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CHARACTERIZATION OF A CLASS OF

INFINITE MATRICES WITH APPLICATIONS

P.N. NATARAJAN

In this paper, K denotes a complete, non-trivially valued, non-

archimedean field. The class (I ,1 ) of infininite matrices transforming

sequences over K in I to sequences in I is characterized.

Further a Mercerian theorem is proved in the context of the Banach

algebra (I ,1 ), a > 1 and finally a Steinhaus type result is
a a

proved for the space I . In the case of J? or C , on the other

hand, the best known result so far seems to be a characterization

of positive matrix transformations of the class (I jZnJj

00 > a S g > 1 .

1. Introduction.

K denotes a complete, non-trivially valued field, that is K = JR

(the field of real numbers) or <f (the field of complex numbers) or a

complete, non-trivially valued, non-archimedean field.

If X,Y are sequence spaces with elements whose entries are in K

and if A = (a •,), a , e K3 n,k = 0,1,2,. .. is an infinite matrix, we
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162 P. N. Natarajan

write A e (X,Y) if (Ax) = Z a ,x, is defined, n = 0,1,2,... and
" k=0

the sequence Ax = {(Ax) } e Y , for every x = {xv} e X . Ax is called

the i4 transform of x .

The main result of this paper is the characterization of infinite

matrices belonging to (I ,1 ), a > 0 , where

oo

la = Ix = {xk), xk e K3 k = 0,1,2,..., E \xk\* < »} ,
K=U

where K is a complete, non-trivially valued, non-archimedean field.

Because of the fact that there is, as such, no classical analogue for this

result, this result is interesting. When K = J7? or (P , a complete

characterization of the class (I , I ) of infinite matrices, a,3 2 2 ,
ex p

does not seem to be available in the literature. Even a recent result [5]

in this direction characterizes only non-negative matrices in (1 ,T-o^,

a S 3 > J . When K = J? or C , a known simple sufficient condition ([6],

p.174, Theorem 9) for an infinite matrix A to belong to (I ,1 ) is

A e (l^lj n (l^lj).

Sufficient conditions or necessary conditions for A e (1 ,lo) when

a p

K = R or <P" are available in literature (see for example ['']).

Necessary and sufficient conditions for A e (1-,%.) are due to Mears [7]
(for alternate proofs, see Knopp and Lorentz [4], Fridy [2]).

From the characterization mentioned at the outset, it is then deduced

that the Cauchy product of two sequences in 1 ,n > 0 , is again in I

This result fails to hold for a > 1 when the field is JR or f . In

Section 3 we obtain a Mercerian theorem by considering the structure of

the space (Z ,1 ), a ̂  1 , of matrices. In Section 4 we study certain

Steinhaus type theorems involving the space I

2. Characterization of matrices in (I .1 ) , a > 0 .

THEOREM 2.1 . If A = (an]<), ank e K, n,k = 0,1,2,... where K is

a complete, non-tx*iviatly valued, non-archimedean field,
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Inf in i te Matrices

A € (I ,1 ), a > 0 if and only if

CO

(2.1) sup I \a fe| < °° .
n=0

Proof. Since | . | is a non-archimedean valuation, we first observe

that

(2.2) | | a | a - | 2 > H " l a + f c ! a - l a ! a + l f c | a > a> ° •
CO

( S u f f i c i e n c y ) . I f x = { x , } e l , l a h x 1 c o n v e r g e s , n = 0,1,2, . . . 3
k a k=0 k

since X-, —> 0, k —> °° and sup \a •, \ < °° by (2.1) . Also,
n,k

00 00

< ( Z \xJVsup = l« X)
k=0 K k>0 y^0

 nK

so that {(Ax) } e I .n a

(Necessity). Suppose A e (I ,1 ). We first note that

sup \a vI = B <<°, n = 0,l,2,... . For, if for some m ,
k>0 nK n

sup I a , I = °° , then, we can choose a strictly increasing sequence
k>0 mK

ik(i)} of positive integers such that \a 7 ̂ -,I > i , i = 1,2,..
7t\, K. (t- /

If the sequence {̂ r,} is defined by

x, = , k = k(i)
K am,k(i)

, i = 1,2,...,

= 0 , k / k(i)

CO

{xv} e I , for , t '- |tX " '-
K a k=0

while a i ,., x. ... = 1 —/—> 0 , i > °° which is contradiction.
m,K(v) kit.)
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S i n c e (Ax) = a •, f o r t h e s e q u e n c e x = {x } , x = 0 , n ^ k , x , = l
ft YIK. Yl Yl fC

and {(Ax) } e I ,

Uk = S I a
M f e I " < - , fc = 0 , 1 , 2 , . . . .

K n=0 nK

Suppose {v-fc} is unbounded. Choose a positive integer k(l) such that

Vk(l) * 3 •

Then choose a positive integer n(l) such that

n=n(l)+l ' n'

so that

More generally, given the positive integers k(j), n(j)3 Q ̂  m-1,

choose positive integers k(m), n(m) such that k(m) > k(m-l), n(m) >

n(m-l),

n(m-l) „
Z Z B k~ < 1 ,

n=n(m-2)+l k=k(m) n

n(m-l) 9 , m-1

and

oo n(m-l)
E la , . . | a < t B .

n=n(m)+l n>k(m) n=0 n

where, since K is non-trivially valued, there exists TT e K such that

0 < p = | TT | < 1 ,

n(m) n(m-l) «>

_ 2 e m-1
B + p u 2 f I i

n(m-l) _ 2 e m-1 _„ •> n(m-l) n(m-l)
> 2 Z B + p u 2 f I i p , . . , - Z B - E B

V
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For every i = 1,2,.,., there exists a non-negative integer \(i) such

that

\(i)+l _ .-2/ap s v < p

Define the sequence x = ix.,} as follows.

x, = ir , k = fcfaj

0 , k ? k(i)

te } £ I , for , Z |x, | a = Z

However, u s i n g ( 2 . 2 ) ,

,a
n 1 2 3

where

Z = E E
n=n(m-l)+l i=l

Now

(2.3) > 2 + E ; "

n(m) m-1
r E

n=n(m-l)+l i=l

n(m) „

n=n(m-l)+l n'

m-1

_p n(m)
i E la

nn(ml)+l
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( 2 . 4 )

n(m)

n(m)
< E B i

ni=k(m+l)

( 2 . 5 ) < 1 .

From ( 2 . 3 ) t o ( 2 . 5 ) , we h a v e ,

n(m)
E | (Ax ) \ a > 1 ; m = 2333. . . .

n=m(m-l)+l n

This shows that {(Ax) } ft 1 while ixh} el , a contradiction. Thus
71 Ct K Ot

condition (2.1) is also necessary. The proof of the theorem is now

complete.
CO CO 00

The Cauchy product of two series 1 a.-, , E b, is Z e, where
k=0 K k=0 K k=0 K

( 2 . 6 ) °k s aih-i akbo •
In the context of the sequence space Z , we have the following theorem.

a

THEOREM 2.2. If e l^ , so does their Cauahy product

Proof. Consider the matrix

(2.7) A =

ao
al

a2

0

ao
al

0

0

ao

0 . . .

0. . .

0 . . .

Noting that the .4-transform of {i>, } is fer,} « since

A £ (I .I ) so that
Ot Ot

e I , since b,} e I .k a
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Remark 2.1. (i) It is easy to establish Theorem 2.2, when a = 1 ,

virtually by following the steps in the well-known Cauchy theorem on

multiplication of series; Theorem 2.2 could be proved in the same way

using (2.2) .

(ii) Theorem 2.2 could be formally stated in the following form: If a

sequence {a, } is given, then {a, } e 1 for every sequence li>h} e Z

if and only if iai,} e ^ where c, is defined by (2.6) .

(iii) Theorem 2.2 is not true when K = M or tf and a > 1 as

illustrated by the following example. Let

a > 2= K = T

Then {a.}, {b, } e 1 while {c7 } / I .
K K CL K Ct

3. A Mercerian theorem.

We now set out to study the structure of (I ,1 ), a S 1 , with a

view to obtain a Mercerian theorem analogous to the one obtained earlier

by Rangachari and Srinivasan [9], (I ,1 ), ail , is a Banach algebra

under the norm
1_

(3-D \\A\\ = sup ( I \ank\
a)a 3 A = (ank) e (l^lj ,

with the usual matrix addition, multiplication and elementwise scalar

multiplication. First we note that if A = (a •,) , B = (b ,) e. (I ,1 ).
nk rik a a.

00

(AB) , is defined, for, (AB) , = I a .b., converges, since b., — > 0,

i — > °° and sup \a . I < °° . We next show that (I ,1 ) is closed with

respect to multiplication. For, using (2.2),
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I \(AB) j , | a = E \ l a .bn | a

n=0 n=0 %=0

n=0 i=0 m vK

a ||5||a , k= 0,1,2,... .

Thus AB « (I ,1 ) and ||J4B|| < I U N ||s|| . The associative law

follows, for, if A = (ank), B = (b^), C= (o^) e d^T-J ,

{(AB)C) , = Z (AB) . 8.,nk . . nv xkv=0

= Z c , (I a . b..)
i=0 ^ 3=0 n3 3%

= E a . ( Z b.. c . ,
j . = 0 «J i=0 31- ^

= Z a . (BC) .,

It remains to prove that (t 3l ) is complete under the norm defined by

(3.1). To see this, let {A } be a Cauchy sequence in (I ,1 ) where
a a

A = (a. . ), ijj = 0,1,2,,... . Since {A } is Cauchy, for any e > 0 ,
I'd

there exists a positive integer n such that for m,n 2 n ,

\\A -A || < e .

That is sup Z \a.. - a.. | < e
j>0 i=0 V3 %0

Thus for a l l i,g = 0,1,2,..,,
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\a..(m) -a..M\ <e , m,n > n .

Hence a.. — > a. ., n — > °> , i,j = 0,1,2,,.., since K is complete.

Consider the matrix A = (a..), i,3 = 0,1,2,.., . For all j = 0,1,2,...,
^3

\ \a,.M\a * \ \ A M \ \ a ±Ma ,n,k = 0,1,2,...,
i=0 %3

where M = sup \\A | | . Allowing n —> °° , we have ,
n>0

k

i=0

Allowing k — > °° ,

Z \a \a s Wa , j.k = 0,1,2,... .
%3

I \a..\a < W" , 3 = 0^,2,...,

which shows tha t A e (I ,1 ) . Again for a l l j,k = 0,1,2,...,

\ \ a . . ( m ) - a . . ( n ) \ a < z a , m , n > n .

For n S n , allowing m —> «> , for a l l j,k = 0,1,2,...,

\ \ a . . - a . . ( n ) \ a < e a .
i=0 z* ™

Now, allowing k —> °° , we have, for a l l j = 0,1,2,, . . ,

Z | a . . - a..(n)\a <ea,n>n .
i=0 ^ ^ °

That is, Sup ( E \a. .- a. . ( n ) \ a ) 1 / a < e , n > n .
i=0 ^ ^ °

That is, | \A - A\ I < e , n > YIQ ,

which shows that A — > A , n — > °° .

The Mercerian theorem mentioned is the following.

THEOREM 3 . 1 . When K = Q , the p-adic field for a prime p , if

yn = xn + ^Pn(^o+
X

1+---+X
n> "*& <2/n>

 e l
a > then {a^} e l^ if
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|X| < (1 -pa)1/a where p = |p| < 1 .
p p

Proof. Since (I ,1 ) is a Banach algebra, if X e Q is such

that |x| < I 1 . I ••, A e (I ,1 ) , then I- XA , where I is the identity
p I I A I I ot oc

matrix, has an inverse in (I , I ) . The matrix of transformation is
a a

I + XA where

A E

1 0 0 0 . . .

p p 0 0 . . .

2 2 2
0 • • •

We note that A e (I ,1 ) with I U| I = . Then I + \A has an

inverse in (I ,1 ) if |x| < (1- p a) 1 / / a . Since y = (I + \A)x where

y = {y-,} , x = {x, } and lower triangular matrices are associative, it

follows that (1+ XA)~1y = x . Since y e I and (1+ \A)~ e ^a'
lJ '

it follows that x e I
a

The proof of the theorem is now complete.

4. A Steinhaus type theorem for I .

Theorem 4.2 to follow is a Steinhaus type result proved using the

characterization of (I ,1 ) in Theorem 2.1. We write A e. (I 3l jP) if

A e (I ,1 ) and Z (Ax) = I x,,x= {x,} e Z ; A e (I ,1 ;P) ' if

•4 e (I ,1 jP) and a , — > 0., k — > °> , n = 0,1,2,.... It is easy to
Ct Ct YlK.

check that A e (I ,1 ;P) if and only if A e (I ,1 ) and E a 7 = 1 ,

fc = 0,1,2,... .

THEOREM 4.1. If A e da,la) such that a , — > 0, k — > <» ,
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Infinite Matrices 171

n = 0,1,2,... and ,vn Z \a A > 0 , then there exists a sequenceK~*° . n nK
n=0

x = {x, } e I., 6 > a, Ax = {(Ax) } / I .
K p n ot

Proof. By hypothesis, for some e > 0 , there exists a subsequence

{k(%)} of positive integers such that

1 \a , /.A
a > 2z , I = 1,2,... ,

n=0 n,kM I

In particular,

I |a | a > 26 .
n=0 *

Choose a positive integer n(l) such that

CO -1

I I ̂
2 I & 1. /11 I < m i r i

n=m(l)+l '
so that

n(l)

n=0

More generally, having chosen the positive integers k(j), n(j), j :£ m-1,

choose a positive integer k(m) such that k(m) > k(m-l) ,

00 i . ct
Z \a , , , > 2e .
„ ' n,k(m) ' '

n(m-l)

and then choose a positive integer n(m) such that n(m) > n(m-l) ,

£ # 7 • i ^ min (2 « —/ ,
n*n(m)+l

 n'k(m) 2

so that

n(m)

Since K is non-trivially valued, there exists u £ X such that

0 < p = | IT | < 1 . For each i = 1,2,..., choose a non-negative integer

A (i) such that
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X(i)
p

If the sequence x = Ix.,} is defined by

, fc = kit)x, = ir

= 0 , k

f o r '

, I = 1,2,...,

- r

P v=l

since 3 > ct , while,

00

Z \xja -
k=0 K

Defining n = 0 ,

n(N)

1=1

N n(m)
I \(Ax) | a > l

n

1=1

I a k(i)
x
k(i

n=0 m=l n=m(m-l)+l i=l n

N n(m) oo
i 2. | £ a

n=n(m-l)+l i=l n

N Mm)
Z l 1]un kfm)

m=l n=m(m-l)+l *• n>Km>

( u s i n g ( 2 . 2 ) )

1 si,k(m)

(4.1) _
> E e m -

Z \a 7 , / - 1 | a r
n -7*3671 J '

N n(m)
I Z E |a

p a m=l n=n(m-l)+l i n
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We note that

a, n(m)

m=l n=n(m-l)+l i<m n'KUJ m=l

( 4 . 2 ) < I 2~m

Similarly i t can be shown that

m=l n=n(m-l)+l i

Thus i t fol lows from (4.1) t o (4.3) t h a t

n(N) N 7 ,

E \(Ax) T > L I - - | .

Since S — = » , it follows that {(AeJ } / ln .

THEOREM 4.2. (l^l^P)' n (Z ZQj = ̂  , 6 > a .

Proof. Suppose A e (I ,1 ;P)' n (lo,l ), 6 > a . Then
a a pa

^ K J a ^ I ̂  anfel" = 1 ' k = 0,1,2,... so that l™ I \a \a > 1.
n=0 n=0 n-0

By Theorem 4.1, there exists x = {x, } e I such that {Mxj } / I ,
K p ?Z Ot

a contradiction.

Remark 4.1. When K = J? or £ , it was proved by Fridy [3] that

(l^l^P) n (I }l ) = 0 , a. > 1 . This result, as such, fails to hold

when K is a complete, non-trivially valued, non-archimedean field, as

the following example shows. Let K = Q, and A = (a ,) where

ank = l(l)n > ">* = 0,1,2,... .

71—U YI=U

so that i4 e (liyln;P) ; but, for a > i , if x = {#7} e I ^
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OO CO 00

Z (Ax) \.= Z I Z a

7 7 v>

|f rf;n|

iCj, —> 0 3 k —> oo and so £ x, converges as K = <J, i s complete) .

Thus 4 e (I >1J a l s o ,
a j

Remark 4.2. (I ,1 ;P) n (I ,1 ) = 0 where X is the space of all

bounded sequences with entries in K . For, if A e (I ,Z ;P) n (1^,1 ) ,

then i4 e fZ ,Z :P) ' n ('Z., Z ̂  B > a , a contradiction.
Ct 01 p Ot

Remark 4.3. Virtually by following the proof of Theorem 4.1, we

can show that given any matrix A e (t 31 ;P) , there exists a sequence of

0' s and 1' s whose 4-trans form is not in I . This is analogous to

Schur's version of the well-known Steinhaus theorem for regular matrices

(see [70], when K = JR or € and [S] when K is a complete, non-

t r iv ia l ly valued, non-archimedean field).
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