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Abstract

If "^^(respectively, 0) denotes the class of all completely simple semigroups (respectively, semigroups
that are orthodox unions of groups) then ^"(respectively, 0) is a variety of algebras with respect to
the operations of multiplication and inversion. The main result shows that the lattice of subvarieties of
<69'\l 0 is a precisely determined subdirect product of the lattice of subvarieties of #5" and the lattice
of subvarieties of <S. A basis of identities is obtained for any variety ~f<z ^ y v 0 in terms of bases of
identities for *"n #5" and •fn 0. Several operators on the lattice of subvarieties of VSfv 0 are also
introduced and studied.

1980 Mathematics subject classification (Amer. Math. Soc): 20 M 07, 20 M 10.

1. Introduction

A semigroup is said to be completely regular if it is a union of groups. The class
<€<% of all completely regular semigroups, considered as algebras with the binary
operation of multiplication and the unary operation of inversion within each
subgroup, is a variety determined by the identities

(1) x(yz) = (xy)z, x = xx'xx, (x"1) = x, xx~l = x~lx.

Considerable progress has been made in recent years in the investigation of
various sublattices of the lattice ££C$&~) of all subvarieties of <€^. The most
complete answer has been obtained for the lattice of subvarieties S'(SS) of the
variety 38 of all bands (that is, semigroups of idempotents). This lattice is
completely known on account of the work of Birjukov [1], Fennemore [2] and
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U) Varieties of completely regular semigroups 373

Gerhard [3]. The lattice &(&) of all subvarieties of the variety ^of all groups is,
of course, part of the picture and, though extensively studied, is not and cannot
be expected to ever be completely determined. Pressing on from the lattice of all
varieties of groups, Petrich [9] determined the lattice of subvarieties of the variety
of orthodox bands of groups as the direct product of &(&) and &(3&\ (Recall
that S is orthodox if e, f e S, e2 = e and/2 = /imply that (ef)2 = ef and that S
is a band of groups if S is completely regular and Jf? is a congruence.) Gerhard and
Petrich [4] have completely determined (modulo the lattice of varieties of groups)
the lattice of varieties of orthodox completely regular semigroups for which the
subsemigroup of idempotents is regular (axya = axaya).

The lattice SPiW) of all subvarieties of the variety "g^of all completely
simple semigroups turns out to be surprisingly complicated, but much is now
known about this lattice; see for example Jones [8], Petrich and Reilly [15], [16],
[17] and [18] and Rasin [19].

A completely regular semigroup S is said to be pseudo-orthodox if eSe is
orthodox, for all e2 = e e 5.

The variety of all pseudo-orthodox completely regular semigroups is denoted
by &0 and the variety of all pseudo-orthodox bands of groups is denoted by
@<!)@<$. Recently, Hall and Jones [6] showed that «\$"V 96 = BOSS'S. Indepen-
dently, Hall and Jones [6] and Rasin [20] have shown that the latticeSe^SPV 3S)
of all subvarieties of VSfv SSisa. subdirect product of &{<£&) and^C(^).

If we let 0 denote the class of all orthodox completely regular semigroups and
let / denote the class of all completely regular semigroups S such that a, b e S
and p in the subsemigroup of S generated by the idempotents implies that
apbJCapp~xb, then Hall and Jones [6] also establishes that

where iPO is the variety of all pseudo-orthodox completely regular semigroups.
In the main result of this paper, it is shown that the lattice of subvarieties of

VS? V 6 is a (precisely determined) subdirect product of &{<€£?) and S£{6). It is
further shown that every element Vof this lattice is the intersection of certain
varieties related to iTi Wand TTn 0 together with 0>G. From this it is possible
to obtain a basis of identities for / I n terms of bases for y~n ^^and V n 0.

In Section 6, the operator & is considered in some detail. For instance, its
behaviour on &(&$) is completely determined and it is shown to be an endomor-
phism of & {&G38<$).

One operator on classes of completely regular semigroups that plays an
important role thoroughout is defined on any such class Jf by (Jf) + = {S e c€^:
there is a congruence p on S such that p QJP and S/p e Jf). It is shown, for
instance, that / = 6+. Another operator is defined on each class Jf by (Jf)p =
( 5 € <#&: there is a congruence p on S such that p n Jt?= i and S/p e jf}.
Various relationships between these operators are considered in Section 7.
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2. Background

We adopt the notation and terminology of Howie [7], to which the reader is
referred for basic information. However, we will use the term completely regular to
describe any semigroup which is a union of groups. The following result due to
Clifford is the cornerstone of the whole theory.

THEOREM 2.1 [7]. If S is a completely regular semigroup then S is a semilattice of
completely simple semigroups: that is, S = \J{St: i e / } where I is a semilattice, the
Sj are disjoint completely simple semigroups and StSj c Stj.

We will refer to the subsemigroups S, of S in Theorem 2.1 as the completely
simple components of S.

The following notation will be convenient.

&~— the variety of one element semigroups.
&€— the variety of semilattices.

JT38 — the variety of normal bands.
31 — the variety of bands.
& - the variety of groups.

— the variety of semilattices of groups.
— the variety of completely simple semigroups.

0 - the variety of orthodox completely regular semigroups.
— the variety of bands of groups ( = completely regular and 3tf a

congruence).
— the variety of those bands of groups such that S/3f e <% e jSf(^).

JfSS'S — the variety of normal bands of groups.
&<%'& — the variety of orthodox bands of groups.

QJ/'SS'S — the variety of orthodox normal bands of groups.
— the variety of completely regular semigroups.
— the variety of all subvarieties of the variety ^~.
— the set of idempotents of the semigroup S.

(E(S)) — the subsemigroup of S generated by E(S).

[ua = va: a e A]— the variety of all completely regular semigroups satisfying
the identities ua = va (a e A).

x° = xx'1, for any x e S e V9i.

Particularly noteworthy among the relationships between the above varieties is
the following.
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[41 Varieties of completely regular semigroups 375

LEMMA 2.2 [11]. Jf9S<$ = <€Sf V Sf>£.

A basis of identities for most of the varieties listed above can be found in
Petrich [12]. We assume implicitly that every general identity involves n variables.
When we wish to emphasize this we will write u(x1,...,xn) = v(x1,...,xn)
although it should be noted that this does not necessarily imply that all variables
appear on both sides.

The term variety will always mean variety of completely regular semigroups and
the identities (1) are assumed to hold throughout.

The following "inverse of a product" law for completely regular semigroups
will be useful.

LEMMA 2.3 [14]. For any elements a, b of a completely regular semigroup,
(ab)'1 = (ab)%-\bafa-\ab)°.

It is well known [7] that if 0 is an equivalence relation on a semigroup S then
there is a maximum congruence p on 5 contained in 0. We denote by jus the
maximum congruence contained in Green's relation Jrif.

A congruence p on S is said to be idempotent pure if and only if e2 = e and
(e, a) e p implies that a2 = a. Clearly a congruence p on a completely regular
semigroup is idempotent pure if and only if p n Jf= i. Also, if p, (/' e / ) are
idempotent pure congruences, then so is V{p,: i e / } .

Since every completely regular semigroup is regular (in the sense that a e aSa,
for all a e S) we have

LEMMA 2.4 [7]. Let p be a congruence on S e <€& and a e S be such that
ap G E(S/p). Then ap = ep, for some e e E(S).

If p is a congruence on a subsemigroup T of a semigroup S, then we will denote
by p* the smallest congruence on S which contains p.

LEMMA 2.5 (Hall and Jones [6]). Let S & ^9t, e e E(S) and p be a congruence

on eSe. Then

(ii) if p is idempotent pure, then so is p # ,

(iii) / / pe is an idempotent pure congruence on eSe for each e e E(S), then

p = V{pf: e G E(S)} is an idempotent pure congruence on S.

If <% is a variety and S e WSf, then the minimum ^-congruence on S is the

smallest congruence p on S such that S/p e 01.
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One of the important features of orthodox semigroups is that for any orthodox
semigroup S there is an idempotent pure congruence p on S such that the
idempotents in S/p commute (see [7], ch. VI). If S is completely regular, then S/p
is completely regular with commuting idempotents, and so is a semilattice of
groups. Thus we have

LEMMA 2.6. For any S e 0, the minimum Sft'^-congruence is idempotent pure.

Since orthodox semigroups are central to our discussions, we will need some
further basic facts about them.

LEMMA 2.7 [7]. Let S be a completely regular semigroup. Then S is orthodox if
and only if every completely simple component of S is orthodox.

LEMMA 2.8 [7]. Let S be an orthodox semigroup, a e S and a' be an inverse of a.
Then a'E(S)a c E(S).

LEMMA 2.9. Let S be a completely simple semigroup. Define a sequence of subsets
of S inductively as follows:

' EnEn if n + 1 is even,
El E(S), En + l | | x - y x e S j e £ j ifn + lisodd.

Let N = U{ En: n = 1,2,3,...}. Define the relation p on S by

(2) (a,b)(E p~ a0 = b°andab-1 ^ N.

Then p is the smallest congruence on S such that S/p is orthodox.

PROOF. If e e En n E(S), then e = ee = e~lee e En+1 so that E(S) c En, for
all n. Also, if x e En then x = x°x = (x0)"1**0 e En + 1 so that En c Em, for
n < m. Hence N is clearly a subsemigroup of 5. A simple induction argument
using Lemma 2.3, will show that N is closed under inversion (x -» x'1) while, by
construction, N is closed under "conjugation" (y -» x~lyx). For each e e E{S),
let Ne = HeC\ N. Clearly Ne is a normal subgroup of He. From this it is clear that
p is an equivalence relation on S. Now let (a, b) e p and x be any element of S.
Let a = nb, n e Ne, e = a0 = b°. Then axJfbx, n{bx)03Vax, n(bx)° e N and
ax = nbx = [n(bx)°]bx, so that (ax, bx) e p. Also

xa = xnb = xn°nb

= (xn°)n(xno)°b

= (xno)n(xnoy\xn°)b

= (xn°)n(xn°ylxb (since/?0 = b°)
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where xaJffxb, (xn0)n(xn0)-1J?'xn0J(rxb and (xn°)n(xn°y1 e N. Hence
(xa, xb) G p and p is a congruence.

Now, for any e,f^E(S), ef & N so that (ep)(/p) = (e/)p = (e/)°p G
E(S/p). Thus, by Lemma 2.4, S/p is orthodox. On the other hand, let a be any
congruence on S such that S/a is orthodox. A simple induction argument
together with Lemma 2.8 shows that for all n G N, (n, n°) G a. Hence for
(a, b) G p, say a — nb where n e N D i/e and e = a0 = b°, a = nban°b = b.
Thus p c a, as required.

DEFINITION 2.10. Let JTbe any property of completely regular semigroups
(respectively, class of completely regular semigroups). Then a completely regular
semigroup S is said to be pseudo-Jf if eSe has the property Jf (respectively,
eSe G JT) for all e G £(S). The class of all pseudo-Jf completely regular semi-
groups will be denoted by ^JT.

Although this concept had appeared earlier in the context of pseudo-varieties of
finite languages and automata, its importance in the context of varieties of
completely regular semigroups was established by Hall and Jones [6]. We gather
here some basic facts about 9 and we study & in greater depth in Section 6.

The following observations are elementary:

while, for any <V, f e

(3) 0>0>{<>u

More surprisingly, we have

LEMMA 2.11 [6].

Thus (PQ)^ = ^{OSS'S) and we may write simply POGS'Siox this variety.

NOTATION 2.12. For any variety # of completely simple semigroups, we write

« = { S e ^Sf: all subgroups of S lie in % }.

Clearly <% = <& n <& and it follows from Petrich and Reilly [15] that <2C is a
variety of completely simple semigroups. It is easy to see from this that &°U = °U,
for all # G £e{<€Sf). Now, for any # , fG Sei^if), 9tvr= ¥v~Tso that

Combining this observation with the fact that P^if) = <€Sf, we have

LEMMA 2.13. & induces a retraction
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Finally,

LEMMA 2.14 [12]. Ify<= &(<€&) and y= [ua = ua: a G A], then

&r= [ua(x
o

Xlx°,...,x°xnx°) = va(x°Xlx
0,...,x°xnx°):a G A]

= [Mo(jcx1x,...,xxnx) = va(xxxx,...,xxnx): a G A].

In particular, since 0 = [a°b° = (a°b0)0],

= [(xax)°(xbx)° = {{xax)\xbxf)\

3. J^coextensions
In this section we associate with each ^ G SCC^dl) a new variety V + and

consider various properties associated with "f +.

NOTATION 3.1. For any ^ G &($&), let "^+= {S G ^ ^ : S/n e f } .
Clearly 5 G -f~+ if and only if there exists some idempotent separating con-

gruence p o n 5 such that S/p e y. For the special case where y"is a variety of
bands, the variety y + was introduced by Rasin [20].

LEMMA 3.2. For any ^ G &(<£&), r + G &(<€&).

PROOF. Clearly y+ is closed under products and subobjects. Let 5 G y+, p be
a congruence on S and T = S/p. Now (p V /*s)/p c jfr while T/[(p V /is)/p]
= S/(p V j^s). Since S/(p V /x5) is a homomorphic image of S/ns G y , it
follows that T/[(p V ns)/p] G y"so that r G y+.

Some obvious examples of y+ are S? = ^ + , ,?YS?=y<f+,
<^^= ^ ^ + and ®y=®+= ®9+. In fact, for any "̂  G i f ( ^ ) , we have
4^. A less obvious example is provided in Proposition 3.5 below.

The operator (-)+ also determines certain modular sublattices oi£PC$@).

LEMMA 3.3. For any ye. &(<&&), the interval[y, y+] is modular.

PROOF. Let F be the free completely regular semigroup on a countably infinite
set of generators and, for any <% e J?Cg&) let pq denote the fully invariant
congruence on F corresponding to the variety "U. Let Fm =

Let yQ t c y+. Then there exists a congruence p QJffon iy-+ such that
Fy+/p G yc. Ql. Hence p<j/p^-+c JCso that there is an anti-isomorphism of the
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interval \"f, ^ + ] onto a sublattice of the lattice L of those congruences on
that are contained in 3tf. Since L is modular ([7], Ex. II.4.3), so also is [iT,

Let / denote the class of all completely regular semigroups 5 such that

apbJCap°b for all p e ( Es), a, b e S.

THEOREM 3.4 [5]. The class I is a variety of completely regular semigroups and
I n &G = tf^v e.

PROPOSITION 3.5. / = (?+={S

PROOF. Let A denote the third class in the statement of the proposition. That
/ c 0+ is part of Lemma 5.2 of [6]. Let S e 6+ and p be a congruence on S such
that p c Jfand 5/p G (5. Let kerp = {a e 5: apa0}. Since S/p is orthodox,
kerp is a subsemigroup of 5. Let a be the restriction of p to kerp. Then o c /
and (kerp)/o is a band. Hence kerp is a band of groups and since (Es) C kerp,
it follows that (Es) is a band of groups and 0+c. A.

Now letS e A. Since <£s) e 3<9, it follows that

(4) a°pb°J(faopob0 for all/> e (£s>, a, 6 e S.

Hence, for any p e ( £ s ) , a, b e S,

= a(a°pb°)b

Jf ( « ) ( « V i ° ) ( « i ) by (4) and since all bracketed

elements are^f-equivalent

= ap% since e = (a°pobo)° by (4)

as required.

COROLLARY 3.6. (i) 0+n &>& = 0 v ^ 5 " .

(ii) The interval [0,1] is modular.

PROOF. This is immediate from Lemma 3.3, Theorem 3.4 and Proposition 3.5.

Our next objective is to obtain a basis of identities for ~T + in terms of any basis
for -V. Recall that we are assuming throughout the identities (1) so that we are
only listing those identities required in addition to (1). We require some pre-
liminary observations.
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LEMMA 3.7 [7]. Let p0 be a reflexive symmetric relation on a semigroup S. Let p
consist of all pairs (a, b) such that there exist st, f,, />,, q{ e S1 with (pt, <?,) G p0

(i = 1, . . .,n) and

a = s1p1t1

(5) s2q2t2 = s3p3t3

Then p is the congruence on S generated by p0.

LEMMA 3.8. Let *~= [ua = c a : a G ^ ] e &(<&&) and S G <€®. Let p0 be the set
of all pairs (p, q) G S X S such that for some flx,..., a „ G S, a e A either

(i) p = q or (ii) p = ua(av... ,an) and q = vj.a^... ,an) or (iii) p =
va(al,...,an)andq = ua(av...,an).

Then p, as defined in Lemma 3.7, is the smallest congruence on S such that
s/p G r.

THEOREM 3.9. Let V= [ua = va: a G A] e ^ ( ^ ^ ) . Then

(6) ir + = [uo = uo, (XUa>,)° = (^ a ; ; )
0

: a e

PROOF. Let W denote the right-hand side of (6) and let S e f + . Then there
exists a congruence p on 5 such that p c jfand S/p G y . Therefore, for any
a, «!,...,an, 6 e 5,

so that

(aua{al,...,an)b,ava{al,...,an)b) G p c jf.

Hence S satisfies (xuay)° = (xvay)° and, similarly, w° = u°. Thus f" + c # .
Now let S G ^"and let p0 and p be defined as in Lemma 3.8, so that S/p G -f.
Let (a, b) G p and $,., r,-, p,, ̂ , G S, with (j?,, ^ ) G p0, satisfy (5). Since 5' e TT",
siPiti^'si<lit^ f o r ^ '• Hence aJ^fc, p cjffand S e f + . Thus T^ + = TT, as
required.

Theorem 3.9 can be used to obtain bases of identities for the examples of "T +

given after Lemma 3.2, but these are all well known. However, in [6], / = 0+ was
shown to be a variety by exhibiting an infinite basis of identities satisfied
precisely by the members of /. Using Theorem 3.9, a much simpler basis can be
obtained as follows.
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1101 Varieties of completely regular semigroups 381

COROLLARY 3.10. / = [(xa°b°y)° = (x(aob°)°y)0].

PROOF. Since, by Proposition 3.5, / = (P+, it follows from Theorem 3.9 and
from 0 = [a°b° = (a0*0)0] that

/ = [(aV)° = {(aob°)°f, (xaob°y)° = {x(a°bo)°y)°]

since the first identity is trivial.

Hall and Jones [6] showed that 0>Q@<3'= ^ y v 3, while Rasin [20] and Hall
and Jones [6] independently have completely determined the lattice £P(%l£P\/ 38)
( = £e(@<S38<3)) as a subdirect product of ̂ {^y) and^C(^). In this section we
extend this result by showing tha.tSC(0+n £P@) is a subdirect product of

As a first step we show that the lattice £P{®+C} £PG)) is generated by the
blattices^f(^y) and.£?(0).
The first observation is drawn from [6].

PROPOSITION 4.1. (i) For any y"e £C(0+n 9><9), T= (T^n <g^>) V (iTn 6) (ii)
for any r<= <e(@Q38<0\ T̂ "= ( m «75") V

PROOF, (i) Let ~Te SC[0+n 0>Q]. By Corollary 5.5 of [6], r= (-TC\ 0) V ( f n
. But by Equation (6) of [11],

) x ) ( ( r ^) n

Hence ^ = (YT\ 6) V
Part (ii) is a part of [6], Corollary 5.7.

Next it will be shown that for every variety J( of completely simple semigroups
there is a largest variety of completely regular semigroups the completely simple
members of which are precisely the members of Jt. A basis of identities for this
variety will be given in terms of any basis

NOTATION 4.2. For any variety^of completely simple semigroups, let
J(* = { S e mtft: every completely simple component of S lies inJt}.

It is clearly the case that for any ^ G &{<£&), r<z (YT\
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NOTATION 4.3. For any identity u = v in the variables x1 ; . . . ,xn (so that each xt

appears either in u or v or both) let u* = v* denote the identity u(xf,... ,x*) =
v(xf,...,x*) where xf = e,x,e,, ei = (JCJ.JC1JC2 • • • xnx,)°. Note that all variables
appear on both sides of u* = v*. For arbitrary elements a, (i = \,...,n) of any
completely regular semigroup, we give the notation af the analogous interpreta-
tion.

THEOREM 4.4. Let J( = [ua = va: a e A] be a variety of completely simple
semigroups.

is the largest variety of completely regular semigroups such thatJ(* C\

PROOF. It follows immediately from the definition of J(* HasxJt* n <€&= J(.
Let 'W denote the class described in (ii) and let S e Jt*. For any a, G S

(i = 1,...,«), the elements af are in the same completely simple component of S.
Hence, by hypothesis, wa(af,... ,a*) = va(af,... ,a*) or u * ^ , . . . ,an) =
vl(ax,...,an). Thus S <= Wand J(* c #". Conversely, let S e iTand let T be
any completely simple component of S. Since T is completely simple, for any
a1,...,an^T, (atax • • • anatf = af so that

ua(al,...,an) = «a(af,. . . ,a*)

(sinceSeiT)

! , . . . . a , ) .

Hence r e J and S1 G ^#*. Thus #"c ^T* and (ii) holds. In particular J(* is a
variety of completely regular semigroups.

Finally, let f be a variety of completely regular semigroups such that
•f~C\ <€£f= Jt'. Then every completely simple component of ^"must lie in J( so
that y c J(*. Thus^* is the largest such variety and the proof of the theorem is
complete.

Next it will be shown that, modulo some restrictions, the join of any variety of
completely simple semigroups with any variety of orthodox completely regular
semigroups does not contain any new completely simple or orthodox semigroups.
We will need the following useful result due to Jones [9] and Hall and Jones [6]:

LEMMA 4.5. The mappings y"-> oTn <$Sf, ^ - » f n S? and -T-+ rc\ 38 are
retractions of&{<#&) onto&(<€&'),&(&) andSf(^), respectively.
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[121 Varieties of completely regular semigroups 383

COROLLARY 4.6. Let W^Se^S?) and ^ejSf(C) be such that -TQ <V*. Then

PROOF. By Lemma 4.5, ( # V TT) n <r«9p= (<# n «"y) V ( ^ n ^ ^ ) = <# V
n < ^ y ) = <̂  s ince-Tc <2r*.

PROPOSITION 4.7. Let^i^ &(<&&) and * " G :S?(0) fee JMCA that

(7)

( r) n 0 =

PROOF. Let S e ( ' 8 ' V f ) n ( ! i . Then S is orthodox and for some A &<&,
B G y^and subdirect product R Q A X B there is an epimorphism 6: R -> S. Let
the completely simple components of 5 be { Bt: i G / }. For each i G / , let

A{, = {a G / I : (a , Z>) e /?, for s o m e i e i , } .

Clearly yl, is a completely simple subsemigroup of A, for all / G /. Moreover, if
j < / (/', j G / ) then Ai c Aj. To see this, let a G yl,. Then x = (a, b) G /?, for
some b G 5,. Let_y = (c, d) & R where d G fi^. Then x(xyx)0 has second compo-
nent in Bj and first component equal to a(aca)0 = aa° = a. Thus At c ^ as
claimed.

So let r be the strong semilattice (see [7]) of the completely simple semigroups
At where the connecting homomorphism Bi}: At -» Aj for j < j , is the natural
embedding.

Let C = {(/, b) G r X B: for some /, t G yl.( ft G Bt).
Then C is a subdirect product of A and Z? known as the spinedproduct [7].

Let R' = {(a, fe) e C: (a, ft) G /?}. The only difference between R' and R is
that in T (and /?') we consider At and ^4y, for / # 7, as disjoint, whereas inAxB
they are both subsets of A. Thus it is easily seen that R' and R are isomorphic.

From this it follows that 5 is a homomorphic image of R' and therefore of
R'/T, where T denotes the minimum congruence on R' such that the quotient is
orthodox. Our goal therefore is to show that R'/T G •f.

We first construct a congruence on T. For each / G / , let yt denote the
minimum ^-congruence on At (see Lemma 2.9). The y, are compatible with the
structural homomorphisms 9tj in the sense that if a, b G At and (a, b) G y., then
(a^,7, fetf(.y.) G yj. This follows immediately from Lemma 2.9. Hence y =
U{ y,: i G / } is a congruence on T.

Now let 8 be the congruence on C defined by ((a, b), (r, 5)) G S <=> (a, r) G y
and b = s.

Next we claim that 8\R, = T. We postpone the details of the proof of this claim
to Lemma 4.8 below and proceed with the remainder of the proof of the
proposition.
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Now T/y is a strong semilattice of the completely simple semigroups Al/y, with
structural homomorphisms <p,7 induced by the 0^:

{ay)<pij={a0ij)y {a^At).

Hence C/8 is the spined product T/y X B and is a subdirect product of T/y and
B.

As a strong semilattice of the ^4,/y,, T/y is a subdirect product of semigroups
of the form (.4,/y,)0 with possibly one semigroup of the form AJy^ We assume
that B, and therefore also T, is not completely simple. The case when B is
completely simple is similar but simpler. So, assuming that B is not completely
simple, we have that y<fc y. Furthermore, any Ai/yi (respectively, (A^y^0) is
an orthodox completely simple semigroup (respectively, with zero) and so is of the
form G, X Hi (respectively, (G, X H()°, where each G, is a group and each Hi a
band. Then for each /,

G, G <#n S?c rr\ S?c -T,

so that ^,/y, and (v4,A,)° he in ^for all / G /. Hence T/y G *". Since B e f ,
by assumption, it follows that C/8 e y"so that £ ' / T G y^and therefore S e f .

We now complete the proof of Proposition 4.7 with the following lemma.

LEMMA 4.8. 5^ , = T.

PROOF. Since Ai/yi is orthodox for all i, it follows from Lemma 2.7 that T/y is
orthodox and so R'/8 is orthodox.

Let us write 8' = 8\R.. Since R'/8' is orthodox, T C 8'. Now 8 c Jfand so
8' c jf. Hence in order to establish that 8' c T it suffices to show that

(8) W G R', (w, W°) G 8' => (w, W°) G T.

Let w = (r, 5) e /?', r G ,4., j G fi, and (w, w°) G 8'. By the definition of 8, we
must have s = s° and (r, r°) G y(. Let £„ be defined in At as in Lemma 2.9. Then
y, is defined as in (2) and r G En, for some «. We first show that

(9) there exists h G E(Bi) such that (r, A) G R' and (r, /i)T(r°, A).

We proceed by induction on n. If n = 1, then r G £(^ , ) and (r, j ) = (r°, 5°) so
that (9) is satisfied. Now let (9) hold for all elements of En and let r G En+1.

Case (a), n 4- 1 is even. Then En+1 = EnEn so that r = ab, for some a, b G £n.
By the induction hypothesis, there exist h, k G £(#,) such that (a, /i), (b, k) G A',
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(a, h)r(a°, h) and (b, k)r(b°, k). Therefore hk e E(Bt) since B is orthodox and

(r,hk) = (ab,hk)

= (a,h)(b,k)

T (a°,h)(b°,k)

T [(a°,h)(b°,k)]° (since R'/r is orthodox)

= {(a%°)°,hk)
= (r°, hk) (since At is completely simple).

Thus (9) holds.

Case (b), n + 1 is odd. Then, for some a e At, b e En, we must have r = a~lba.
By the induction hypothesis, there is an element k e E(Bt) with (fc, A:) e /?' and
(fc, k)j(b°, k). Let /i e Bt be such that (a, h) <= /?'. By Lemma 2.8, h~lkh e

,), since 5, is orthodox. Then

{r,h~lkh) = {a-lba,h-xkh)

= {a,hy\b,k)(a,h)

T (a, *rV

(by Lemma 2.8, since R'/r is orthodox)

= {a-lb°a,h-lkh)°

= (r°,h'lkh) (since S is completely simple).

Thus (9) holds in this case also and so (9) holds in general. Now let h e E(Bt) be
such that (r, h)r(r°, h). Then, since Bt is orthodox and completely simple

T(r°,so)(ro,h)(r°,s0)

= (r°,s°) = w0.

Thus (8) holds and the proof of Lemma 4.8 is complete.

THEOREM 4.9. The mapping

o)
is an isomorphism of^C(0+r\ SPG) onto the subdirect product

: (i) ̂ "c <^*,(ii
aMi/ (iii) * n ^ c
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and£f(O). Moreover,

PROOF. We first show that J^is indeed a subdirect product. Let (#„ 1Q G ^ ,
/ = l , 2 . I f S G f 1 n f 2 n ^ ^ , then S e f , n "if^c ^ and similarly S <E %
so that ^ i n *""2 n ? y c ^ n #2 and (<&lf -Tx) A (#2, y2) satisfies condition
(i). Conditions (ii) and (iii) are also easily verified so that (<%v ^i) A (<2r2, y"2) e

Now y; c <&'*, / = 1,2, implies that ^ V V2 c <#* V <̂ 2* c ( ^ V ^ 2 ) * so
that (#!, ^ ) V (<&2, t~2) satisfies (i). Condition (ii) is satisfied by Lemma 4.5.
For condition (iii), suppose that ( ^ V <%2) n ®36 = ®38. Then either there exists
an / e {1,2} such that ®38 c <2C, or elseif^'c <&l and ^ J ° c <^ where {/, j) =
{1,2}. In either case, it follows that ®@ c ( ^ V ^2) n ^ ^ . The other possibili-
ties for (<&\ V <2r2) n ^?^can be handled similarly. Thus (<ftlf ^ ) V (*2, ^2) G &
andJ^is a sublattice of Se(<€Sf) x£C(O).

Now, for any <% SLSe(<#£/'), f6j?((!)) we have ( ^ , ^ 0 0) G J^and
^5^, y^) G J^so that the natural projections map J*"onto &(<&y) and
respectively. Thus J^is a subdirect product.

Now define the mapping

Since # V f c <^y v 0= 0+n 0>Q, for all (# , TT) G Jf, it follows that <j> maps
SC(0+n &>0). In addition, it is easily verified that x maps £f(d+n

By Proposition 4.1, <p maps & onto i? (0 + n 0><9). By Corollary 4.6 and
Proposition 4.7, tpx is the identity mapping on J^so that, in particular, <p is
one-to-one. Thus <p is a bijection and, therefore, so also is x a nd <p = x"1- Since
both mappings are clearly order preserving, they must both be isomorphisms.

COROLLARY 4.10. The mapping

is a retraction ofJ?(@+n ^0) ontoJ?(@).

PROOF. Let TT be the projection of J^ontoi?^). Then \p = %"" and is therefore a
retraction.

5. Identities tor£C(0+n 0>&)

In [20], Rasin obtained a basis of identities for any variety i/"mJi('(&>C)<2t'&) in
terms of bases for yr\ ^SfanA ~f~C\ 38. This extended the results of Petrich [10]
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1161 Varieties of completely regular semigroups 387

in which a basis of identities was given for any variety y"G £P(638'&) in terms of
bases for ^ n ^ and iTn St. The main result of this section represents every
variety ^"in JSf ( 0 + n &>(!)) as an intersection of varieties of special form. This is
then used to obtain a basis of identities for ~V in terms of bases for y"n

rc\ o.

THEOREM 5.1. //y~e SC(0+n &>&), then

(10) f +

PROOF. Let ^ denote the class on the right-hand side of (10). Now V c
VSf)* and since *"c 0+n &0, we have f c {fC\ &)+n &0. Therefore

f c -JT.

Now let S G # " . Since S G (*T» (P)+, S/n G iTn (P. Since S e ^<P, by Lemma
2.6, there exists, for all e e £(5), an idempotent pure congruence pe on eSe such
that eSe/pe e y<f^. By Lemma 2.5, p = V{pf: e G £(5)} is an idempotent pure
congruence on S while S/P e JT@<S. First suppose that ^ 7 c iT. Then SftQW
and

s/p e irn ^T^^ = [ ( rn ^TJ1 )̂ n 'g'̂ '] v

= (rn

c (ir
since TTC (orn 'g7^)*. Since fi n p = t, 5 is a subdirect product of 5/ju and
S/p. Hence

S G (-jrn 0) v[(-fn
= (mo)
c r

since we are assuming in this case that.S'Vc i^. Thus 'We. y"and equality holds.
If 6ee% -T, then S/p e r n ^ c ^ n ^5^so that S e ( ^ n C) v (m W
c y"and again ^ "c y ŝo that equality holds in both cases.

Combining Theorems 3.9, 4.4, 5.1 and Lemma 2.14, we obtain

COROLLARY 5.2. Let T^G £f(0+n &0\ let m W= [ua = va: a G A] and let

0=[rp = sp. P G B]. Then a basis for fis given by

u*a = v*a (aeA)

rp° = s° (xrpyf = (xs0y)° (B e B)

(xax) (xbx) = \(xax) (xbx) ) .

Of course, for any variety "TQ @<3, ( iTn 0)+= ( f n @)+ so that Corollary
5.2 can be specialized io££'{@>(!)!%)<8). This we now do taking note of the fact (see,
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e.g., Fennemore [2]) that every variety of bands can be defined by means of one
identity (in addition to a2 = a). This gives a basis of identities very similar to
those given by Rasin [20] in this case.

COROLLARY 5.3. Let y e \9tSS, &>Ci)38'&] and let

8=\r = s,a1 = a].

Then a basis of identities for V is

< = v*a (« e A)

r° = ,° (xryf = («y)°, (xa2y)° = (xayf

) )(xax) (xbx) = [(xax) (xbx) ) .

6. The pseudo operator

In this section we consider the operator & in more detail. The behaviour of 9 is
first determined exactly on J£?(^?) and then shown to induce an endomorphism

Recalling that a monoid is a semigroup with identity, the class WftJt of all
completely regular monoids is a variety (of algebras with a nullary operation). We
denote by £?(<&&J/) the lattice of all subvarieties of

NOTATION 6.1 ([21], [22]). For any f s Se{^^\ let
Mon y = { S e / " : S i s a monoid}.

The next result is essentially covered in Proposition 3.1 and the remarks
following Proposition 3.2 of Wismath [22] (see also [21]).

THEOREM 6.2. The mapping

is a complete lattice homomorphism of SPC&91) onto ££(^!!%J(}. Moreover, the
congruence on y(38) induced by Mon is such that each class is finite and the set of
all the maximum elements from all the classes is a sublattice of

The only part of Theorem 6.2 not covered in [22] is the part concerning the
maximum elements. This follows by simple inspection. The lattice £P(!%I) is
presented in Diagram 1, as determined by Fennemore [2], and the elements that
are maximum in the classes induced by Mon are circled.
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[18] Varieties of completely regular semigroups 389

Diagram 1. The lattice of varieties of bands

LEMMA 6.3. / / >Te :£?(##), then &(-T) =
MomT"}.

PROOF. Let iPToe the largest variety of completely regular semigroups for which
M o n f = MonTT; this exists by Theorem 6.2. If S e TTand e2 = e e 5, then,
eSe G MoniT= M o n ^ c ^ s o that S e ^(oT) and i T c ^ ( ^ ) . On the other
hand, if S e Mon(^(y")), then S e T^and therefore S e Mon(y^). But Mon>^
is clearly contained in Mon(^(y)) so that M o n ^ y " ) ) = Monf. It follows
from the definition of iFthat ^>(ir) c iTand equality holds.

THEOREM 6.4. 27ie operator 0>is an endomorphism on

PROOF. This follows easily from Lemma 6.3 and Theorem 6.2.
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LEMMA 6.5. For ->r<= Se^eSS^)

9>{iT) = &>(ifn 98) v

PROOF. We have^(TT) e <e(0><538<3) by (3), so that

n W\ (by Proposition 4.1 (ii))

v (

PROPOSITION 6.6. & induces a retraction o

PROOF. Let # , ^ G £e(&C)3S<g). Then

= &>([<& V r \ n&) V &>([<% V *~] n VST) (by Lemma 6.5)

(by Corollary 4.5)

(by Lemma 2.13 and Theorem 6.4)
r n l ) v ^ ( ^ n # y ) v &>(fn 38) v ^ ( f n <€y)

y ^(y) (by Lemma 6.5).

The result now follows from (3).

7. Relationships between &, (-) + and (-)p

In this section we introduce a new operator (-)p and obtain some general
relationships between the operators &, (-)+ and (-)p. We require some pre-
liminary observations.

LEMMA 7.1. Let S be a completely regular semigroup, e2 = e e S and p be a
congruence on eSe. / / p c / then p* c 3tiC

PROOF. Let e and S be as in the statement of the lemma. The claim of the
lemma is clearly equivalent to the claim that (juese)

# £ V- and so to the assertion
that fi^eSe = fieSe. But this is true in any regular semigroup by [5, Corollary 6], and
so the result follows.

Recall from Section 2 that a congruence p on a completely regular semigroup S
is said to be idempotent pure if (e, a) e p and e2 = e imply that a2 = a. This
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terminology is consistent with the terminology of [13]. For a completely regular

semigroup S and any congruence p on S, it is clear that p is idempotent pure if

and only if p n Jtf= t.

NOTATION 7.2. For any T^G <?(<$&), let

~fp = ( S e # ^ : S/p G y~ for some idempotent pure congruence p on S} .

In general, irp may not be a variety. However, in some important cases this
will be so (see Corollary 7.4).

PROPOSITION 7.3. For any class Jfof completely regular semigroups (i) &>( Jf+) =
and(ji)9>(Jtrp) =

PROOF. Let S G &>(jf+). Then, for all e e E(S), there exists a congruence pe

on eSe such that pe c j f and eSe/pe e Jf. By Lemmas 7.1 and 2.5, p =
V{pf: e G E(S)} c Jf and S/p <= ^(JT). Thus 5 G (<2»Jf)+ and ^ ( J f + ) c
(^JT)+. NOW let S G (^>jf)+ and p be a congruence on 5 with p c JT and
5/p G &jf. For all e e £(5), let pe = p|e5e. then pe c JT and eSe/pe G JT.
Thus eSe G JT + and S e ^ ( JT+) so that ( ^ J T ) + C 5»( j f +), as required.

The proof of part (ii) is very similar to that of (i).

COROLLARY 7.4. (i) (y<fy = 98. (ii) (Sfe<&y = (P(iii) (^T^1^)'7 = &0.

PROOF, (i) and (ii) are clear. For (iii) we have, by Proposition 7.3,
= PiSTCS*) = &Q. Note that, for any <% G S?(@), we
c (^^^) ' ' so tha t^ > (^) V

The next theorem and its corollaries indicate that certain relationships that
hold when the operators &, (-)+, (-)1" are applied to 0 in fact hold more
generally.

THEOREM 7.5. Let W G .£?( J1), JTG jSf(^^) />e JMC/I

(11)

PROOF. Clearly JTc jT + n ^"jTand 9><%38<g<z ^>jTby (11). Let S e
Then J f i s a congruence on 5 and S/PTe ^ n Pliee^ = &<% c j f so that
S G Jf+. Therefore JfU ^ ^ ^ ^ c Jf+n ^ J f and JfV &0U@<S c JT+n ^Jf.
Now let S e JT+n ^>jr. Then S/fi G jf. Also, for all e G £5, there exists, by
(11) an idempotent pure congruence pe on eSe such that eSe/pe G qt38'@. By
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Lemma 2.5, pf is idempotent pure and also p = V{pf: e G £(S)} SO that
S/p e &<%38<g. Since p n p = t, S c 5//x X 5/p e jTv &><%&&. Thus J f + n
^• JTC j f V ̂ > ^ ^ a n d equality follows.

Theorem 7.5 has some interesting special cases. In applying the theorem, it is
necessary to choose a pair of varieties (<2f, Jf) with ^ £ ^ ? ( f ) and satisfying
(11). Note that if <2c = ^<f, then 0><V*=J\r&, &<% V <%&<$= Jf& V SPt<3 =
6J/*38<gand (Sft<Sy = 0. Thus (11) becomes (P>*^^c JTC 0and we have

COROLLARY 7.6. Lef j f e £?(<&&). If0jV<%<3 c j f c 0, //ie«

(12) j r +

tv/i/7e ifjV38<g c j T c ^ C , then CUT =

PROOF. These results follow by applying Theorem 7.5 to the pairs {S^t,
and (JT38, Jf"), respectively, and invoking Corollary 7.4.

EXAMPLE 1. Let (<%, Jf) = (y«f, (SSS'S). Then J f + =
that from (16) we have @<& n 0>O^^ = C ^ ^ V > " ^ ^ or 0>e9S<S =

V ̂ T^^which is Corollary 5.4 of [6].

EXAMPLE 2. Let (*, Jf) = ( ^ / , <P). Then (12) yields <9+n&>(9=C>v
which, recalling that 0+= I, we see is Theorem 5.3 of [6].
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