Prevalence and relationship of hypertriglyceridaemic–waist phenotype and type 2 diabetes mellitus among a rural adult Chinese population

Yong-Cheng Ren1, Yu Liu2, Xi-Zhuo Sun2, Bing-Yuan Wang3, Yi Liu4, Hu Ni5, Yang Zhao3, Dechen Liu3, Xuejiao Liu3, Dongdong Zhang3, Feiyuan Liu3, Cheng Cheng3, Leilei Liu3, Xu Chen3, Qionggui Zhou1, Ming Zhang1 and Dongsheng Hu1,*

1Department of Preventive Medicine, Shenzhen University Health Sciences Center, 3688 Nanhai Avenue, Nanshan District, Shenzhen, Guangdong 518060, People’s Republic of China: 2Study Team of Shenzhen’s Sanming Project, The Affiliated Luohu Hospital of Shenzhen University Health Sciences Center, Shenzhen, Guangdong, People’s Republic of China: 3Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, People’s Republic of China: 4Publicity Department, Xin An Chinese Medicine Hospital, Luoyang, Henan, People’s Republic of China: 5Public Health Division, Xin An Chinese Medicine Hospital, Luoyang, Henan, People’s Republic of China

Submitted 19 September 2018: Final revision received 17 November 2018: Accepted 8 January 2019: First published online 8 March 2019

Abstract

Objective: Limited information is available on the prevalence and effect of hypertriglyceridaemic–waist (HTGW) phenotype on the risk of type 2 diabetes mellitus (T2DM) in rural populations.

Design: In the present cross-sectional study, we investigated the prevalence of the HTGW phenotype and T2DM and the strength of their association among rural adults in China.

Setting: HTGW was defined as TAG >1.7 mmol/l and waist circumference (WC) ≥90 cm for males and ≥80 cm for females. Logistic regression analysis yielded adjusted odds ratios (aOR) relating risk of T2DM with HTGW.

Participants: Adults (n 12 345) aged 22·83–92·58 years were recruited from July to August of 2013 and July to August of 2014 from a rural area of Henan Province in China.

Results: The prevalence of HTGW and T2DM was 23·71 % (males: 15·35 %; females: 28·88 %) and 11·79 % (males: 11·15 %; females: 12·18 %), respectively. After adjustment for sex, age, smoking, alcohol drinking, blood pressure, physical activity and diabetic family history, the risk of T2DM (aOR; 95 % CI) was increased with HTGW (v. normal TAG and WC: 3·23; CI 2·53, 4·13; males: 3·57; 2·30, 4·92; females: 3·41; 2·39, 4·85). The risk of T2DM with BMI ≥28·0 kg/m2, simple enlarged WC and simple disorders of lipid metabolism showed an increasing tendency (aOR = 1·31, 1·75 and 2·32).

Conclusions: The prevalence of HTGW and T2DM has reached an alarming level among rural Chinese people, and HTGW is a significant risk factor for T2DM.

Keywords

Hypertriglyceridaemic–waist phenotype
BMI
Waist-to-height ratio
Type 2 diabetes mellitus
Public health

Diabetes mellitus became the fourth leading cause of death by chronic non-communicable diseases worldwide in 20121 and its prevalence in China is expected to increase from 98·4 to 142·7 million people from 2013 to 20352. The disease has represented a significant economic burden for public health systems in recent decades, especially in many low- and middle-income countries3. In addition, 69·83 % of type 2 diabetes mellitus (T2DM) cases are estimated to be undiagnosed among Chinese adults4.

Mounting evidence suggests that waist circumference (WC) is a useful and easy-to-measure index for predicting T2DM risk5–7. Some researchers have combined WC with TAG level as a new indicator, named the hypertriglyceridaemic–waist (HTGW) phenotype, for T2DM screening8–10. Although some research has focused on the prevalence11–13 and association14 of HTGW and T2DM, limited evidence exists for Chinese people, especially rural adults.

With the rapid development of the economy and great changes in people’s lifestyle and dietary patterns in rural
areas of China, chronic non-communicable diseases including T2DM and cardiometabolic disorders have been prevalent over the past decade\(^{(2,4)}\). In view of the seriousness of this problem, effective measures are urgently needed to strengthen prevention strategies. However, the density of health-care professionals is lower in rural than urban areas\(^{(14)}\). At present, the prevalence of HTGW and the association between HTGW and T2DM among rural Chinese adults are unknown, so knowledge on the epidemic status of HTGW and T2DM in rural areas of China is needed. In the present study, we investigated the prevalence of HTGW and T2DM among rural adults in China as well as the association of HTGW and T2DM and whether HTGW is a risk factor for T2DM.

Methods

Study design and participants

In the present population-based cross-sectional study, we excluded people who were pregnant, disabled, mentally disturbed, obese (caused by disease) or had cancer. A total of 16,155 participants were recruited by cluster randomization from eligible candidates listed in the residential registration record from July to August of 2013 and July to August of 2014 from a rural area of Henan Province in China. After excluding people with concurrent use of lipid-modified agents (n 1277) and those without complete data for diabetes ascertainment (n 2533), 12,345 participants (7628 females) aged 22–79 years were retained.

Demographic characteristics and health-related behaviours such as sex, age, smoking, alcohol drinking, physical activity, medical history and medication history were collected by face-to-face interviews. Body weight and height were measured twice to the nearest 0.5 kg and 0.5 cm, respectively, with the participant wearing light clothing and no shoes. WC was measured twice to the nearest 0.5 cm by a single examiner who used a standard tape measure placed horizontally 1.0 cm above the navel with participants wearing light clothing and standing. Blood pressure was measured three times for all participants, who were sitting after a rest of 5 min, by use of an electronic sphygmomanometer (Omron HEM-770ARFuzzy, Kyoto, Japan). Overnight fasting blood samples were collected and stored at \(-20^\circ\text{C}\) for measuring glucose and TAG by use of an automatic biochemistry analyser (Hitachi 7600, Tokyo, Japan).

The study protocol was approved by the Ethics Committee of Shenzhen University. All participants provided written informed consent.

Definition of terms

According to the new International Diabetes Federation definition of metabolic syndrome for Chinese people\(^{(14)}\), the HTGW phenotype was divided into four classes: (i) NTGW, i.e. normal TAG level (\(\leq 150\text{mg/dl} (\leq 1.7\text{mmol/l})\)) and normal WC (\(<90\text{cm}\) for males and \(<80\text{cm}\) for females); (ii) NTGW, i.e. normal TAG level and enlarged WC (\(\geq 90\text{cm}\) for males and \(\geq 80\text{cm}\) for females); (iii) HTNW, i.e. elevated TAG level (\(>150\text{mg/dl} (>1.7\text{mmol/l})\)) and normal WC; and (iv) HTGW, i.e. elevated TAG level and enlarged WC.

According to the 2005 American Diabetes Association criteria\(^{(15)}\), T2DM was defined as fasting plasma glucose \(\geq 7.0\text{mmol/l}\) and/or the use of insulin or oral hypoglycaemic agents and/or a self-reported history of diabetes and without type 1 diabetes mellitus, gestational diabetes mellitus or diabetes due to other causes.

BMI was calculated as weight in kilograms divided by the square of height in metres, and classified as normal weight (\(<24.0\text{kg/m}^2\)), overweight (\(24.0–27.9\text{kg/m}^2\)) and obesity (\(\geq 28.0\text{kg/m}^2\))\(^{(16)}\). Waist-to-height ratio (WHtR) was calculated as waist in centimetres divided by height in centimetres, and classified as normal (\(<0.5\)) and abnormal (\(\geq 0.5\))\(^{(17)}\). Smoking was defined as having smoked at least 100 cigarettes during the lifetime; alcohol drinkers were defined as consuming alcohol twelve or more times during the past year\(^{(18)}\). Physical activity level was classified as low, moderate or high based on the International Physical Activity Questionnaire (www.ipaq.ki.se). One or both parents having diabetes was considered a diabetic family history.

Statistical analysis

Categorical data are presented as number and percentage and were compared by the \(\chi^2\) test. Continuous data are presented as median and interquartile range (IQR; because of skewed distribution) and were compared by the Mann–Whitney–Wilcoxon test. Age-standardized prevalence was calculated by using the age distribution of the Chinese population from the 2010 census data. Logistic regression was used to obtain OR, 95% CI and corresponding \(P\) values for T2DM associated with BMI, WHtR and HTGW, with adjustment for potential confounding variables including sex, age, smoking, alcohol drinking, blood pressure, physical activity and diabetic family history. All data were analysed using the statistical software package SAS version 9.10 for Windows. \(P<0.05\) (two-sided) was considered statistically significant.

Results

The general characteristics of the 12,345 participants (4717 males) are presented in Table 1. Overall, 1455/12,345 participants (11.79\%) had T2DM. The prevalence of HTGW, obesity and abnormal WHtR was 23.71, 18.39 and 67.72\%, respectively. Obesity, abnormal WHtR, low physical activity, HTGW and positive family history of diabetes were more frequent among participants with than among
BMI (kg/m²), median and IQR 24.61–24.00
DBP (mmHg), median and IQR 76.67–76.00
SBP (mmHg), median and IQR 123.67–121.33
FBG (mmol/l), median and IQR 5.17–5.67

Male, n
Physical activity, n
Alcohol drinking status, n
Smoking status, n
WHtR category, n
BMI category, n

Table 1 Characteristics of the participants: adults (n 12345) aged 22–83–92–58 years from a rural area of Henan Province in China, 2013 and 2014

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Total (n 12345)</th>
<th>Non-T2DM (n 10890)</th>
<th>T2DM (n 1455)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years), median and IQR</td>
<td>56.62 47.45–65.14</td>
<td>55.88 46.78–64.83</td>
<td>60.61 53.40–67.42</td>
<td><0.0001</td>
</tr>
<tr>
<td>Male, n and %</td>
<td>4717 38.21</td>
<td>4191 38.48</td>
<td>526 36.15</td>
<td>0.0853</td>
</tr>
<tr>
<td>FBG (mmol/l), median and IQR</td>
<td>5.17 4.75–5.67</td>
<td>5.10 4.70–5.49</td>
<td>7.94 6.87–10.14</td>
<td><0.0001</td>
</tr>
<tr>
<td>SBP (mmHg), median and IQR</td>
<td>123.67 112.00–138.67</td>
<td>123.00 111.33–138.00</td>
<td>130.33 118.00–146.33</td>
<td><0.0001</td>
</tr>
<tr>
<td>DBP (mmHg), median and IQR</td>
<td>76.67 69.67–85.00</td>
<td>76.67 69.67–84.67</td>
<td>78.93 71.33–86.33</td>
<td><0.0001</td>
</tr>
<tr>
<td>WHtR, median and IQR</td>
<td>0.53 0.49–0.58</td>
<td>0.53 0.48–0.57</td>
<td>0.56 0.52–0.61</td>
<td><0.0001</td>
</tr>
<tr>
<td>BMI category, n and %</td>
<td><24.0 kg/m²</td>
<td>5427 43.96</td>
<td>4958 45.53</td>
<td>469 32.23</td>
</tr>
</tbody>
</table>
24.0–27.9 kg/m² | 4648 37.65 | 4057 37.25 | 591 40.62 | 0.0016 |
≥28.0 kg/m² | 2270 18.39 | 1875 17.22 | 395 27.15 | 0.0016 |
| WHtR category, n and % | <0.5 | 3985 32.28 | 3741 34.35 | 244 16.77 | <0.0001 |
≥0.5 | 83.60 67.72 | 7149 65.65 | 1211 83.23 | 0.0016 |
| Smoking status, n and %† | Non-smoker | 8952 72.59 | 7846 72.13 | 1106 76.07 | 0.0016 |
Smoker | 3380 27.41 | 3022 27.87 | 348 23.93 | 0.0016 |
| Alcohol drinking status, n and %† | Non-drinker | 10 931 88.67 | 9594 88.23 | 1337 91.95 | <0.0001 |
Drinker | 1397 11.33 | 1280 11.77 | 117 8.05 | 0.0016 |
| Physical activity, n and %† | Low | 5485 48.83 | 4762 47.57 | 723 59.12 | <0.0001 |
Moderate | 779 6.93 | 714 7.13 | 65 5.31 | 0.0016 |
High | 4969 44.24 | 4534 45.29 | 435 35.57 | 0.0016 |
| Family history of diabetes, n and % | 949 7.69 | 776 7.13 | 173 11.89 | <0.0001 |
| Waist/ TAG combination, n and % | NTNW | 4537 36.75 | 4250 39.03 | 287 19.73 | <0.0001 |
NTGW | 3535 28.64 | 3109 28.55 | 426 29.28 | 0.0016 |
HTNW | 13 46 10.90 | 1196 10.98 | 153 10.31 | 0.0016 |
HTGW | 2927 23.71 | 2335 21.44 | 592 40.69 | 0.0016 |

T2DM, type 2 diabetes mellitus; IQR, interquartile range; FBG, fasting blood glucose; SBP, systolic blood pressure; DBP, diastolic blood pressure; WHtR, waist-to-height-ratio; NTNW, normal TAG level (≤150 mg/dl (≤1.7 mmol/l)) and normal waist circumference (WC; <90 cm for men and <80 cm for women); NTGW, normal TAG level and enlarged WC (≥90 cm for men and ≥80 cm for women); HTNW, elevated TAG level (>150 mg/dl (>1.7 mmol/l)) and normal WC; HTGW, elevated TAG level and enlarged WC.
†Data were missing for some participants.

Discussion
In the present study, we found that among adults in rural China the prevalence of HTGW and T2DM has reached an alarming level. We found increased risk of T2DM with obesity, abnormal WHtR, low physical activity, HTGW or family history of diabetes. Of note, the risk of T2DM with BMI ≥28.0 kg/m², simple enlarged WC or simple disorders of lipid metabolism showed an increasing tendency, and the risk was higher with HTGW than with obesity, abnormal WHtR, HTNW or NTGW.

As a specific metabolic abnormality, HTGW was first reported as a marker of atherosclerosis in 2000(39). Studies over the last 16 years have shown that the prevalence of HTGW is increasing substantially(41). Although the age-standardized prevalence of HTGW in China is lower than in Iran (age ≥30 years: 22.06 v. 32.7%)(20), it is higher now than in China in 2013 (age 25–64 years: 22.06 v. 11.79%)(42). As well, our age-standardized prevalence results for T2DM are slightly lower than those from the 2012 national health survey results (9.4 v. 9.7%) but slightly higher than the prevalence in India in 2013 (age 20–79 years:

https://doi.org/10.1017/S1368980019000181 Published online by Cambridge University Press
According to epidemiological studies, HTGW(22,23) and T2DM(1) are both leading causes of death from non-communicable diseases; thus, China is currently facing an epidemiological transition with a double burden of HTGW and T2DM, as we showed. Intervention and screening of HTGW and diabetic high-risk groups have become the key measures to control non-communicable diseases.

BMI and WHtR are significantly associated with risk of T2DM(24,25). Overweight, obesity and WHtR ≥ 0.5 are appropriate for defining the diabetes risk. Also, we found the association to be stronger in participants with abnormal WHtR than in those with overweight or obesity. The association between body weight and T2DM is more properly attributed to the quantity and distribution of body fat, and our research testifies that ‘abdominal obesity is highly correlated with T2DM’(26). From our results, risk of T2DM was higher with HTNW than with abnormal WHtR or NTGW, which suggests that the risk of T2DM was stronger with simple disorders of lipid metabolism than with simply enlarged WC. Among these risk factors, including obesity, abnormal WHtR, HTNW, NTGW and HTGW, the association was strongest with HTGW for males and overall. For females, the risk of T2DM was higher with abnormal WHtR than with HTGW (OR = 1.81 v. 1.78). This result suggests the potential benefits of using HTGW over abnormal WHtR for men only. In a recent cohort study of 2908 Chinese urban adults followed for 3 years, HTGW was associated with a 3.77-fold increased risk of diabetes for males and a 6.08-fold increased risk for females(27). Another 4-year longitudinal study of 2900 Korean adults showed increased risk of diabetes with HTGW (hazard ratio = 4.113; 95 % CI 2.397, 7.059) after adjustment(28), which agrees with our study and a study by Janghorbani and Amini(29). Although previous studies did not mention the direct mechanism of the association between HTGW and T2DM, the underlying mechanism of T2DM caused by HTGW might be that excessive abdominal fat accumulation and elevated TAG level increase the risk of insulin resistance(30–32), and HTGW is associated with overstimulation of β-cell function(33), which contributes to blood glucose metabolism disorder and T2DM.

Although the present study involved 12 345 participants, representing a large population study in a rural area in China, it has several limitations. First, the causal relationship between HTGW and T2DM cannot be concluded because of the cross-sectional study design. Second, participants did not undergo an oral glucose tolerance test, so the prevalence of T2DM might be underestimated. Third, dietary

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Non-T2DM/T2DM (n/δ)</th>
<th>aOR (95 % CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTNW</td>
<td>2261/184</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td>NTGW</td>
<td>664/105</td>
<td>1.37 (0.92, 2.04)</td>
</tr>
<tr>
<td>HTNW**</td>
<td>696/83</td>
<td>1.90 (1.37, 2.63)</td>
</tr>
<tr>
<td>HTGW**</td>
<td>570/154</td>
<td>3.37 (2.30, 4.92)</td>
</tr>
<tr>
<td>Females</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NTNW</td>
<td>1989/103</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td>NTGW**</td>
<td>2445/321</td>
<td>2.01 (1.41, 2.86)</td>
</tr>
<tr>
<td>HTNW**</td>
<td>500/67</td>
<td>3.04 (2.11, 4.41)</td>
</tr>
<tr>
<td>HTGW**</td>
<td>1765/438</td>
<td>3.41 (2.39, 4.85)</td>
</tr>
<tr>
<td>Total</td>
<td>10 890/1455</td>
<td></td>
</tr>
<tr>
<td>NTNW</td>
<td>4250/287</td>
<td>1.00 (Reference)</td>
</tr>
<tr>
<td>NTGW**</td>
<td>3109/426</td>
<td>1.75 (1.36, 2.24)</td>
</tr>
<tr>
<td>HTNW**</td>
<td>1196/150</td>
<td>2.32 (1.82, 2.95)</td>
</tr>
<tr>
<td>HTGW**</td>
<td>2335/592</td>
<td>3.23 (2.53, 4.13)</td>
</tr>
</tbody>
</table>

Fig. 1 Association of hypertriglyceridaemic–waist phenotype with type 2 diabetes mellitus (T2DM) among adults (n 12 345) aged 22.83–92.58 years from a rural area of Henan Province in China, 2013 and 2014. Adjusted OR (aOR; •), with their 95 % CI indicated by horizontal bars, adjusted for age, sex, smoking, alcohol drinking, blood pressure, physical activity and diabetic family history. **P < 0.001 (NTNW, normal TAG level (≤150 mg/dl (≤1.7 mmol/l)) and normal waist circumference (WC; < 90 cm for men and < 80 cm for women); NTGW, normal TAG level and enlarged WC (≥90 cm for men and ≥ 80 cm for women); HTNW, elevated TAG level (>150 mg/dl (>1.7 mmol/l)) and normal WC; HTGW, elevated TAG level and enlarged WC)
intake information was not included in the analysis, so we cannot eliminate its potential effect on the association of HTGW with T2DM. Finally, to have an explicit distinction of the HTGW phenotype, we excluded participants with concurrent use of lipid-modifying agents because of their indistinct dyslipidaemia, which might have underestimated the prevalence of HTGW. We eliminated some treated HTGW cases and reduced observational bias, but the impact of use of lipid-modifying agents on the association between HTGW and T2DM is unclear.

In summary, the prevalence of HTGW and T2DM is relatively high among rural adult Chinese people. People with obesity, abnormal WHtR, NTGW, HTNW or HTGW are all at high risk of T2DM. Early screening is of great significance among these high-risk populations for an early diagnosis and treatment of T2DM. The association between HTGW and T2DM was stable and significant. HTGW might be a simple and effective index for screening for people at high risk of T2DM, and higher-level evidence could be obtained with more cohort study designs.

Acknowledgements

Acknowledgements: The authors express thanks to all the individuals who participated in the study. They are particularly grateful to the doctors and nurses involved in this study for their assistance. They also thank Laura Smales (BioMedEditing) for copyediting the manuscript. Financial support: This study was supported by the National Natural Science Foundation of China (grant numbers 81373074, 81402752 and 81673260); the Natural Science Foundation of Guangdong Province (grant number 2017A03013452); the Medical Research Foundation of Guangdong Province (grant number A201718); and the Science and Technology Development Foundation of Shenzhen (grant numbers JCYJ2014041813562, JCYJ2016030213855721 and JCYJ2017041211053719). The funders had no role in the design, analysis or writing of this article. Conflict of interest: All authors declare no conflict of interest related to this study. Authorship: Y.-C.R., M.Z. and D.-S.H. substantially contributed to the design and drafting of the study and the analysis and interpretation of the data. Yu.L, X.-Z.S., B.-Y.W., Yi.L., H.N., Y.Z., D.-CL, X.-L.L., D.-D.Z., F.-Y.L., C.C., L.-L.L. and Q.-G.Z. revised it critically for important intellectual content. All authors were involved in the collection of data and approved the final version of the manuscript. Ethics of human subject participation: This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all procedures involving human subjects were approved by the Ethics Committee of Shenzhen University. Written informed consent was obtained from all subjects.
References