groups. If p = 1, the group G(l, 1, n) is the wreath product of the
cyclic group of order l with the symmetric group Sn. It generalizes both the Weyl group
of type An−1 (corresponding to the case l = 1) and the Weyl group of type Bn (l = 2).
We may associate to G(l, 1, n) its Hecke algebra over the ring A := C[q±1, Q±1

1 , . . . , Q±1
l ],

where (q, Q1, . . . , Ql) is an (l + 1)-tuple of indeterminates. This algebra can be seen as
a deformation of the group algebra of G(l, 1, n) and has applications to the modular
representation theory of finite reductive groups (see, for example, [26]). As an A-algebra,
it has the set of generators {T0, . . . , Tn−1} such that the defining relations are

l∏
i=1

(T0 − Qi) = 0, (Ti − q)(Ti + 1) = 0, i = 1, . . . , n − 1,
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and the braid relations of type Bn. We denote this algebra by HA. If we extend the
scalars of HA to K = C(q, Q1, . . . , Ql), the field of fractions of A, we obtain the algebra
HK := K ⊗A HA, whose representation theory is well understood. For example, we know
how to classify the irreducible representations, their dimensions, etc. [2,15]. The theory
is far more difficult in the modular case. Let θ : A → C be a ring homomorphism and let
HC := C ⊗A HA be the associated Hecke algebra. Due to results of Dipper and Mathas
[7], one can reduce various important problems to the case where

θ(q) = ηe := exp
(

2iπ
e

)
is an eth root of unity, for e ∈ Z�2, and θ(Qj) = η

sj
e , for j = 1, . . . , l, where

(s1, . . . , sl) ∈ Zl. An important object of study in the modular case is the decomposi-
tion map. As HA is a cellular algebra [13], the decomposition map may be defined as
follows. Let VK ∈ Irr(HK). Then there exists a specific HA-module VA, which is called
a cell module, such that VK = K ⊗A VA. We can then associate to VK the HC-module
VC = C ⊗A VA. This gives a well-defined map between Grothendieck groups R0(HK) of
finitely generated HK-modules and R0(HC) of finitely generated HC-modules. We denote
the decomposition map by

dθ : R0(HK) → R0(HC).

We denote the associated decomposition matrix by De. It is known that we may choose
VA more general than the cell module and the decomposition map is still well defined [10].

There exist algorithms to compute the map dθ, but it remains difficult to describe
it in general. One useful tool here is a result by Geck and Rouquier [12], which gives
information on the matrix De by factorizing the decomposition map. Let θq : A → C(q)
be the specialization map defined as θq(Qi) = qsi for i = 1, . . . , l. Denote by

HC(q) := C(q) ⊗A HA

the associated Hecke algebra. As above, we have the decomposition map

dθq : R0(HK) → R0(HC(q))

and the associated decomposition matrix D∞. Then [12, Proposition 2.12] implies the
following.

Theorem 1.1 (Geck–Rouquier). There exists a unique Z-linear map

dθ
θq : R0(HC(q)) → R0(HC)

such that the following diagram commutes:

R0(HK)
dθ ��

dθq ������������
R0(HC)

R0(HC(q))
dθ

θq

������������
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Thus, we have the factorization De = D∞ · De
∞ of the decomposition matrices, where

De
∞ is the decomposition matrix for dθ

θq . We shall call De
∞ the relative decomposition

matrix. This result shows that a part of the representation theory of HC depends not
on e but only on the representation theory of HC(q), which is ‘easier’ to understand (for
example, there are closed formulae for the entries of D∞ when l = 2 [24]). An example of
its application is that one may give an explicit relationship among various classifications
of simple modules arising from the theory of canonical basic sets in type Bn [18].

In view of Fock space theory, which is now standard in the study of Hecke algebras,
Theorem 1.1 naturally leads to several questions. As noted above, there is an algorithm
for computing the decomposition matrices of HC and HC(q). This algorithm relies on
the first author’s proof [1] of the Lascoux–Leclerc–Thibon (LLT) conjecture [23]. His
theorem asserts that De (respectively, D∞) is equal to the evaluation at v = 1 of the
matrix De(v) (respectively, D∞(v)) that is obtained by expanding the canonical basis in
a highest-weight Uv(ŝle)-module (respectively, Uv(sl∞)-module) into linear combination
of the standard basis of a Fock space. Thus, Theorem 1.1 implies the existence of a matrix
De

∞ such that De(1) = D∞(1) · De
∞. The entries of De(v) and D∞(v) are known to be

in N[v], i.e. polynomials with non-negative integer coefficients. Hence, it is natural to ask
the following questions.

(Q1) Does the matrix De
∞ have a natural quantization? Namely, is there a matrix De

∞(v)
with entries in N[v] such that

De(v) = D∞(v) · De
∞(v)?

(Q2) If De
∞(v) is known to exist, find a practical algorithm to compute De

∞(v).

In other words, we ask whether the matrix of the canonical basis for Uv(ŝle)-modules
factorizes through the matrix of the canonical basis for Uv(sl∞)-modules.

Integrable highest-weight Uv(ŝle)-modules and Uv(sl∞)-modules are realized as irre-
ducible components of Fock spaces of higher level. By [30], these Fock spaces also admit
canonical bases. So the above questions also make sense for the matrices ∆e(v) and
∆∞(v) that are associated to the canonical bases of the whole Fock space. Thus, instead
of (Q1), we ask whether there exists a matrix ∆e

∞(v) with entries in N[v] such that

∆e(v) = ∆∞(v) · ∆e
∞(v).

The matrix ∆e
∞(v) is expected to have several interpretations. Observe that recent

conjectures and results [3–5] show that De(v) and D∞(v) should be interpreted as graded
decomposition matrices of Hecke algebras. De

∞(v) might also be interpreted as a graded
analogue of De

∞ in this setting. According to conjectures of Yvonne [31,33] and Rouquier
[28, § 6.4], ∆e(1) and ∆∞(1) are expected to be decomposition matrices of a generalized
ηe and q-Schur algebras, respectively. Thus, ∆e

∞(v) might have a similar meaning to
De

∞(v) as well.
In another direction, we interpret the factorization De = D∞ · De

∞ in the context of
parabolic BGG categories from the previous section. This second interpretation should
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also have a graded version that is independent of the first (note that Hecke algebras are
not positively graded).

We answer affirmatively to questions (Q1) and (Q2) for ∆e
∞(v). We first show the

existence of the matrices De
∞(v) and ∆e

∞(v) with entries in Z[v]. In fact, De
∞(v) is a

submatrix of ∆e
∞(v) and we provide an efficient algorithm for computing it (and thus

an algorithm for computing De
∞). Then we prove that the entries of ∆e

∞(v) are in N[v].
More precisely, we show that they can be expressed as sums of products of structure
constants of the affine Hecke algebras of type A with respect to the Kazhdan–Lusztig
basis and its generalization by Grojnowski and Haiman [14].

Let us briefly summarize the main ingredients of our proofs. The Fock space theory
developed in [20] and the notion of canonical bases for these Fock spaces introduced
in [30] make apparent strong connections between the representation theories of Uv(ŝle)
and Uv(sl∞). They permit us to prove the existence of a matrix ∆e

∞(v) with entries in Z[v]
such that ∆e(v) = ∆∞(v) · ∆e

∞(v). This factorization can be regarded as an analogue,
at the level of canonical bases, of the compatibility of the crystal graph structures estab-
lished in [19]. It is achieved by introducing a new partial order on the set of l-partitions
that does not depend on e. This order differs from that used in [30] and has the prop-
erty that ∆e(v) and ∆∞(v) are simultaneously unitriangular. The compatibility between
the Uv(ŝle) and Uv(sl∞)-module structures on the Fock space then implies the factoriza-
tion ∆e(v) = ∆∞(v) · ∆e

∞(v). To show the positivity, recall that the coefficients of the
matrices ∆∞(v) and ∆e(v) are expressed by parabolic Kazhdan–Lusztig polynomials of
the affine Hecke algebras of type A [30]. We see in a simpler manner than [30] how the
parabolic Kazhdan–Lusztig polynomials are related to the entries of ∆∞(v) and ∆e(v) for
a fixed pair of l-partitions. The positivity result then follows from this and the positivity
of the structure constants of the affine Hecke algebra.

2. Background on Fock spaces and canonical bases

We refer the interested reader to [1, 21] for a detailed review of canonical and crystal
basis theory. [11, § 7] also gives a good survey of modular representation theory of Hecke
algebras. Let v be an indeterminate, let e > 1 be an integer and let Uv(ŝle) be the
quantum group of type A

(1)
e−1. It is an associative Q(v)-algebra with Chevalley generators

ei, fi, ti, t−1
i for i ∈ Z/eZ and ∂. We refer the reader to [30, § 2.1] for a precise definition.

The bar involution ‘ ·̄ ’ is the ring automorphism of Uv(ŝle) such that v̄ = v−1, ∂̄ = ∂ and

ēi = ei, f̄i = fi, t̄i = t−1
i for i ∈ Z/eZ.

We denote by U ′
v(ŝle) the subalgebra generated by {ei, fi, ti, t

−1
i | i ∈ Z/eZ}. By slight

abuse of notation, we identify the elements of Z/eZ with their corresponding labels in
{0, . . . , e − 1} when there is no risk of confusion. Write {Λ0, . . . , Λe−1} for the set of
fundamental weights of Uv(ŝle), and write δ for the null root. Let l ∈ Z�1 and consider
s = (s1, . . . , sl) ∈ Zl, which we call a multi-charge. We set

s = (s1(mod e), . . . , sl(mod e)) ∈ (Z/eZ)l and Λs := Λs1(mod e) + · · · + Λsl(mod e).
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Similarly, let Uv(sl∞) be the quantum group of type A∞. It is an associative Q(v)-
algebra with Chevalley generators Ej , Fj , Tj and T−1

j for j ∈ Z. We use the same symbol
‘ ·̄ ’ to denote its bar-involution, which is the ring automorphism of Uv(sl∞) such that
v̄ = v−1 and

Ēj = Ej , F̄j = Fj , T̄j = T−1
j for j ∈ Z.

Write {ωj , j ∈ Z} for its set of fundamental weights. To s = (s1, . . . , sl) ∈ Zl, we associate
the dominant weight Λs := ωs1 + · · · + ωsl

.

2.1. Fock spaces

Let Πl,n be the set of l-partitions with rank n, that is, the set of sequences λ =
(λ(1), . . . , λ(l)) of partitions such that

|λ| = |λ(1)| + · · · + |λ(l)| = n.

Set Πl = ∪n�0Πl,n. We also write Π = ∪n�0Π1,n for short. The Fock space F of level l

is a Q(v)-vector space which has the set of all l-partitions as the given basis, so that we
write

F =
⊕

λ∈Πl

Q(v)λ.

The Fock space F may be endowed with a structure of Uv(ŝle) and Uv(sl∞)-modules.
Let λ be an l-partition (identified with its Young diagram). Then, the nodes of λ are
the triples γ = (a, b, c), where c ∈ {1, . . . , l} and a, b are the row and column indices of
the node γ in λ(c), respectively. The content of γ is the integer c(γ) = b − a + sc and the
residue res(γ) of γ is the element of Z/eZ such that

res(γ) ≡ c(γ)(mod e). (2.1)

For i ∈ Z/eZ, we say that γ is an i-node of λ when res(γ) ≡ i(mod e). Similarly, for
j ∈ Z, we say that γ is a j-node of λ when c(γ) = j. We say that a node γ is removable
when γ = (a, b, c) ∈ λ and λ \ {γ} is an l-partition and addable when γ = (a, b, c) /∈ λ

and λ ∪ {γ} is an l-partition.
Let i ∈ Z/eZ. Following the convention of [30], we define a total order on the set of

i-nodes of λ. Consider two nodes γ1 = (a1, b1, c1) and γ2 = (a2, b2, c2) in λ. We define
the order by

γ1 ≺s γ2 ⇐⇒
{

c(γ1) < c(γ2),

c(γ1) = c(γ2) and c1 < c2.

Let λ and µ be two l-partitions of rank n and n + 1 such that [µ] = [λ] ∪ {γ}, where γ

is an i-node. Define

N�
i (λ,µ) = �{addable i-nodes γ′ of λ such that γ′ 	s γ}

− �{removable i-nodes γ′ of µ such that γ′ 	s γ}, (2.2)

N≺
i (λ,µ) = �{addable i-nodes γ′ of λ such that γ′ ≺s γ}

− �{removable i-nodes γ′ of µ such that γ′ ≺s γ}, (2.3)
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Ni(λ) = �{addable i-nodes of λ} − �{removable i-nodes of λ},

M0(λ) = �{0-nodes of λ}.

Theorem 2.1 (Jimbo et al . [20]). Let s ∈ Zl. The Fock space F has a structure of
an integrable Uv(ŝle)-module Fs

e defined by

eiλ =
∑

res([λ]/[µ])=i

v−N≺
i (µ,λ)µ,

fiλ =
∑

res([µ]/[λ])=i

vN�
i (λ,µ)µ,

tiλ = vNi(λ)λ,

∂λ = −(∆ + M0(λ))λ,

for i ∈ Z/eZ, where ∆ is the rational number defined in [20, Theorem 2.1]. The module
structure on Fs

e depends on s and e.

We may consider F as a U ′
v(ŝle)-module by restriction. We denote it by the same Fs

e

by abuse of notation.
Let j ∈ Z. For l-partitions λ and µ of rank n and n + 1 such that [µ] = [λ] ∪ {γ},

where γ is a j-node, we define N�
j (λ,µ), N≺

j (λ,µ) and Nj(λ) as in (2.2) except that we
consider j-nodes for e = ∞ instead of i-nodes for e finite.

Theorem 2.2 (Jimbo et al . [20]). Let s ∈ Zl. The Fock space F has a structure of
an integrable Uv(sl∞)-module Fs

∞ defined as

Ejλ =
∑

c([λ]/[µ])=j

v−N≺
j (µ,λ)µ,

Fjλ =
∑

c([µ]/[λ])=j

vN�
j (λ,µ)µ,

Tjλ = vNj(λ)λ,

for j ∈ Z. The module structure on Fs
e depends on s.

The following result is implicit in [20, Proposition 3.5].

Proposition 2.3. The U ′
v(ŝle) and Uv(sl∞)-module structures Fs

e and Fs
∞ are com-

patible in the sense that we may write the action of ei, fi and ti for i ∈ Z/eZ as follows:

ei =
∑

j∈Z, j≡i(mod e)

( ∏
r�1

T−1
j−re

)
Ej ,

fi =
∑

j∈Z, j≡i(mod e)

( ∏
r�1

Tj+re

)
Fj ,

ti =
∏

j∈Z, j≡i(mod e)

Tj .
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Remark 2.4. The infinite sums and products in the proposition reduce, in fact, to
finite ones since the number of nodes in λ is finite.

The empty multi-partition ∅ is a highest-weight vector in Fs
e and Fs

∞ of weight Λs

and Λs, respectively. We then define Ve(s) and V∞(s) as the highest-weight modules
U ′

v(ŝle) · ∅ and Uv(sl∞) · ∅, respectively. Observe that the module structure on Ve(s)
really depends on s and not only on its class s modulo e. By the previous proposition, it
follows that V∞(s) is endowed with the structure of a U ′

v(ŝle)-module and Ve(s) coincides
with the U ′

v(ŝle)-submodule of V∞(s) generated by the highest-weight vector ∅.

2.2. Uglov’s canonical bases

We now briefly recall Uglov’s plus canonical basis of the Fock spaces. Let A(v) be the
ring of rational functions which have no pole at v = 0. Set

L :=
⊕
n�0

⊕
λ∈Πl,n

A(v)λ and B := {λ(mod vL) | λ ∈ Πl}.

Theorem 2.5 (Foda et al . [9]). The pair (L,B) is a crystal basis for Fs
e and Fs

∞.

Note that, although the crystal lattice L and the basis B of L/vL are the same for Fs
e

and Fs
∞, the induced crystal structures Be and B∞ on B do not coincide. The crystal

structure Be is obtained as follows. Let λ be an l-partition, and let i ∈ Z/eZ. We consider
the set of addable and removable i-nodes of λ. We read the nodes in the increasing order
with respect to ≺s, and let wi be the resulting word of the nodes. If a removable i-node
appears just before an addable i-node, we delete both and continue the same procedure
as many times as possible. In the end, we reach a word w̃i of nodes such that the first p

nodes are addable and the last q nodes are removable, for some p, q ∈ N. If p > 0, let γ

be the rightmost addable i-node in w̃i. The node γ is called the good i-node of λ. Then
the crystal Be may be read off from its crystal graph as follows.

Vertices: l-partitions whose nodes are coloured with residues.

Edges: λ
i−→ µ if and only if µ is obtained by adding a good i-node to λ.

We denote by Be(s) the connected component of Be that contains the highest-weight
vertex ∅. We may identify Be(s) with the crystal graph of Ve(s). The crystal graph of B∞
is obtained in a similar manner. We use j-nodes (j ∈ Z), for e = ∞, instead of i-nodes,
for e finite. We may also identify the crystal graph of V∞(s) with B∞(s), the connected
component of B∞ which contains the highest-weight vertex ∅.

Let e ∈ Z�2 ∪ {∞}. We set

Uv(g) =

{
U ′

v(ŝle) if e < ∞,

Uv(sl∞) if e = ∞

for ease of notation. We define a Z[v]-lattice LZ of L by

LZ :=
⊕
n�0

⊕
λ∈Πl,n

Z[v]λ.
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In [30], Uglov introduced a bar-involution ‘ ·̄ ’ on Fs
e , which is defined as

u · f = ū · f̄ for u ∈ Uv(g) and f ∈ Fs
e , ∅̄ = ∅.

Such a bar-involution is easier to define for the Fock space Fs
∞, as is explained in [4, § 3.9].

In the two cases, this leads to the following theorem definition.

Theorem 2.6 (Uglov [30]). Let s ∈ Zl and e ∈ Z�2 ∪ {∞}. There exists a unique
basis

Ge(s) = {Ge(λ, s) | λ ∈Πl}

of Fs
e such that the basis elements are characterized by the following two conditions.

(i) Ge(λ, s) = Ge(λ, s).

(ii) Ge(λ, s) ≡ λ(mod vLZ).

The basis Ge(s) is called the plus canonical basis of Fs
e . It strongly depends on

e ∈ Z�2 ∪ {∞}. The purpose of the next theorem is to identify the Kashiwara–Lusztig
canonical basis of Ve(s) with a subset of Ge(s).

Theorem 2.7 (Uglov [30]). Let s ∈ Zl and e ∈ Z�2 ∪ {∞}. Define

G◦
e (s) = Ge(s) ∩ Ve(s).

Then G◦
e (s) coincides with the canonical basis of the irreducible highest-weight Uv(g)-

module Ve(s). Moreover, Ge(λ, s) ∈ G◦
e (s) if and only if λ ∈Be(s).

3. Compatibility of canonical bases

In this section we prove that each Ge(λ, s) may be expanded into a Z[v]-linear combi-
nation of the canonical basis G∞(s). A crucial observation for the proof is that we may
define a partial order on multi-partitions that is independent of e. Then, the transition
matrix becomes unitriangular with respect to the partial order.

3.1. Some combinatorial preliminaries

A 1-runner abacus is a subset A of Z such that −k ∈ A and k /∈ A for all sufficiently
large k ∈ N. To visualize a 1-runner abacus, we view Z as a horizontal runner and place
a bead on the kth position for each k ∈ A. Thus, the runner is full of beads on the
far left and has no beads on the far right. For l � 1, an l-runner abacus is an l-tuple
of 1-runner abaci. Let Al be the set of l-runner abaci. To each pair of an l-partition
λ = (λ(1), . . . , λ(l)) and a multi-charge s = (s1, . . . , sl) ∈ Zl, we associate the l-runner
abacus

a(λ, s) := {(λ(d)
i + sd + 1 − i, d) | i � 1, 1 � d � l},

which is a subset of Z × [1, l]. One checks easily that the map

(λ, s) ∈ Πl × Zl �→ a(λ, s) ∈ Al
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−7 −6 −1 6−5 −4 −3 −2 0 2

−23 −22 −5−17 −16 −11 −10 −4 2

−21 −20 −3 16−15 −14 −9 −8 3 10 154

−19 −18 −1 18−13 −12 −7 −6 0 11 12 176

−2

5

φ

d

1 3 4 5

τ1

1 7 8 13 14

9

Figure 1. Computation of the bijection τl using abaci.

is bijective. To describe the embedding of Fock spaces into the space of semi-infinite
wedge products and then cut semi-infinite wedge products to finite wedge products, we
need to introduce a bijective map

τl : Π × Z ∼= A → Al ∼= Πl × Zl.

Definition 3.1. Let τl : Z → Z × [1, l] be the bijective map defined as

k �→ (φ(k), d(k)),

where k = c(k) + e(d(k) − 1) + elm(k) such that

c(k) ∈ [1, e], d(k) ∈ [1, l], m(k) ∈ Z

and φ(k) = c(k) + em(k). Then we define τl : Π × Z ∼= A → Al ∼= Πl × Zl as

A �→ τl(A) = {(φ(k), d(k)) | k ∈ A} ∈ Al for A ∈ A.

Remark 3.2.

(i) If (λ, s) = τl(λ, s), then s = s1 + · · · + sl.

(ii) To read off the multi-charge s = (s1, . . . , sl) from the l-runner abacus, we proceed
as follows. If the left-adjacent position of a bead on a runner is vacant, we move
the bead to the left to occupy the vacant position, and we repeat this procedure as
many times as possible. Then, sd is the column number of the rightmost bead of
the dth runner.

Example 3.3. Let e = 2 and l = 3. Then the preimage of

(λ, s) = (((1 · 1), (1 · 1), (1)), (0, 0,−1))

is (λ, s) = ((4 · 3 · 3 · 2 · 1),−1).

Now, (λ, s) = τ−1
l (λ, s) has the 1-runner abacus

a(λ, s) = {(ki := λi + s + 1 − i) | i � 1},

and the semi-infinite sequence (k1, k2, . . . ) defines a semi-infinite wedge product.
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We fix r sufficiently large such that

λi = 0 for i � r. (3.1)

Then (λ, s) is determined by the finite sequence k := (k1, . . . , kr). For example, ((4 · 3 ·
3 · 2 · 1),−1) is determined by k = (3, 1, 0,−2,−4,−6,−7). We write k = τ−1

l (λ, s) by
abuse of notation. Then they give the wedge basis in the space of finite wedge products
Λr, which will be introduced in a different guise in § 5.2.

We read the beads τl(k1), . . . , τl(kr) on the l-runner abacus a(λ, s) from right to left,
starting with the lth runner, and obtain a permutation w(k) = (w1, . . . , wr) of k. In our
example, we have w(k) = (0,−6,−7, 3,−2, 1,−4).

Definition 3.4. Let τl(wi) = (ζi, bi) for 1 � i � r, that is, ζi and bi are the col-
umn number and the row number of the bead τl(wi) on the l-runner abacus a(λ, s),
respectively. Then we define

ζ(λ) = (ζ1, . . . , ζr) and b(λ) = (b1, . . . , br).

Example 3.5. In our example, we have

ζ(λ) = (0,−2,−3, 1, 0, 1, 0) and b(λ) = (3, 3, 3, 2, 2, 1, 1).

We will need ζ(λ) and b(λ) when we express ∆e
λ,µ(v) in Kazhdan–Lusztig polynomials.

In this respect, the following remark is important.

Remark 3.6. Suppose that we have fixed λ and s. Assume that e and e′ are two
positive integers. Then k = τ−1

l (λ, s) does not coincide in general for distinct e and e′.
Nevertheless, one can choose r such that ζ(λ) and b(λ) for e coincide with those for
e′. For this to hold, it suffices that the r beads are the same for e and e′. Thus, it
suffices to choose r as in (3.1) such that 1 − kr is divisible by e and e′. If we divide the
l-runner abacus into cells with height l and width e (respectively, e′) so that the initial
cell contains exactly the locations labelled by 1, 2 . . . , el (respectively, 1, 2 . . . , e′l), the
finite sequence ends at the upper-left corner of a far-left cell for both e and e′. In our
running example, if we want to make ζ(λ) and b(λ) coincide for e = 2 and e′ = 3, we
read all the beads with labels greater than or equal to −17 in Figure 1.

Let P = Zr and let W be the affine symmetric group that is the semi-direct product
of the symmetric group Sr and the normal subgroup P . W acts on β = (β1, . . . , βr) ∈ P

on the right by

β · si = (β1 . . . , βi+1, βi, . . . , βr) for 1 � i � r − 1,

β · µ = β + eµ for µ ∈ P.

Then
Ar = {a = (a1, . . . , ar) ∈ P | 1 � a1 � · · · � ar � e}

is a fundamental domain for the action. We denote the stabilizer of a ∈ Ar by aW . It is
clear that aW is a subgroup of Sr. Let wa be the maximal element of aW . We denote
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by aW and aSr the set of minimal length coset representatives in aW \ W and aW \ Sr,
respectively.

In a similar manner, W acts on β = (β1, . . . , βr) ∈ P on the left by

si · β = (β1 . . . , βi+1, βi, . . . , βr) for 1 � i � r − 1,

µ · β = β + lµ for µ ∈ P.

Then
Br = {b = (b1, . . . , br) ∈ P | l � b1 � · · · � br � 1}

is a fundamental domain for the action. We denote the stabilizer of b ∈ Br by Wb, its
maximal element by wb, and the set of minimal length coset representatives in W/Wb

and Sr/Wb by W b and Sb
r , respectively.

Write k = c(k) + e(d(k) − 1) + elm(k) and φ(k) = c(k) + em(k) for k ∈ Z, as before,
and define

c(k) = (c(k1), . . . , c(kr)),

d(k) = (d(k1), . . . , d(kr)),

m(k) = (m(k1), . . . , m(kr)),

φ(k) = (φ(k1), . . . , φ(kr))

for k = τ−1
l (λ, s) ∈ Zr. Then,

• there exist a(k) ∈ Ar and u(k) ∈a(k) Sr such that c(k) = a(k) · u(k) and

• there exist b(k) ∈ Br and v(k) ∈ S
b(k)
r such that d(k) = v(k) · b(k).

It is clear that b(k) = b(λ). We define ζ(k) := φ(k) · v(k). Then, comparing it with

b(k) = v(k)−1 · d(k) = d(k) · v(k),

we have ζ(k) = ζ(λ). In what follows we will use the notation b(λ) and ζ(λ). From the
definitions, we have

ζ(λ) = a(k) · u(k)v(k) + e(m(k) · v(k)),

which shows that ζ(λ) belongs to a(k)W .

Example 3.7. With k = (3, 1, 0,−2,−4,−6,−7), e = 2 and l = 3, we obtain

c(k) = (1, 1, 2, 2, 2, 2, 1),

d(k) = (2, 1, 3, 2, 1, 3, 3),

m(k) = (0, 0,−1,−1,−1,−2,−2),

φ(k) = (1, 1, 0, 0, 0,−2,−3),

a(k) = (1, 1, 1, 2, 2, 2, 2),

b(k) = b(λ) = (3, 3, 3, 2, 2, 1, 1),

ζ(k) = ζ(λ) = (0,−2,−3, 1, 0, 1, 0).
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3.2. Ordering multi-partitions

Now we introduce the dominance order in a general setting. Let k ∈ N and

u = (u1, . . . , uk) ∈ Qk, v = (v1, . . . , vk) ∈ Qk.

Then we write u � v if u �= v and

a∑
s=1

us �
a∑

s=1

vs for a = 1, . . . , k.

We fix a decreasing sequence 1 > α1 > α2 > · · · > αl > 0 of rational numbers. Then,
for each λ ∈ Πl,n, we read the rational numbers

λ
(i)
j − j + si − αi for j = 1, . . . , n + si and i = 1, . . . , l,

in decreasing order and denote the resulting sequence by γ(λ) ∈ Qk, where

k =
l∑

i=1

si + nl.

Note that one can recover λ from γ(λ) = (γ1, . . . , γk). Hence, if γ(λ) = γ(µ), then λ = µ.
This follows from the fact that, for all i ∈ [1, l], the set

{γk − si + αi | γk − [γk] = αi}

is the set of β-numbers of λi.

Definition 3.8. Let λ,µ ∈ Πl,n. Then we write λ 	 µ if γ(λ) � γ(µ).

One can check that this defines a partial order which depends on the choice of α but
does not depend on e. This is a crucial remark in view of the following result.

Theorem 3.9.

(i) For each λ ∈ Πl,n, there exist polynomials ∆e
λ,µ(v) ∈ Z[v] for µ ∈ Πl,n such that

we have the unitriangular expansion

Ge(λ,s) = λ+
∑
λ�µ

∆e
λ,µ(v)µ.

(ii) For each λ ∈ Πl,n, there exist polynomials ∆∞
λ,µ(v) ∈ Z[v] for µ ∈ Πl,n such that

we have the unitriangular expansion

G∞(λ,s) = λ+
∑
λ�µ

∆∞
λ,µ(v)µ.

(iii) For each pair (λ,µ) ∈ Πl,n × Πl,n, ∆e
λ,µ(v) and ∆∞

λ,µ(v) are expressed by certain
parabolic Kazhdan–Lusztig polynomials (see § 5). In particular, they are polyno-
mials with non-negative integer coefficients.
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Proof. We prove (i) and (ii) by arguments similar to those used in [17]. As in [30],
it suffices to show that the matrix of the bar-involution is unitriangular with respect
to 	. Then the results immediately follow from the characterization of the canonical
basis. We recall the bar-involution on the space ∧s+∞/2Ve,l, which is defined in [30],
where s = s1 + · · · + sl. The space ∧s+∞/2Ve,l is the Q(v)-vector space spanned by the
semi-infinite monomials

uk = uk1 ∧ uk2 ∧ · · · ,

where ki ∈ Z for all i � 1, and ki = s − i + 1 if i � 0. Its basis is given by the ordered
monomials (i.e. the monomials with decreasing indices k1 > k2 > · · · ) because any
monomial may be expressed as a linear combination of ordered monomials by ‘straight-
ening relations’ in [30, Proposition 3.16]. Now, the procedure in § 3.1 yields a bijection
τl from the set of ordered monomials to the set of pairs (λ, s) such that λ ∈ Πl,n and
s = (s1, . . . , sl) with s = s1 + · · · + sl. This allows us to identify the space ∧s+∞/2Ve,l

with
⊕

s1+···+sl=s Fs
e . Let uk be a semi-infinite (possibly non-ordered) monomial. Let

uk̃ be the monomial obtained from uk by reordering the ki in strictly decreasing order.
The bijection τl then allows us to associate a pair (λ, s) with uk̃ such that λ ∈ Πl,n and
s = (s1, . . . , sl). We define a map π on the set of semi-infinite monimials by

π(uk) = (λ, s).

In particular, τl and π coincide on the set of ordered monomials. Uglov defined a bar-
involution on

∧s+∞/2
Ve,l as follows. For all semi-infinite ordered monomials uk, we

define
ūk := vtukr ∧ ukr−1 ∧ · · · ∧ uk1 ∧ ukr+1 ∧ ukr+2 ∧ · · · ,

where t is a certain integer (see [30, § 3.4] for its explicit definition) and r is a sufficiently
large integer. Hence, to compute λ̄ in Fs

e , we set uk = τ−1
l (λ, s) and use the straightening

relations to expand ūk on the basis of the ordered monomials, and apply π to obtain
the expression of λ̄ as a linear combination of l-partitions. We note that λ appears
with coefficient 1 by [30, Remark 3.24]. Let up be an arbitrary semi-infinite monomial
and assume that this is non-ordered. Then there exists i ∈ N such that ki < ki+1. The
straightening relations then show how to express up in terms of semi-infinite monomials
up′ with p′

i > p′
i+1. Let us define π(up) = (λ, s) and π(up′) = (λ′, s′). A study of the

straightening relations shows that we have s = s′ and that λ and λ′ are both obtained
from the same l-partition ν by adding a ribbon of fixed size m (see [17, § 4.2]). We
consider the set

{β1, . . . , βh} := {ν
(i)
j − j + si − αi for j = 1, . . . , n + si and i = 1, . . . , l}.

Then there exists a and b such that γ(λ) is the sequence obtained by reordering the
elements of {β1, . . . , βh} \ {βa} ∪ {βa + m} in decreasing order and γ(λ′) is the sequence
obtained by reordering the elements {β1, . . . , βh} \ {βb} ∪ {βb + m} in decreasing order.
Then, mimicking the argument in [17, pp. 581–583], one can prove, by a careful study
of the straightening rules, that

βa > βb.
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This implies that λ 	 λ′. In particular, all the ordered monomials uk′ which appear in
the expansion of ūk satisfy the following property. If π(u′

k) = (λ′, s), then λ 	 λ′. This
proves (i) and (ii). The third part is a result of [30]. Uglov proved that the coefficients
∆e

λ,µ(v) are expressed by parabolic Kazhdan–Lusztig polynomials, as we will see in § 5.
By the results of [22], this implies that they have non-negative integer coefficients. �

Remark 3.10. The order 	 does not coincide with the partial order in [30]. In that
work, the partial order depends on e, so a common partial order could not be used in
statements (i) and (ii) of Theorem 3.9. On the other hand, we have used the common
partial order 	 there.

As a direct consequence, we have the following theorem.

Theorem 3.11. For each λ ∈ Πl, we may expand Ge(λ, s) as follows:

Ge(λ, s) =
∑

ν∈Πl

dλ,ν(v)G∞(ν, s), (3.2)

where

• dλ,λ(v) = 1,

• dλ,ν(v) ∈ vZ[v] if λ �= ν,

• dλ,ν(v) �= 0 only if λ � ν.

Proof. This follows from parts (i) and (ii) of Theorem 3.9. �

Corollary 3.12. For λ ∈ Be(s), the formula (3.2) has the form

Ge(λ, s) =
∑

ν∈B∞(s)

dλ,ν(v)G∞(ν, s). (3.3)

Proof. We have already observed that Ve(s) may be regarded as a U ′
v(ŝle)-submodule

of V∞(s) that shares the common highest-weight vector ∅. Thus, we may expand
Ge(λ, s) ∈ G◦

e (s) on the basis G◦
∞(s) ⊂ G∞(s), and Theorem 3.11 implies (3.3). �

Definition 3.13. We define

∆e(v) = (∆e
λ,µ(v))λ∈Πl, µ∈Πl

,

∆∞(v) = (∆∞
λ,µ(v))λ∈Πl, µ∈Πl

,

∆e
∞(v) = (dλ,ν(v))λ∈Πl, ν∈Πl

.

They depend on s. Then we have

∆e(v) = ∆∞(v)∆e
∞(v).
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We also define the following submatrices:

De(v) = (∆e
λ,µ(v))λ∈Be(s), µ∈B∞(s),

D∞(v) = (∆∞
λ,µ(v))λ∈Be(s), µ∈B∞(s),

De
∞(v) = (dλ,ν(v))λ∈Be(s), ν∈B∞(s).

Then we have De(v) = D∞(v)De
∞(v).

Remark 3.14. If l = 1, then the matrix D∞(v) is the identity and De
∞(v) = De(v).

4. Computation of ∆e
∞(v) and De

∞(v)

Before proceeding further, we explain algorithmic aspects for computing ∆e
∞(v) and

De
∞(v). As ∆e

∞(v) = ∆−1
∞ (v) · ∆e(v), we start by computing ∆∞(v) and ∆e(v). Two

algorithms are already proposed: one by Uglov and the other by Yvonne. Both use a
natural embedding of the Fock spaces Fs

e into the space of semi-infinite wedge products
and compute the canonical bases Ge(s) and G∞(s).

The algorithm described by Uglov [30] needs steps to compute the straightening laws
of the wedge products. This soon starts to require enormous computational resources. It
occurs especially in the case when the differences between two consecutive entries of s

are large.
Yvonne’s algorithm [32] is much more efficient but it requires subtle computation

related to the commutation relations of

Uv(ŝle) ⊗ H ⊗ U−v−1(ŝll)

on the space of semi-infinite wedge products, where H is the Heisenberg algebra. We do
not pursue this direction and refer the reader to [32] for a complete description of this
algorithm.

Once Ge(s) and G∞(s) are computed, we can efficiently compute ∆e
∞(v) from them

(see § 4.1).
The computation of De

∞(v) is easier. We can compute it directly from the canonical
bases G◦

e (s) and G◦
∞(s) and we may compute the canonical bases by the algorithms

proposed in [16,23]. The algorithm given in [16] was originally suited for multi-charges
s such that 0 � s1 � s2 � · · · � sl < e. However, we will see in § 4.2 that it also computes
the canonical bases G◦

e (s) and G◦
∞(s) (and thus the matrix De

∞(v)) for arbitrary multi-
charge s. Observe that this only uses the Uv(g)-module structure of the Fock space.

4.1. A general procedure

Assume that we have computed the canonical bases Ge(s) and G∞(s). Using the uni-
triangularity of the decomposition matrices, one can obtain ∆e

∞(v) directly from the
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relation ∆e
∞(v) = ∆−1

∞ (v) · ∆e(v). This can be done efficiently by applying the procedure
below.

(1) Let λ ∈ Πl,n. We know by Theorem 3.11 that Ge(λ,s) may be expanded on G∞(s).
We define

Λ(λ) := {ν ∈ Πl,n | dλ,ν(v) �= 0}.

Our aim is to find the members of Λ(λ), and determine dλ,ν(v) when ν is a member.
Set λ0 := λ. Then λ0 is a member and dλ,λ0(v) = 1.

(2) Let k ∈ N. Suppose that we already know k members λ0, . . . ,λk−1 of Λ(λ) and the
polynomials dλ,λi(v) for i = 0, . . . , k − 1. Then we expand

Ge(λ, s) −
k−1∑
i=0

dλ,λi(v)G∞(λi, s)

into a linear combination of the standard basis of l-partitions and write∑
ν∈Λ(λ)\{λ0,...,λk−1}

dλ,ν(v)G∞(ν,s) =
∑

µ∈Πl,n

bµ(v)µ.

We have bµ(v) ∈ Z[v] by Theorem 3.9. If the right-hand side is zero, we are done.
Otherwise, let λk be a maximal l-partition in {µ ∈ Πl,n | bµ(v) �= 0}, with respect
to the partial order 	.

(3) Consider ν ∈ Λ(λ) \ {λ0, . . . ,λk−1} that satisfies ν 	 λk. If such ν does not exist,
then we have

λk ∈ Λ(λ) \ {λ0, . . . ,λk−1}.

Otherwise, let νk be maximal among them. If νk appears in G∞(ν, s) for
ν ∈ Λ(λ) \ {λ0, . . . ,λk−1}, then ν � νk 	 λk, so that the maximality implies
ν = νk. Since νk appears in G∞(νk, s), it follows that bνk(v) �= 0, which is
impossible by the maximality of λk and νk 	 λk. Hence, λk is a maximal ele-
ment of Λ(λ) \ {λ0, . . . ,λk−1}. Therefore, λk does not appear in G∞(ν, s) for
ν ∈ Λ(λ) \ {λ0, . . . ,λk}, and it follows that dλ,λk(v) = bλk(v).

(4) We increment k and go to step (2).

4.2. The computation of G◦
e(s) and G◦

∞(s)

Let e ∈ Z�2 ∪ {∞}. Assume first that

0 � s1 � s2 � · · · � sl < e.

It is proved in [16,23] that one can construct a sequence of elements in Z/eZ

k1, . . . , k1︸ ︷︷ ︸
u1

, k2, . . . , k2︸ ︷︷ ︸
u2

, . . . , ks, . . . , ks︸ ︷︷ ︸
us

(4.1)
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for each λ ∈ Be(s) such that if we define

Ae(λ,s) := f
(u1)
k1

· · · f (us)
ks

· ∅ ∈ Ve(s),

then

Ae(s) = {Ae(λ,s) | λ ∈ Be(s)}

is a basis of Ve(s). It is easy to obtain the coefficients γλ,µ(v) ∈ Z[v, v−1] in the expansion

Ge(λ, s) =
∑

µ∈Be(s)

γλ,µ(v)Ae(µ, s). (4.2)

When e ∈ Z�2, we have seen in § 3.1 that there is an action of the (extended) affine
symmetric group W on Zl such that

Bl := {(s1, . . . , sl) ∈ Zl | 0 � s1 � · · · � sl < e}

is a fundamental domain for this action. Hence, for any v := (v1, . . . , vl) ∈ Zl, there exist
s := (s1, . . . , sl) ∈ Bl and w ∈ W such that v = w · s. Since v and s yield the same
dominant weight, we have an isomorphism φs,v from Ve(s) to Ve(v). We can assume that
φs,v(∅) = ∅. For each λ ∈ Be(s), we set

Ae(λ,v) = f
(r1)
k1

· · · f (rs)
ks

· ∅ ∈ Ve(v),

where the pairs (ka, ra) are defined by (4.1). Then we have φs,v(Ae(λ, s)) = Ae(λ,v).
By the uniqueness of the crystal basis on Ve(v) proved by Kashiwara, we also have
φs,v(Ge(λ, s)) = Ge(ϕs,v(λ),v), where ϕs,v is the crystal isomorphism from Be(s) to
Be(v) (see [19] for a combinatorial description of ϕs,v). By applying φs,v to (4.2), we
obtain

Ge(ν,v) =
∑

µ∈Be(s)

γϕ−1
s,v(ν),µ(v)Ae(µ,v),

for ν ∈ Be(v), and it follows that

Ge(v) =
{ ∑

µ∈Be(s)

γλ,µ(v)Ae(µ,v)
∣∣∣∣ λ ∈ Be(s)

}
.

Hence, the algorithms in [17,23] compute the canonical basis Ge(v) for any multi-charge
v = (v1, . . . , vl) ∈ Zl. Applying the general procedure in § 4.2 restricted to the canonical
bases G◦

e (v) and G◦
∞(v), we may compute De

∞(v).

Remark 4.1. Another algorithm was recently proposed [8] for computing the canon-
ical basis of the highest-weight U ′

v(ŝle)-modules that is realized in the tensor product of
level-1 Fock spaces.
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4.3. Example

We set e = 2. Then the matrix De(v) of the canonical basis of the Uv(ŝle)-module
Ve(0, 0) is

(∅, (3))
((3), ∅)

((1), (2))
((2), (1)

(∅, (2 · 1))
((2 · 1), ∅)

((1), (1 · 1))
((1 · 1), (1))
(∅, (1 · 1 · 1))
((1 · 1 · 1), ∅)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · ·
v · ·
v 1 ·
v2 v ·
· · 1
· · v

v v2 ·
v2 v3 ·
v2 · ·
v3 · ·

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where dots mean 0 and each row is labelled by a 2-partition of rank 3. The matrix D∞(v)
of the canonical basis of the Uv(sl∞)-module V∞(0, 0) is

(∅, (3))
((3), ∅)

((1), (2))
((2), (1)
(∅, (2.1))
((2 · 1), ∅)

((1), (1 · 1))
((1 · 1), (1))
(∅, (1 · 1 · 1))
((1 · 1 · 1), ∅)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · ·
v · · · ·
· 1 · · ·
· v · · ·
· · 1 · ·
· · v · ·
· · · 1 ·
· · · v ·
· · · · 1
· · · · v

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The matrix De

∞(v) obtained from our algorithm is⎛⎜⎜⎜⎜⎜⎝
1 · ·
v 1 ·
· · 1
v v2 ·
v2 · ·

⎞⎟⎟⎟⎟⎟⎠
and one can check that we have

De(v) = D∞(v) · De
∞(v).

5. Positivity of the coefficients in dλ,ν(v)

The aim of this section is to study the entries of the matrix De
∞(v). The main result

asserts that they are polynomials with non-negative integer coefficients.
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5.1. Some notation on Kazhdan–Lusztig polynomials

Let H be the extended affine Hecke algebra of the symmetric group Sr. Namely, it is
generated by T1, . . . , Tr−1 and Xλ for λ ∈

⊕r
i=1 Zεi, such that the defining relations are

(Ti − v−1)(Ti + v) = 0,

XλTi = TiX
siλ + (v − v−1)

Xsiλ − Xλ

1 − Xαi
,

XλXµ = XµXλ,

XλX−λ = 1

and the Artin braid relations for T1, . . . , Tr−1. The affine Hecke algebra admits a canonical
basis {C ′

w | w ∈ W} such that

C ′
w = v�(w)

∑
y∈W,y�w

Py,w(v−2)v−�(y)Ty,

where � is the Bruhat order on W . We refer the reader to [22,27] for a detailed review
on affine Hecke algebras, the definition of the relevant length function and the Kazhdan–
Lusztig basis. The polynomials Py,w(v−2) are the affine Kazhdan–Lusztig polynomials.
They admit non-negative integer coefficients. We also recall the following property:

Py,w = Psiy,w (5.1)

for any y < w in W and i = 1, . . . , r such that siw < w.

5.2. Expression of the coefficients ∆e
λ,µ(v) in terms of

Kazhdan–Lusztig polynomials

The aim of this section is to recall Uglov’s construction of a finite wedge product [30]
and to show in a simpler manner than [30] that the entries ∆e

λ,µ(v) are expressed in
terms of parabolic Kazhdan–Lusztig polynomials.

We want to introduce the space of finite wedge products. Consider a ∈ Ar and b ∈ Br.
We define aW , Wb, wa and wb as in § 3.1. The subgroups aW and Wb define parabolic
subalgebras Ha and Hb of the affine Hecke algebra H. If we define

J = {i | 1 � i � r − 1, bi = bi+1},

then the parabolic subgroup WJ is merely the subgroup Wb. Let 1+
a (respectively, 1−

b )
be the right Ha-module (respectively, left Hb-module) such that

1+
a Ti = v−11+

a , si ∈ aW,

Ti1−
b = −v1−

b , si ∈ Wb.

}
(5.2)

We define Λr(a, b) = 1+
a ⊗Ha H ⊗Hb

1−
b . Then, the space of finite wedges Λr is the direct

sum of the Λr(a, b) for a ∈ Ar and b ∈ Br. We define the bar-involution on Λr by

1+
a ⊗ h ⊗ 1−

b = 1+
a ⊗ h̄ ⊗ 1−

b .
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Definition 5.1. Let ξ ∈ P . Then there are unique a ∈ Ar and x ∈ aW such that
ξ = ax. We denote this x by x(ξ).

We say that ξ is J-dominant and write ξ ∈ P++
b if ξi > ξi+1 whenever bi = bi+1. Sim-

ilarly, we say that ξ ∈ P+
b if ξi � ξi+1 whenever bi = bi+1. Note that ζ(λ) ∈ P++

b for
λ ∈ Πl. If ξ ∈ P++

b , it follows by [30, Proposition 3.8] that x(ξ)s < x(ξ) in the Bruhat
order for any s ∈ Wb. So x(ξ)wb is the minimal length coset representative of aWx(ξ)Wb.

By [30, Lemma 3.19, Proposition 3.20], the wedge basis of Λr(a, b) is given by

{|λ〉 = 1+
a ⊗ Tx(ζ(λ))wb

⊗ 1−
b = (−v)−�(wb)1+

a ⊗ Tx(ζ(λ)) ⊗ 1−
b | ζ(λ) ∈ aW}.

Here, for brevity, we have written a = a(k) and b = b(k) = b(λ), where k = τ−1
l (λ, s).

We put x = x(ζ(λ))wb. Then, by Kazhdan–Lusztig theory,

C ′
wax = v�(wax)

∑
y∈W

Py,wax(v−2)v−�(y)Ty

is bar invariant. As
W � aW × {x(η) | η ∈ aW}, (5.3)

we have

C ′
wax = v�(wax)

∑
η∈aW

∑
u∈aW

Pux(η),wax(v−2)v−�(u)−�(x(η))TuTx(η)

= v�(wax)
∑

η∈aW

∑
u∈aW

Pwax(η),wax(v−2)v−�(u)−�(x(η))TuTx(η)

where the last equality is a consequence of (5.1). Set

C+
e (λ) =

v−�(wa)∑
u∈aW v−2�(u) 1+

a ⊗ C ′
wax ⊗ 1−

b ,

where x = x(ξ)wb and ξ = ζ(λ). Then, using (5.2), we have that

C+
e (λ) =

∑
η∈aW

v�(x)−�(x(η))Pwax(η),wax(v−2)1+
a ⊗ Tx(η) ⊗ 1−

b

is bar invariant. When η admits repeated entries, one can verify that 1+
a ⊗ Tx(η) ⊗ 1−

b is
equal to 0. Here we refer the reader to [30, § 3.3] for a detailed proof (which justifies the
terminology of Fock space used). Now, we rewrite C+

e (λ) as the expression

C+
e (λ) =

∑
η∈aW∩P++

b

∑
u∈Wb

v�(x)−�(x(η)wbu)Pwax(η)wbu,wax(v−2)(−v)�(u)1+
a ⊗ Tx(η)wb

⊗ 1−
b .

Recall that

P J,−1
wax(η)wb,wax(ξ)wb

(v−2) =
∑

u∈Wb

(−1)�(u)Pwax(η)wbu,wax(ξ)wb
(v−2)
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is a parabolic Kazhdan–Lusztig polynomial. These polynomials were introduced by Deo-
dhar [6]. As

x = x(ξ)wb and v�(x)−�(x(η)wbu) = v�(x(ξ))−�(x(η))−�(u),

we have

C+
e (λ) =

∑
η∈aW∩P++

b

v�(x(ξ))−�(x(η))P J,−1
wax(η)wb,wax(ξ)wb

(v−2)1+
a ⊗ Tx(η)wb

⊗ 1−
b . (5.4)

It satisfies the defining properties of the plus canonical basis introduced by Uglov [30].
Thus, we have recovered Uglov’s result, Theorem 3.9 (iii). To be more precise, let
λ,µ ∈ Πl,n. Choose r ∈ N as in § 3.1, and define k, l ∈ Zr as

k = τ−1
l (λ, s) and l = τ−1

l (µ, s).

Define a(k), a(l) and b(λ), b(µ) as in § 3.1, and set ξ = ζ(λ) and η = ζ(µ).

Theorem 5.2. With the above notation, we have the following.

(i) If a(k) �= a(l), or b(λ) �= b(µ), then ∆e
λ,µ(v) = 0.

(ii) If a(k) = a(l) = a ∈ Ar and b(λ) = b(µ) = b ∈ Br, then

∆e
λ,µ(v) = v�(x(ξ))−�(x(η))P J,−1

wax(η)wb,wax(ξ)wb
(v−2). (5.5)

5.3. Stabilization for e = ∞
Now we assume that s ∈ Zl and λ ∈ Πl are fixed and we increase e. By Remark 3.6,

we have seen that, for any e′ > e, one can choose r such that ξ = ζ(λ) coincide for e

and e′. Since s and λ are fixed, when e′ is sufficiently large, there exist x̃(ξ) ∈ Sr and
ã = (ã1, . . . , ãr) such that

ã1 � · · · � ãr, x̃(ξ) ∈ ãSr and ξ = ãx̃(ξ). (5.6)

This only means that we do not need translations by e′µ, for µ ∈ P , to reach the funda-
mental domain when e′ is sufficiently large. In what follows, we refer to this stabilization
phenomenon as the e = ∞ case. By Remark 3.6 we have the following expression for the
e = ∞ case:

∆∞
λ,µ(v) = v�(x̃(ζ(λ)))−�(x̃(ζ(µ)))P J,−1

wãx̃(ζ(µ))wb,wãx̃(ζ(λ))wb
(v−2) for λ,µ ∈ Πl.

Moreover, one can assume that r is adjusted such that b and ξ = ζ(λ) are the same for
e finite (fixed) and e = ∞. In particular, we have ξ ∈ ãSr for λ ∈ Πl, as before. Then
Theorem 5.2 (ii) implies that we may assume ηSr = ãSr for η = ζ(µ).

Recall that ξ = ζ(λ) and η = ζ(µ) belong to P++
b . Then Theorems 3.11 and 5.2 imply

that there exist polynomials

dγξ(v) ∈ Z[v] for γ ∈ P++
b ,
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such that

v�(x(ξ))−�(x(η))P J,−1
wax(η)wb,wax(ξ)wb

(v−2)

=
∑

γ∈ãSr∩P++
b

v�(x̃(γ))−�(x̃(η))P J,−1
wãx̃(η)wb,wãx̃(γ)wb

(v−2)dγξ(v).

Define a linear map ψ : Λ(ã, b) ↪→ Λ(a, b) as

1+
ã ⊗ Tx̃(ξ)wb

⊗ 1−
b �→ 1+

a ⊗ Tx(ξ)wb
⊗ 1−

b = 1+
a ⊗ Tx(ã)Tx̃(ξ)wb

⊗ 1−
b .

Then, in view of (5.4), the above equality is equivalent to

C+
e (λ) =

∑
ã∈aW∩P −

∑
γ:=ζ(ν)∈ãSr∩P++

b

dγξ(v)ψ(C+
∞(ν)), (5.7)

where

C+
∞(ν) =

v−�(wã)∑
u∈ãW v−2�(u) 1+

ã ⊗ C ′
wãx̃(ζ(ν))wb

⊗ 1−
b . (5.8)

5.4. Proof of the positivity

The idea of the proof is to expand C+
e (λ) into a linear combination of ψ(C+

∞(µ))
and compare it with (5.7). The famous positivity result of the multiplicative structure
constants with respect to the Kazhdan–Lusztig basis and its generalization in [14] then
yields the desired positivity.∗ Recall the basis

C ′
w = v�(w)

∑
y∈W

Py,w(v−2)v−�(y)Ty.

For y ∈ W , we write y = y′y′′, where y′′ ∈ Sr and y′ is the minimal length coset repre-
sentative of ySr. Then we define

Uy = Ty′C ′
y′′ . (5.9)

It is clear that we may write

C ′
w =

∑
y∈W

Ay,w(v)Uy, (5.10)

where Ay,w(v) ∈ Z[v, v−1]. By [14, Corollary 3.9], we have in fact Ay,w(v) ∈ N[v, v−1].
We write y = ux(γ), for u ∈ aW and γ ∈ aW , by (5.3). Then we have

Uy = Uux(γ) = TuUx(γ)

and this implies that

TiUy =

{
Usiy, siy > y,

(v−1 − v)Uy + Usiy, siy < y.
∗ One purpose of [14] is to introduce LLT polynomials for general root systems. Note that LLT

polynomials for finite root systems other than type A had been introduced independently in [25]. It is
interesting to compare the two definitions.
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Let w = wax(ξ)wb and ξ = ζ(λ). As siw < w, for si ∈ aW , we deduce

v−1C ′
w = TiC

′
w =

∑
siy>y

Ay,w(v)Usiy +
∑

siy<y

Ay,w(v)((v−1 − v)Uy + Usiy)

=
∑

siy<y

(Asiy,w(v) + (v−1 − v)Ay,w(v))Uy +
∑

siy>y

Asiy,w(v)Uy.

Thus, Asiy,w(v) = v−1Ay,w(v) if siy > y, and it follows that

Ay,w(v) = v−�(u)Ax(γ),w(v) for y = ux(γ).

Therefore, we have( ∑
u∈aW

v−�(u)Tu

)( ∑
γ∈aW

Ax(γ),w(v)Ux(γ)

)
= C ′

w. (5.11)

Hence, for any λ ∈ Πl, the plus canonical basis is given by

C+
e (λ) =

v−�(wa)∑
u∈aW v−2�(u) 1+

a ⊗ C ′
w ⊗ 1−

b

=
∑

γ∈aW

v−�(wa)Ax(γ),wax(ξ)wb
(v)1+

a ⊗ Ux(γ) ⊗ 1−
b

=
∑

ã∈aW∩P −

∑
z∈Sr

v−�(wa)Ax(ã)z,wax(ξ)wb
(v)1+

a ⊗ Tx(ã)C
′
z ⊗ 1−

b (5.12)

where the second equality follows from w = wax(ξ)wb, (5.2) and (5.11), the third follows
from (5.9). Note that ãW = Sr ∩ x(ã)−1

aWx(ã) by ã = ax(ã). Then (5.2) allows us to
write

1+
a ⊗ Tx(ã)C

′
z ⊗ 1−

b =
1∑

u∈ãW v−2�(u) 1+
a ⊗ Tx(ã)

( ∑
u∈ãW

v−�(u)Tu

)
C ′

z ⊗ 1−
b .

As the left multiplication by ∑
u∈ãW

v−�(u)Tu

gives the subspace of dimension |Sr|/|ãW | in the Hecke algebra H(Sr), it has the basis
{C ′

wãy | y ∈ã W \ Sr}. By the positivity of the structure constants, we may write( ∑
u∈ãW

v−�(u)Tu

)
C ′

z =
∑

y∈ãW\Sr

By,z(v)C ′
wãy,

where By,z(v) ∈ N[v, v−1]. Thus,

1+
a ⊗ Tx(ã)C

′
z ⊗ 1−

b =
∑

γ∈ãSr

Bx̃(γ),z(v)
1∑

u∈ãW v−2�(u) 1+
a ⊗ Tx(ã)C

′
wãx̃(γ) ⊗ 1−

b .
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For each γ ∈ ãSr, define

d′
γ,ξ(v) = v−�(wa)

∑
z∈Sr

v�(wã)Ax(ã)z,wax(ξ)wb
(v)Bx̃(γ),z(v). (5.13)

Then, d′
γ,ξ(v) ∈ N[v, v−1] and we have∑

z∈Sr

v−�(wa)Ax(ã)z,wax(ξ)wb
(v)1+

a ⊗ Tx(ã)C
′
z ⊗ 1−

b

=
∑

γ∈ãSr

d′
γ,ξ(v)

v−�(wã)∑
u∈ãW v−2�(u) 1+

a ⊗ Tx(ã)C
′
wãx̃(γ) ⊗ 1−

b

=
∑

γ∈ãSr∩P+
b

∑
t∈Wb

d′
γwbt,ξ(v)

v−�(wã)∑
u∈ãW v−2�(u) 1+

a ⊗ Tx(ã)C
′
wãx̃(γ)wbt ⊗ 1−

b ,

where we slightly abuse the notation by using the same index γ in the last two expressions.
If xsi < x for some si ∈ Wb, then

v−1C ′
x ⊗ 1−

b = C ′
xTi ⊗ 1−

b = −vC ′
x ⊗ 1−

b

and C ′
x ⊗ 1−

b = 0. Thus, we have, in fact,

∑
z∈Sr

v−�(wa)Ax(ã)z,wax(ξ)wb
(v)1+

a ⊗ Tx(ã)C
′
z ⊗ 1−

b

=
∑

γ∈ãSr∩P+
b

d′
γwb,ξ(v)

v−�(wã)∑
u∈ãW v−2�(u) 1+

a ⊗ Tx(ã)C
′
wãx̃(γ)wb

⊗ 1−
b .

By using the last expression in (5.12), we derive

C+
e (λ) =

∑
ã∈aW∩P −

∑
γ∈ãSr∩P++

b

d′
γwb,ξ(v)

v−�(wã)∑
u∈ãW v−2�(u) 1+

a ⊗ Tx(ã)C
′
wãx̃(γ)wb

⊗ 1−
b .

By using (5.8), this can also be rewritten

C+
e (λ) =

∑
ã∈aW∩P −

∑
γ=ζ(ν)∈ãSr∩P++

b

d′
γwb,ξ(v)ψ(C+

∞(ν)).

Hence, comparing this with (5.7), we obtain dγξ(v) = d′
γwb,ξ(v) ∈ N[v, v−1]. We have

established the following desired positivity result.

Theorem 5.3. The polynomials dλ,ν(v) that appear in (3.2) have non-negative integer
coefficients.
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5.5. The case v = 1

The proof of the positivity we have obtained does not properly yield a geometric
interpretation of the coefficients dγξ(v). The purpose of this section is to show that their
specializations dγξ(1) may be interpreted as composition multiplicities. Let us rewrite
the right action in a more coordinate-free manner. For this, we consider

g
′ = [g, g] = slr(C) ⊗ C[t, t−1] ⊕ Cc,

where g = slr(C)⊗C[t, t−1]⊕Cc⊕Cd is the Kac–Moody Lie algebra of type A
(1)
r−1. Then

the fundamental weights Λ0, . . . , Λr−1 remain linearly independent on

h
′ =

r−1⊕
i=0

Cα∨
i

and we may write its dual space as follows:

h
′∗ = h

∗/Cδ =
r−1⊕
i=0

CΛi.

We identify the weight lattice P of slr(C) with the set of level zero integral weights in
h′∗ by

P =
⊕r

i=1 Zεi

Z(ε1 + · · · + εr)
=

r−1⊕
i=1

Z(Λi − Λ0) ⊆ h
′∗,

where

ξ =
r∑

i=1

ξiεi �→
r−1∑
i=1

(ξi − ξi+1)(Λi − Λ0)

(we drop ‘modulo Z(ε1 + · · · + εr)’ by abuse of notation). For ξ ∈ P , we define

ξ̂ = −ξ + eΛ0 ∈ h
′∗.

The Weyl group action on h′∗ preserves P + eΛ0. Moreover, if we define wξ for w ∈ W

and ξ ∈ P by wξ̂ = −wξ + eΛ0, where ξ̂ �→ wξ̂ is the Weyl group action on h′∗, then

siξ = ξi+1εi + ξiεi+1 +
∑

j �=i,i+1

ξjεj ,

for 1 � i � r − 1, and

s0ξ = (ξr − e)ε1 + (ξ1 + e)εr +
∑

j �=1,r

ξjεj .

Thus, ξ · w := w−1ξ, for ξ ∈ P and w ∈ W , is nothing but the right action of W .
Let J ⊂ {1, . . . , r − 1} and let µ be the composition of r defined by J . Write pµ(C)

for the parabolic subalgebra of g defined by µ and lµ(C) for the standard Levi subal-
gebra of pµ(C). For η ∈ P++

b , we denote by V (wbη̂) the finite-dimensional irreducible
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lµ(C) ⊕ Cc-module with highest weight wbη̂ − ρ, where ρ is such that 〈ρ, α∨
i 〉 = 1 for

0 � i � r − 1. Thus, the canonical central element c acts as the scalar e − r. We view
V (wbη̂) as a pµ(C) ⊕ Cc-module. Then, through the evaluation homomorphism

pµ = {X ∈ slr(C[t]) | X|t=0 ∈ pµ(C)} ⊕ Cc → pµ(C) ⊕ Cc,

we may view it as a pµ-module as well. We define the following g′-module:

Mµ(wbη̂) = U(g′) ⊗U(pµ) V (wbη̂).

If X ∈ pµ, then

Xu ⊗ v = [X, u] ⊗ v + u ⊗ Xv, u ∈ U(g′), v ∈ V (wbη̂).

Hence, Mµ(wbη̂) is isomorphic to the tensor product representation of the adjoint repre-
sentation on U(g′) and V (wbη̂) as a pµ-module. Thus Mµ(wbη̂) is an integrable pµ-module.

For any ζ in h′∗, we denote by M(ζ) the Verma g′-module with highest weight ζ − ρ.
Then, by the Weyl character formula we have, for η ∈ P++

b ,

Mµ(wbη̂) =
∑

u∈Wb

(−1)�(u)M(uwbη̂).

We consider the following maximal parabolic subalgebra of g′.

g
′
0 = slr(C[t]) ⊕ Cc ⊆ g

′.

We define
M0(wbη̂) = U(g′) ⊗U(g′

0) L(wbη̂),

where L(wbη̂) is the irreducible highest-weight g′
0-module whose highest weight is

wbη̂ − ρ.
Now, with the notation of § 5.3, observe that 〈ã, α∨

i 〉 � 0 for 1 � i � r − 1. Moreover,
we have

−uwbη = −uwbx̃(η)−1ã

such that wãx̃(η)wbu
−1 is the maximal-length coset representative of Wãx̃(η)wbu

−1. Now
we apply the classical Kazhdan–Lusztig conjecture for semi-simple Lie algebras, which
is the theorem by Beilinson and Bernstein, and Brylinski and Kashiwara. Here, the Lie
algebra is slr(C) and it gives

M(uwbη̂) =
∑

γ∈ãSr

Pwãx̃(η)wbu−1,wãx̃(γ)wb
(1)M0(wbγ̂)

for u ∈ Wb. This implies that

Mµ(wbη̂) =
∑

u∈Wb

(−1)�(u)M(uwbη̂)

=
∑

γ∈ãSr

P J,−1
wãx̃(η)wb,wãx̃(γ)wb

(1)M0(wbγ̂).
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By the integrality as a pµ-module, we have

Mµ(wbη̂) =
∑

γ∈ãSr∩P++
b

P J,−1
wãx̃(η)wb,wãx̃(γ)wb

(1)M0(wbγ̂).

Note also that

â = −
r−1∑
i=1

(ai − ai+1)(Λi − Λ0) + eΛ0

satisfies

〈â, α∨
i 〉 =

{
ai+1 − ai � 0, 1 � i � r − 1,

e + a1 − ar � 1 > 0, i = 0,

and we have
uwbη̂ = uwbx(η)−1â

such that wax(η)wbu
−1 is the maximal-length coset representative of aWx(η)wbu

−1 for
u ∈ Wb. Thus, by the Kazhdan–Lusztig conjecture again, this time for g [31],

M(uwbη̂) =
∑

ξ∈aW

Pwax(η)wbu−1,wax(ξ)wb
(1)L(wbξ̂)

for u ∈ Wb. This implies that

Mµ(wbη̂) =
∑

u∈Wb

(−1)�(u)M(uwbη̂)

=
∑

ξ∈aW

P J,−1
wax(η)wb,wax(ξ)wb

(1)L(wbξ̂).

By the integrality as a pµ-module again, we obtain

Mµ(wbη̂) =
∑

ξ∈aW∩P++
b

P J,−1
wax(η)wb,wax(ξ)wb

(1)L(wbξ̂).

Therefore, if we write
M0(wbγ̂) =

∑
ξ∈aW∩P++

b

dγξL(wbξ̂)

for dγξ ∈ N, in other words [M0(wbγ̂) : L(wbξ̂)] = dγξ, we have

P J,−1
wax(η)wb,wax(ξ)wb

(1) =
∑

γ∈ãSr∩P++
b

P J,−1
wãx̃(η)wb,wãx̃(γ)wb

(1)dγξ.

Hence, we have the following interpretation of dλ,ν(1).

Proposition 5.4. For the relative decomposition numbers evaluated at v = 1, we
have the equalities

dλ,ν(1) = [M0(wbγ̂) : L(wbξ̂)],

where ξ = ζ(λ) and γ = ζ(ν).
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It would be desirable to understand dλ,ν(v) in terms of Jantzen filtration. In the case
when Wb is trivial, we expect the Verma module to be rigid and the Jantzen conjecture
to hold.
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