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Restricted Radon Transforms and
Projections of Planar Sets

Daniel M. Oberlin

Abstract. 'We establish a mixed norm estimate for the Radon transform in R? when the set of directions
has fractional dimension. This estimate is used to prove a result about an exceptional set of directions
connected with projections of planar sets. That leads to a conjecture analogous to a well-known con-
jecture of Furstenberg.

1 Introduction

For each w € S, fix w* with wb | w. Define a Radon transform R for functions f

on R? by
1

Rf(t,w) = | fltw+swh)ds.
—1

Suppose 0 < o < 1 and fix a nonnegative Borel measure A on S! which is a-dimen-
sional in the sense that A(B(w, §)) < 0% for w € S'. We are interested in mixed norm
estimates for R of the following form:

o (] i) aw] " < i1,

Here are some conditions that are necessary for (LI)): testing on f = xp(0.5) shows
that

2 1
(1.2) —<1+-;
P s
if there is wy € S' such that A\(B(wp, §)) = §¢ for small positive §, then testing on 1

by J rectangles centered at the origin in the direction wy- gives

1 1 «o

—< -+

p s q

if the Lebesgue measure in S' of the §-neighborhood in S! of the support of X is
< 6172, then testing on unions of 1 by § rectangles in the directions of the support
of A gives

(1.3)

(1.4) — <
p

Our first result is that these necessary conditions are almost sufficient.

11—« 1
s
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Theorem 1.1 Suppose p,q,r € [1,00] satisfy the conditions (L.2), (13D, and (L4)
with strict inequality. Then the estimate (1)) holds.

Now suppose that 4 is a nonnegative Borel measure on R%. If w € S!, define the
projection (i, of 11 in the direction of w by

/ ) dpaly) = / fx-w) du(o),
R R2

where x - w denotes the inner product in R?. Fix a € (0, 1) and suppose that \ is an
a-dimensional measure on S'. Then for € > 0 there is C = C(¢) such that

d\(w) <Clo)

st |w-wolrme ™

for all wy € S'. The computation

du,(y1)dpy,
R e =
st s ety |1 — 2

/ / d\w)  dplx)du(x;)
R Jre Jo |w - =20 | — x| e

=z

< C(O)Ia—e(p)

is due to Kaufman [2]. Refining an earlier result of Marstrand [3], it shows that if
E C R? has dimension 3 < 1 and p,,(E) is the projection of E onto the line through
the origin in the direction of w, then

(1.5) dim{w € ' : dim p,(E) < a} < o,
whenever o < . (In this note “dim” stands for Hausdorff dimension.) In particular,
(1.6) dim{w € S' : dim p,(E) < B} < 8.

The next theorem, whose analog for Minkowski dimension is trivial, complements

Kaufman’s results (T.5) and (L.6):
Theorem 1.2 IfdimE = (3 < 1, then

(1.7) dim{w € S : dim p,(E) < 8/2} = 0.

The estimates (L.6) and (L.7) lead naturally to the conjecture thatif « < 8 < 1,
then
(1.8) dim{w € §' : dim p,(E) < (a + B8)/2} < a.

One may view this conjecture as an analog of the following conjecture of Fursten-
berg: for 0 < o < 1, a Furstenberg a-set is a Borel subset of R? which contains
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for each w € S! an a-dimensional subset of some line parallel to w. Furstenberg’s
conjecture is that Furstenberg «-sets have dimension at least (3a + 1)/2. It is shown
in [5]] that there exist Furstenberg a-sets having dimension (3 + 1)/2 and that any
Furstenberg a-set has dimension at least min{2«, (a+1)/2}. In the analogy between
the two conjectures, (L.3)) is the analog of the 2« lower bound for the dimension of
Furstenberg sets and (I.7) is the analog of the (« + 1)/2 lower bound. Inequality
(L8) with 8 = 1 would imply the Furstenberg conjecture for a certain class of model
Furstenberg sets. The link between Theorems [[T] and [T2]is the fact that formally
How = RM( : 7(4)).

2 Proof of Theorem[1.1]
The lines bounding the regions defined by (I.2)) and (T4) intersect at

(33 = (e sa):

Then equality in (L.3) gives é = 11—, so the important estimate is an

L1+a N L1+a(L(1+o¢)/(l—a))

estimate. Easy estimates combined with an interpolation argument show that Theo-
rem [LTlwill follow if we establish (ILI)) for f = xg and a collection of triples (p, g, 1)
which are arbitrarily close to (1 + a, 1 + o, (1 + «)/(1 — «)). Standard arguments
then show that it is enough to prove that if Ryg(¢,w) > p for

(t,w) € F={(t,w):w € At € Blw) C [-1,1]},
where there is some B such that B < m;(B(w)) < 2B for w € A, then
[P A(A)PI1BP/S < C(8) my(E)

if
at+da+1 a+da+1
=——— g=a+da+l, s=—————
da+1 da+1—«

for small 6 > 0.

For each w € A let E(w) = {tw +swt € E:t € Blw),s € [—1,1]}. Since
Rxg(t,w) > pand m;(B(w)) > B, it follows that
(2.1) my(E(w)) > pB.

Using the change of coordinates x — (x - wy, x - w;), one can check that

2
(22) ma (E(wn) N E(wy) § ——.
|wr — wy
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We will bound m,(E) from below by using

N N
(23) ma(B) = mo( U Bwy)) = > ma(B@) = > m(Ew)) 0 Ewy)
1

= j=1 1<j<k<N
for appropriately chosen w; € A. Fix, for the moment, a small positive number 7 and
consider a partitioning of S! into intervals of length about 7. Since A(B(x,r)) < r%,
the A-measure of each of these intervals is < n®. So at least, roughly, n7“A(A) of

them must intersect A. Thus it is possible to choose N ~ n~*X(A) points w; € A
with |w; — wk| Z n|j — k|. Then for any 6 > 0

1 1
< g1 < —1N1+(5
§ ~ N § : ~ N
|wj — wil |7 — K]

; wj ;
1<j<k<N 1<j<k<N
and so, by (2.2)),

24) > my(Ew)NEw,)) <CBy~'N'" < C BN /oN)~e,
1<j<k<N

where we have used N ~ n~“\(A). We would now like to choose N such that
(2'5) 2C1 B2N1+($+1/(‘MA(A)—1/(I S N'U/B S 3C1 BZN1+($+1/(J/)\(A)—1/O¢
or

-1 l/ay a/(ba+1)
1B~'A(A) ) N

2.6 37&/(1+6(¥) (
(2.6) C,

< y—o/(i+ba) ( MB_l/\(A)l/”) o/ (Ga+)

G
This will be possible unless B~ ' A\(A)"/* < 1, in which case

o/ Ber+D) p=a/(Ga) y (4)1/Gackl) < 1
so that the desired inequality

(27) MQ(E) > Iu(a+6a+l)/(5a+l))\(A)1/(6a+1)B(6a+170¢)/(5a’+1)

follows from m;,(E) > B unless F is empty. Now (with N chosen so that ([2.5]) and

(Z29) are valid), 23], 2.1, 4), and the left member of (Z.5) give m,(E) = NuB.
Then the left member of (2.6) gives (Z.7) again. [ |
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3 Proof of Theorem[1.2]

For p > 0, let K, be the kernel defined on R? by K,(x) = |x|™"xs(o,r) (x), where
R = R(d) is positive. Suppose that the finite nonnegative Borel measure v is a
~-dimensional measure on R? in the sense that v(B(x, §)) < C(v)é” for all x € R?
and § > 0. If p < 1, it follows that v x K, € L>°(R?). Also v * K, € L'(R?) so long
as p < d. Thus, for e > 0,

1
(3.1) y*K,,ELP(]R{d),p:*y+E(d—’y)—e

by interpolation. The following lemma is a weak converse of this observation.

Lemma 3.1 If B0 holds withe = 0 and p > 1, then v is absolutely continuous with
respect to Hausdorff measure of dimension -y — € for any € > 0. Thus the support of v
has Hausdorff dimension at least ~y.

Proof Recall from [} p. 140] that for s € Rand 1 < p,q < oo the norm | f{[;, , of a
distribution f on R? in the Besov space Bj, , can be defined by

> 1/q
1 £llpg = 1% Fllscun + (3@ 6k % Fllua)?)
k=1

for certain fixed ¢ € S(RY), ¢ € C?O(]R{d), and where ¢(x) = 2K (2kx). If v % K, €
LP(RY), then [|v % xpo5 llrrrey < 6°. It follows that [[v]|5, < coifs < p—d =
(y—d)/p’. Now fort > 0and 1 < p’,q’" < oo, the Besov capacity A; ,/ - (K) of a
compact K C R? is defined by

Avprqr(K) = inf{||f|l5 0+ f € CZRY), f > xx}.
It is shown in [4, p. 277] that A, ;/ o/ (K) < Hg—pr(K). Thus it follows from the
duality of B}, ; and B/, that

V(K) S Vg A=spr g (K) S Harspr (K) = Hy—(K)
ifs=(y—d—e)/p'. [ ]

Now suppose that y is a nonnegative and compactly supported Borel measure on
R? which is 3-dimensional in the sense that ;(B(x, §)) < 7. If the radii R(1) and
R(2) (in the definition of K,,) are chosen so that R(1) = 1 and R(2) is large enough,
depending on the support of y, then one can verify directly that

2R(2)

Lo * K(p—1)(£) S / /L*Kp(tCU‘f'SUJJ')dS.
—2R(2)

If p, g, s are such that (T.I) holds and if p = 5+ (2 — 8)/p — ¢, so that (B.I]) implies
that 1o K, € LP(R?), then a rescaling of (LI)) gives

(3.2) ) [l s * K(p,l)”qs(R) d\(w) < oo.
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If we could take (p,q,s) = (1 +a,l+a,(1+a)/(1-— a)) and € = 0, then
would yield
Il s KTHEI%/(l—u)(ug) dA(w) < oo
Si
with 7 = (1 — a + af)/(1 + «). Adjusting for the fact that (3.2)) actually holds only
for (p, q,s) close to (1 +a,l1+a,(1+a)/(1 - a)) and with € > 0, it still follows
that

[ s K ) < o0
1

withT = (1—a+af)/(1+a)—eforany e > 0. Withv = p, p = (1+a—e)/(1—a),
and d = 1, Lemma[3.lthen shows that for any € > 0 the Hausdorff dimension of y,,’s
support exceeds [3/2 — e for A-almost all w’s. Since this is true for any a-dimensional
measure A and for any « € (0, 1), it follows that

dim{w € S' : dim p,(E) < 3/2} =0

as desired. [ |
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