0-HECKE ALGEBRAS #### P. N. NORTON (Received 8 March 1978) Communicated by D. E. Taylor #### Abstract The structure of a 0-Hecke algebra H of type (W, R) over a field is examined. H has 2^n distinct irreducible representations, where n = |R|, all of which are one-dimensional, and correspond in a natural way with subsets of R. H can be written as a direct sum of 2^n indecomposable left ideals, in a similar way to Solomon's (1968) decomposition of the underlying Coxeter group W. Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 48. #### 1. Introduction NOTATION. $\{i_1, ..., i_s, ..., i_n\}$ denotes the set $\{i_1, ..., i_n\} - \{i_s\}$, \cup denotes set union and \cap denotes set intersection. $(xyx...)_n$ denotes the product of the first n terms of the sequence x, y, x, y, x, ... ACC denotes the ascending chain condition and DCC denotes the descending chain condition. Let S be a set and A a subset of S. Then |A| denotes the number of elements in A, and \hat{A} denotes the complement of A in S. Let K be any field, and let (W, R) be a finite Coxeter system, with root system Φ , positive system Φ^+ and simple system Π . For each $J \subseteq R$, let Φ_J , Φ_J^+ and Π_J be the corresponding root system, positive system and simple system. $w_i \in R$ is the $$X_J = \{ w \in W : w(\Pi_J) \subseteq \Phi^+ \}$$ and $Y_J = \{ w \in W : w(\Pi_J) \subseteq \Phi^+, w(\Pi_J) \subseteq \Phi^- \}$, reflection in the hyperplane perpendicular to $r_i \in \Pi$. For each $J \subseteq R$, let where $\hat{J} = R - J$. We shall assume all the standard results on finite Coxeter systems, as found in Bourbaki (1968), Carter (1972) and Steinberg (1967). - 1.1 DEFINITION. The 0-Hecke algebra H over K of type (W, R) is the associative algebra over K with identity 1 generated by $\{a_i: w_i \in R\}$ subject to the relations: - (i) $a_i^2 = -a_i$ for all $w_i \in R$, - (ii) $(a_i a_j a_i ...)_{n_{ij}} = (a_j a_i a_j ...)_{n_{ij}}$ for all $w_i, w_j \in R$, $w_i \neq w_j$, where n_{ij} = the order of $w_i w_j$ in W. For all $w \in W$, define $a_w = a_{i_1} \dots a_{i_e}$, where $w = w_{i_1} \dots w_{i_e}$ is a reduced expression for $w \in W$ in terms of the elements of R. Note that $a_{1w} = 1$, where 1_W denotes the identity element of W. It is easy to show that a_w is independent of the reduced expression for w, and that every element of H is a K-linear combination of elements a_w , for $w \in W$. By Bourbaki (1968) (Exercise 23, p. 55), $\{a_w : w \in W\}$ are linearly independent over K and so form a K-basis of H. - 1.2 Some Examples. (i) Let G = G(q) be a Chevalley group over the finite field F = GF(q) of q elements, where $q = p^m$ for some prime p and positive integer m. Then G has a (B, N) pair (G, B, N, R) and Weyl group W such that for each $w_i \in R$ there is a positive integer c_i such that $|B: B \cap B^{v_i}| = q^{c_i}$. If K is a field of characteristic p, then the Hecke algebra $H_K(G, B)$ is a 0-Hecke algebra. - (ii) Let G be a finite group with a split (B, N) pair (G, B, N, R, U) of rank n and characteristic p with Weyl group W, and let K be a field of characteristic p. Then the Hecke algebra $H_K(G, B)$ is a 0-Hecke algebra of type (W, R) over K. - 1.3 LEMMA. For all $w_i \in R$ and all $w \in W$, $$a_i a_w = \begin{cases} a_{w_i w} & \text{if } l(w_i w) = l(w) + 1, \\ -a_w & \text{if } l(w_i w) = l(w) - 1; \end{cases}$$ $$a_w a_i = \begin{cases} a_{ww_i} & \text{if } l(ww_i) = l(w) + 1, \\ -a_w & \text{if } l(ww_i) = l(w) - 1. \end{cases}$$ PROOF. If $l(w_i w) = l(w) + 1$, then $a_{w_i w} = a_i a_w$ by the definition of $a_{w_i w}$. Suppose $l(w_i w) = l(w) - 1$; then there is a reduced expression for w beginning with w_i : say $w = w_i w'$ where l(w) = l(w') + 1. Then $a_w = a_i a_{w'}$, and so $$a_i a_w = a_i a_i a_{w'} = -a_i a_{w'} = -a_w.$$ Similarly for $a_n a_i$. - 1.4 COROLLARY. (1) For all $w, w' \in W$, - (a) $a_{n'} a_{n'} = \pm a_{n''}$ for some $w'' \in W$, with $l(w'') \ge \max(l(w), l(w'))$; - (b) $a_{vo} a_{vo'} = a_{vow'}$ if and only if l(ww') = l(w) + l(w'); - (c) $a_w a_{w'} = (-1)^{l(w')} a_w$ if and only if $w(r_i) \in \Phi^-$ for each $r_i \in \Pi_J$, where $J = \{w_i \in R: w_i \text{ occurs in some reduced expression for } w'\}$. - (d) $a_w a_{w'} = (-1)^{l(w)} a_{w'}$ if and only if $(w')^{-1}(r_i) \in \Phi^-$ for each $r_i \in \Pi_J$, where $J = \{w_i \in R: w_i \text{ occurs in some reduced expression for } w\};$ - (e) $a_w a_{w'} = \pm a_{w'}$ with l(w'') > l(w), where $l(w) \ge l(w')$, if and only if there exists $r_i \in \Pi_J$ such that $w(r_i) \in \Phi^+$, where $J = \{w_j \in R : w_j \text{ occurs in some reduced expression for } w'\}$. - (2) Let w_0 be the unique element of maximal length in W. Then for all $w \in W$, $$a_w a_{w_0} = (-1)^{l(w)} a_{w_0}$$ and $a_{w_0} a_w = (-1)^{l(w)} a_{w_0}$ # 2. The nilpotent radical of H Let N be the nilpotent radical of H. Since H is a finite-dimensional algebra over K, H has the DCC and ACC and so N is also the Jacobson radical of H, and is the unique maximal nilpotent ideal of H. There is a natural composition series for H, consisting of (two-sided) ideals of H such that every factor is a one-dimensional H-module. This series arises as follows: list the basis elements $\{a_w \colon w \in W\}$ in order of increasing length of w, and if w, $w' \in W$ have the same length it does not matter in which order a_w and $a_{w'}$ occur on the list. Rename these elements $h_1, h_2, \ldots, h_{|W|}$ respectively. Note that $h_1 = 1$ and $h_{|W|} = a_{w_0}$. Let H_j be the ideal of H generated by $\{h_m \colon m \geqslant j\}$. H_j has K-basis $\{h_m \colon m \geqslant j\}$ and dimension |W| - j + 1. Then 2.1 $$H = H_1 > H_2 > ... > H_{|W|} = a_{w_0} H > 0$$ is the natural composition series of H described above. H_i/H_{i+1} is a one-dimensional H-module, $1 \le i \le |W|$, where $H_{|W|+1} = 0$, with basis $h_i + H_{i+1}$, where $h_i = a_w$ for some $w \in W$. Either $a_w^2 = (-1)^{l(w)} a_w$ or $a_w^2 \in H_{i+1}$; in the first case, the factor ring H_i/H_{i+1} is generated by an idempotent, and in the second case it is nilpotent. 2.2 Lemma. The number of factors which are generated by an idempotent is equal to 2^n , where n = |R|. PROOF. The factors generated by idempotents correspond to elements $w \in W$ such that $a_w^2 = (-1)^{l(w)} a_w$. Let $w \in W$ be such an element. Write $w = w_{i_1} \dots w_{i_s}$, where l(w) = s, and let $J = \{w_{i_j} : 1 \le j \le s\}$. Then $w \in W_J$, and by 1.4(1c), $w(\prod_J) \subseteq \Phi^-$. Hence $w = w_{0J}$, the unique element of maximal length in W_J . Conversely, for each subset J of R, $a_{w_0J}^2 = (-1)^{l(w_0J)} a_{w_0J}$. Hence the number of factors which are generated by an idempotent is equal to the number of subsets of R, that is, 2^n , where n = |R|. By Schreier's theorem, any series of ideals of H can be refined to a composition series, and all so obtained have the same number of terms in them as the natural series, and with the factors in one-one correspondence with those of the natural series. In particular, consider H > N > 0. This can be refined to a composition series $H = H'_1 > ... > H'_{|W|} > H'_{|W|+1} = 0$, where $N = H'_r$, $2 < r \le |W| + 1$. Now each factor H'_i/H'_{i+1} , $i \ge r$, is nilpotent as $H'_i \le N$, and each factor H'_i/H'_{i+1} , $i+1 \le r$, must be generated by an idempotent as $H'_i/N \le H/N$, a semi-simple ring. Hence the number of factors which are nilpotent is equal to the dimension of N. Thus, dim $N = |W| - 2^n$, where n = |R|. We can, however, give a precise basis of N. 2.3 THEOREM. Let $w \in W$, and suppose $w \neq w_{0,J}$ for any $J \subseteq R$. Write $w = w_{i_1} \dots w_{i_g}$, l(w) = s, and let $J(w) = \{w_{i_j}: 1 \le j \le s\}$. Then $E(w) = a_w + (-1)^{l(w_{0,J(w)})+l(w)+1} a_{w_{0,J(w)}}$ is nilpotent, and $\{E(w): w \in W, w \neq w_{0,J} \text{ for any } J \subseteq R\}$ is a basis of N. PROOF. Show E(w) is nilpotent by induction on $l(w_{0J(w)}) - l(w)$. Note that if $w = w_{0J}$ for some $J \subseteq R$ then E(w) = 0. Suppose $l(w_{0J(w)}) - l(w) = 1$. Then since a reduced expression for w involves all $w_i \in J(w)$, $w \neq w_{0J(w)}$, there exists $r_j \in \Pi_{J(w)}$ such that $w(r_j) \in \Phi^+$. So $a_w^2 = (-1)^{l(w)-1} a_{w_{0J(w)}}$. Thus $$\begin{split} E(w)^2 &= a_w^2 + a_w \, a_{w_{0J(w)}} + a_{w_{0J(w)}} a_w + a_{w_{0J(w)}}^2 \\ &= a_{w_{0J(w)}}^b \quad \text{where } b = (-1)^{l(w)-1} + 2(-1)^{l(w)} + (-1)^{l(w_{0J(w)})} \\ &= 0 \text{ as } l(w_{0J(w)}) = l(w) + 1. \end{split}$$ Now suppose $l(w_{0J(w)}) - l(w) > 1$. Consider the product $a_w a_w$. Since $w \neq w_{0J(w)}$, there exists $r_j \in \Pi_{J(w)}$ such that $w(r_j) \in \Phi^+$. As any reduced expression for w involves all $w_i \in J(w)$, we have $a_w a_w = (-1)^{2l(w)-l(w')} a_{w'}$, with $w' \in W_{J(w)}$ and l(w') > l(w). Further, J(w') = J(w). Then $$\begin{split} E(w)^2 &= a_w^2 + 2(-1)^{l(w_{0J(w)})+1} a_{w_{0J(w)}} + (-1)^{l(w_{0J(w)})} a_{w_{0J(w)}} \\ &= (-1)^{l(w')} a_{w'} + (-1)^{l(w_{0J(w)})+1} a_{w_{0J(w)}} \\ &= (-1)^{l(w')} (a_{w'} + (-1)^{l(w_{0J(w')})+l(w')+1} a_{w_{0J(w')}}) \\ &= (-1)^{l(w')} E(w'). \end{split}$$ As l(w') > l(w), either $w' = w_{0J(w)}$ and thus $E(w)^2 = 0$ or $w' \neq w_{0J(w)}$ and then by induction E(w') is nilpotent. Thus E(w) is nilpotent. Finally, note that we get a nilpotent element for each $w \in W$, $w \neq w_{0J}$ for any $J \subseteq R$. The set of all E(w), $w \neq w_{0J}$ for any $J \subseteq R$, is obviously linearly independent, and there are $|W| - 2^n$ elements in all, where n = |R|. Hence they are a K-basis for N. ## 2.4 COROLLARY. H/N is commutative. **PROOF.** We show that $a_i a_j - a_j a_i \in N$ for all $w_i, w_j \in R$. If $a_i a_j = a_j a_i$, the result is obvious. So suppose $a_i a_j \neq a_j a_i$. Then we can form $E(w_i w_j)$ and $E(w_j w_i)$ and
$E(w_j w_i) = a_i a_j - a_j a_i \in N$ as each of $E(w_i w_j)$ and $E(w_j w_j)$ is in N. ## 3. The irreducible representations of H Consider the one-dimensional H-modules which arise from the natural composition series of H. Let the factor H_i/H_{i+1} be generated as left H-module by $a_w + H_{i+1}$. The action of H on this element is determined as follows: for each $w_i \in R$, $$a_i(a_w + H_{i+1}) = \begin{cases} -(a_w + H_{i+1}) & \text{if } w^{-1}(r_i) \in \Phi^-, \\ 0 & \text{if } w^{-1}(r_i) \in \Phi^+. \end{cases}$$ For any $w \in W$, let $J(w) = \{w_{i_j}: 1 \le j \le s\}$ where $w = w_{i_1} \dots w_{i_s}$ is a reduced expression for w. Then for $w' \in W$, $$a_w(a_w + H_{i+1}) = \begin{cases} (-1)^{l(w')} (a_w + H_{i+1}) & \text{if } w^{-1}(\Pi_{J(w')}) \subseteq \Phi^-, \\ 0 & \text{if there exists } r_i \in \Pi_{J(w')} \text{ such} \\ & \text{that } w^{-1}(r_i) \in \Phi^+. \end{cases}$$ Hence the action of H on $a_w + H_{i+1}$ depends on w^{-1} . 3.1 DEFINITION. For each $J \subseteq R$, let λ_J be the one-dimensional representation of H defined by $$\lambda_{J}(a_{i}) = \begin{cases} 0 & \text{if } w_{i} \in J, \\ -1 & \text{if } w_{i} \in \hat{J}. \end{cases}$$ For all $w \in W$, let $w = w_{i_1} \dots w_{i_s}$ with l(w) = s. Then $\lambda_J(a_w) = \lambda_J(a_{i_1}) \dots \lambda_J(a_{i_s})$. Extend λ_J to H by linearity. For each $J \subseteq R$, let $H_{i(J)}/H_{i(J)+1}$ be the factor of the natural series which is generated by $a_{w_0j}+H_{i(J)+1}$. Then the left H-module $H_{i(J)}/H_{i(J)+1}$ affords the representation λ_J of H. Since each composition factor of H is one-dimensional, it follows that all irreducible representations of H are one-dimensional. Let μ be an irreducible representation of H. Then μ is completely determined by the values $\mu(a_i)$ for all $w_i \in R$. Since μ is an algebra homomorphism, $\mu(a_i)^2 = -\mu(a_i)$ for all $w_i \in R$. Let $\mu(a_i) = u_i \in K$ for all $w_i \in R$. Then $u_i^2 = -u_i$ in K implies that $u_i = 0$ or $u_i = -1$. Thus each irreducible representation of H can be described by an n-tuple $(u_1, ..., u_n)$, where n = |R|, with $u_i = 0$ or -1 for all i. In particular, λ_J corresponds to the n-tuple $(u_1, ..., u_n)$ where $u_i = 0$ if $w_i \in J$ and $u_i = -1$ if $w_i \in \hat{J}$. There are 2^n such irreducible representations, and they all occur in the natural series of H. 2^n maximal ideals of H are determined as follows: for each $J \subseteq R$, form the n-tuple $(u_1, ..., u_n)$, where $u_i = 0$ if $w_i \in J$ and $u_i = -1$ otherwise. Let M_J be the left ideal of H generated by $\{a_i - u_i : w_i \in R\}$. Then $M_J = \ker \lambda_J$, and as each λ_J is irreducible, M_J is a maximal left ideal of H. Now H/N is semi-simple Artinian. So by extending K to its algebraic closure K and considering H as an algebra over K, we deduce that $$H/N \cong \overline{K} \oplus \overline{K} \oplus ... \oplus \overline{K}$$, a direct sum of 2^n fields. (Actually, we will show that $$H/N \cong K \oplus K \oplus ... \oplus K$$, 2^n copies of K , regardless of which field K is.) ## 4. Some decompositions of H For each $J \subseteq R$, let H_J be the subalgebra of H generated by $\{a_i : w_i \in J\}$. 4.1 DEFINITION. For each $J \subseteq R$, let $$e_J = \sum_{w \in W_J} a_w, \quad o_J = (-1)^{l(w_{0J})} a_{w_{0J}}.$$ 4.2 LEMMA. For all $w_i \in J$, $$a_i e_J = 0 = e_J a_i$$ and $a_i o_J = -o_J = o_J a_i$. Proof. Use 1.3. 4.3 Lemma. Let $w_{0J} = w_{i_1} \dots w_{i_s}$, $l(w_{0J}) = s$. Then $$e_{J} = (1 + a_{i}) \dots (1 + a_{i})$$ and is independent of the reduced expression for w_{0,J}. NOTATION. For all $w \in W$, if $w = w_{i_1} \dots w_{i_t}$ with l(w) = t, write $$[1+a_w] = (1+a_{i_1})\dots(1+a_{i_\ell}).$$ By the following proof it follows that $[1+a_w]$ is independent of the reduced expression for w. PROOF. Firstly, we show that $[1+a_{w_0j}]$ is independent of the reduced expression for w_{0J} . Since we can pass from one reduced expression for w_{0J} to another by substitutions of the form $(w_i w_j w_i ...)_{n_{ij}} = (w_j w_i w_j ...)_{n_{ij}}$, $i \neq j$, where n_{ij} is the order of $w_i w_j$ in W, we need to show that $$[1 + a_{(w_i w_i w_i \dots)_{n_i}}] = [1 + a_{(w_j w_i w_j \dots)_{n_i}}].$$ To do this, we use induction on n, $n \le n_{ij}$, to show that $$[1 + a_{(w_i w_j w_{i...})_n}] = 1 + \sum_{m=1}^n a_{(w_i w_j w_{i...})_m} + \sum_{m=1}^{n-1} a_{(w_j w_i w_{j...})_m}.$$ This is clearly true for n = 1. Suppose it is true for all integers $\leq k$, and suppose that k is odd. Then $$\begin{aligned} [1+a_{(w_iw\ w_i...)_{k+1}}] &= [1+a_{(w_iw_jw_i...)_k}](1+a_j) \\ &= \left(1+\sum_{m=1}^k a_{(w_iw_jw_i...)_m} + \sum_{m=1}^{k-1} a_{(w_jw_iw_j...)_m}\right)(1+a_j) \\ &= \left(1+\sum_{m=1}^k a_{(w_iw_jw_i...)_m} + \sum_{m=1}^{k-1} a_{(w_jw_iw_j...)_m}\right) + a_j \\ &+ \sum_{m=0}^{\frac{1}{2}(k-1)} a_{(w_iw_jw_i...)_{2m+1}} a_j + \sum_{m=1}^{\frac{1}{2}(k-1)} a_{(w_iw_jw_i...)_{2m}} a_j \\ &+ \sum_{m=1}^{\frac{1}{2}(k-1)} a_{(w_jw_iw_j...)_{2m-1}} a_j + \sum_{m=1}^{\frac{1}{2}(k-1)} a_{(w_jw_iw_j...)_{2m}} a_j. \end{aligned}$$ Now. $$a_{(w_i w_j w_i \dots)_{2m-1}} a_j = -a_{(w_i w_j w_i \dots)_{2m}} a_j, \quad 1 \leqslant m \leqslant \frac{1}{2} (k-1),$$ and $$a_{(w_iw_iw_{i...})_{2m-1}}a_j = -a_{(w_iw_iw_{i...})_{2m-2}}a_j, \quad 1 \leq m \leq \frac{1}{2}(k-1),$$ where $a_{(w w_i w_i ...)_0} = 1$. Then $$\begin{split} [1 + a_{(w_i w_j w_i \dots)_{k+1}}] &= 1 + \sum_{m=1}^k a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^{k-1} a_{(w_j w_i w_j \dots)_m} \\ &\quad + a_{(w_i w_j w_i \dots)_k} a_j + a_{(w_j w_i w_j \dots)_{k-1}} a_j \\ &= 1 + \sum_{m=1}^{k+1} a_{(w_i w_j w_i \dots)_m} + \sum_{m=1}^k a_{(w_j w_i w_j \dots)_m}. \end{split}$$ Similarly, we get the above result if we assume k is even. Similarly, for all $n \leq n_{ij}$, $$[1 + a_{(w_j w_i w_j \dots)_n}] = 1 + \sum_{m=1}^n a_{(w_j w_i w_j \dots)_m} + \sum_{m=1}^{n-1} a_{(w_i w_j w_i \dots)_m}.$$ Then, for all $n \leq n_{ij}$, $$[1 + a_{(w_i w_i w_i \dots)_n}] - [1 + a_{(w_i w_i w_i \dots)_n}] = a_{(w_i w_i w_i \dots)_n} - a_{(w_i w_i w_i \dots)_n}$$ When $n = n_{ij}$, this difference is zero, and so $$[1 + a_{(w_i w_j w_i \dots)_{n_{ii}}}] = [1 + a_{(w_j w_i w_j \dots)_{n_{ii}}}]$$ and thus $[1+a_{w_0J}]$ is independent of the reduced expression for w_{0J} chosen. Finally, $[1+a_{w_0J}]$ is a linear combination of certain a_w with $w \in W_J$. We show by induction on l(w) for all $w \in W_J$ that a_w occurs in the expansion of $[1+a_{w_0J}]$ with coefficient 1. If l(w)=0, then w=1 and obviously 1 occurs with coefficient 1. Suppose l(w)>0. Let $w=w'w_j$, $w'\in W_J$, $w_j\in J$, where l(w)=l(w')+1. By induction $a_{w'}$ occurs in $[1+a_{w_0J}]$ with coefficient 1. Choose an expression for w_{0J} ending in w_j , and then $[1+a_{w_0J}]=[1+a_{w_0Jw_j}](1+a_j)$. Since $l(w'w_j)>l(w')$, the only contribution to $a_{w'}$ from the last bracket is from the 1. If instead we take a_j from the last bracket, we get a_w , with coefficient 1. Now suppose a_w occurs in $[1+a_{w_0Jw_j}]$ with coefficient m. Then $$ma_{10}(1+a_i) = ma_{10} + ma_{10}a_i = ma_{10} - ma_{10} = 0$$ as $w(r_i) \in \Phi^-$. Thus a_w occurs in the expansion of $[1+a_{w_0,j}]$ with coefficient 1, and hence $e_J = [1+a_{w_0,j}]$. 4.4 COROLLARY. (1) If $J, L \subseteq R, J \cap L \neq \emptyset$, then $o_J e_L = 0$ and $e_J o_L = 0$. (2) If $$L \subseteq J \subseteq R$$, then $e_L e_J = e_J = e_J e_L$ and $o_L o_J = o_J = o_J o_L$. Proof. Use 4.2 and 4.3. 4.5 LEMMA. Let $y \in Y_J$ for some $J \subseteq R$. Then $a_y \circ_{\hat{J}} = a_y$ and $a_y \circ_{\hat{J}} e_J = \sum_{w \in W_J} a_{yw}$, with l(yw) = l(y) + l(w) for all $w \in W_J$, that is, $a_y \circ_{\hat{J}} e_J$ is equal to a_y plus a sum of certain a_m with l(w) > l(y). PROOF. If $y \in Y_J$, then $y = ww_{0,\hat{J}}$ for some $w \in W$ with $l(y) = l(w) + l(w_{0,\hat{J}})$. Hence $a_y \circ_{\hat{J}} = (-1)^{l(w_{0,\hat{J}})} a_w a_{w_{0,\hat{J}}} a_{w_{0,\hat{J}}}$, and so $a_y \circ_{\hat{J}} = a_y$. Now for all $w \in W_J$, as $y \in Y_J \subseteq X_J$, we have l(yw) = l(y) + l(w). So for all $w \in W_J$, $a_y a_w = a_{yw}$. Thus $$a_y \, o_{\hat{J}} \, e_J = a_y \, e_J = \sum_{w \in \mathcal{W}_J} a_y \, a_w = \sum_{w \in \mathcal{W}_J} a_{yw} = a_y + \sum_{w \in \mathcal{W}_J, w \neq 1} a_{yw},$$ and l(yw) > l(y) if $w \neq 1$, $w \in W_J$. 4.6 Lemma. For $y \in Y_J$, a_y occurs in the expansion of $a_y e_J o_j$ with coefficient 1, and if, for any $w \in W$, a_w occurs in the expansion of $a_y e_J o_j$ with non-zero coefficient, then w = y or l(w) > l(y). **PROOF.** By 4.5, $a_y e_J = \sum_{w \in W_J} a_{yw}$, with l(yw) = l(y) + l(w) for all $w \in W_J$. So $$a_{\boldsymbol{y}}e_{\boldsymbol{J}}o_{\hat{\boldsymbol{\jmath}}} = \sum_{\boldsymbol{w} \in W_{\boldsymbol{J}}} a_{\boldsymbol{y}\boldsymbol{w}}o_{\hat{\boldsymbol{\jmath}}} = a_{\boldsymbol{y}}o_{\hat{\boldsymbol{\jmath}}} + \sum_{\boldsymbol{w} \in W_{\boldsymbol{J}}, \boldsymbol{w} \neq 1} a_{\boldsymbol{y}\boldsymbol{w}}o_{\hat{\boldsymbol{\jmath}}}.$$ From the proof of 4.5, $a_u o_{\hat{J}} = a_u$, and for all $w \in W_J$, $w \ne 1$, $$a_{yw}o_{\hat{j}} = a_{yw}(-1)^{l(w_0\hat{j})}a_{w_0\hat{j}} = \pm a_{w'}$$ for some $w' \in W$ with $l(w') \ge l(yw) > l(y)$. - 4.7 THEOREM. (i) The elements $\{a_y o_{\hat{J}} e_J = a_y e_J : y \in Y_J, J \subseteq R\}$ are linearly independent and form a basis of H. - (ii) The elements $\{a_y e_J o_{\hat{J}}: y \in Y_J, J \subseteq R\}$ are linearly independent and form a basis of H. **PROOF.** (i) Suppose that for each $y \in Y_J$ and each $J \subseteq R$ there is an element $k_y \in K$ such that $\sum_{J \subseteq R} \sum_{y \in Y_J} k_y a_y e_J = 0$. Let $$S_n = \sum_{J \subseteq R} \sum_{y \in Y_J, l(y) \geqslant n} k_y a_y e_J.$$ We show that if $S_n = 0$, then $k_y = 0$ whenever l(y) =
n and hence $S_{n+1} = 0$. Let $y_1, ..., y_i$ be those elements of W for which $l(y_i) = n$. Then by 4.5, if $y_i \in Y_{J(i)}$ for some $J(i) \subseteq R$, $a_{y_i}e_{J(i)} = a_{y_i} + (a \text{ linear combination of certain } a_{w} \text{ where } l(w) > l(y_i)).$ Hence, $$S_n = \sum_{i=1}^{l} k_{y_i} a_{y_i} + (a \text{ linear combination of certain } a_w \text{ with } l(w) > n).$$ If $S_n = 0$, then as $\{a_w : w \in W\}$ are a basis of H, we must have $k_{y_i} = 0$ for all i, $1 \le i \le t$. Then $S_{n+1} = 0$. Since $S_0 = 0$, $k_y = 0$ for all y whenever l(y) = 0, and then $S_1 = 0$. By induction, all k_y are zero, and so $\{a_y e_J : y \in Y_J, J \subseteq R\}$ is a set of linearly independent elements. As there are |W| of them, they must form a basis of H. (ii) This is proved using similar arguments. 4.8 COROLLARY. (i) For any $L \subseteq R$, the elements of the set $$\{a_{\mathbf{y}} o_{\hat{\mathbf{j}}} e_{\mathbf{J}} o_{\hat{\mathbf{L}}} = a_{\mathbf{y}} e_{\mathbf{J}} o_{\hat{\mathbf{L}}} \colon y \in Y_{\mathbf{J}}, J \subseteq L\}$$ are linearly independent. (ii) For any $L \subseteq R$, the elements of the set $\{a_y e_J o_{\bar{J}} e_L : y \in Y_J, J \supseteq L\}$ are linearly independent. PROOF. (i) $$a_y e_J o_{\hat{L}} = \sum_{w \in W_J} a_{yw} o_{\hat{L}}$$. As $J \subseteq L$, $\hat{L} \subseteq \hat{J}$ and so $a_{w_0 \hat{J}} o_{\hat{L}} = a_{w_0 \hat{J}}$. Then $$\begin{aligned} a_{y} e_{J} o_{\hat{L}} &= a_{y} o_{\hat{L}} + \sum_{w \in W_{J}, w \neq 1} a_{yw} o_{\hat{L}} \\ &= a_{y} + \sum_{w \in W_{J}, w \neq 1} a_{yw} o_{\hat{L}} \quad \text{as } y \in Y_{J} \\ &= a_{y} + (\text{a linear combination of certain } a_{w} \text{ with } l(w) > l(y)). \end{aligned}$$ The result now follows by using an argument similar to that used in the proof of 4.7. (ii) For any $y \in Y_J$, $a_y e_J o_{\hat{J}} = a_y + (\sum_{w \in W} k_w a_w)$, where $k_w \in K$ and $k_w = 0$ if $l(w) \leq l(y)$. Then $$a_y e_J o_{\hat{J}} e_L = a_y e_L + (\sum_{w \in W} k_w a_w) e_L, \quad k_w \in K \text{ given as above,}$$ $$= a_y + (\sum_{w \in W} k'_w a_w) \quad \text{for certain } k'_w \in K, \text{ with } k'_w = 0 \text{ if } l(w) \leq l(y).$$ Once again the result is given using an argument similar to that given in the proof of 4.7. 4.9 THEOREM. (i) For each $a \in H$ and for any $J \subseteq R$, there exist elements $k_y \in K$ such that $$ao_{\hat{J}}e_J = \sum_{y \in Y_J} k_y a_y e_J = (\sum_{y \in Y_J} k_y a_y o_{\hat{J}}e_J).$$ (ii) For each $a \in H$ and for any $J \subseteq R$, there exist elements $k_y \in K$ such that $$ae_{J}o_{\hat{J}} = \sum_{y \in Y_{J}} k_{y} a_{y} e_{J} o_{\hat{J}}.$$ PROOF. (i) As $\{a_w : w \in W\}$ is a basis of H, we may write $a = \sum_{w \in W} u_w a_w$ with $u_w \in K$ for all $w \in W$. It is thus sufficient to express $a_w o_{\hat{J}} e_J$ as a linear combination of the elements $\{a_y e_J : y \in Y_J\}$ for all $w \in W$. Use induction on l(w) to prove this. If l(w) = 0, then w = 1 and $1o_{\hat{J}} e_J = (-1)^{l(w,\hat{u})} a_{w,\hat{u}} e_J$. The result is true for w = 1 as $w_{0,\hat{J}} \in Y_J$. Suppose l(w) > 0. Let $w = w_i w'$ for some $w_i \in R$, $w' \in W$, l(w) = l(w') + 1. By induction, $$a_{w'} o_{\hat{J}} e_J = \sum_{y \in Y_J} u_y a_y e_J$$ for some $u_y \in K$. Then $$a_w o_{\hat{J}} e_J = a_i a_{w'} o_{\hat{J}} e_J = \sum_{y \in Y_J} u_y a_i a_y e_J.$$ Hence for each $y \in Y_J$ we have to express $a_i a_y e_J$ as a combination of $\{a_v e_J : v \in Y_J\}$. Now for any $y \in Y_J$, (4.10) $$a_{i}a_{y}e_{J} = \begin{cases} -a_{y}e_{J}, & \text{if } y^{-1}(r_{i}) \in \Phi^{-}, \\ 0, & \text{if } y^{-1}(r_{i}) = r_{j} \text{ for some } r_{j} \in \Pi_{J}, \\ & \text{as then } a_{i}a_{y} = a_{y}a_{j}, \\ a_{w_{i}y}e_{J}, & \text{where } w_{i}y \in Y_{J} \text{ if } y^{-1}(r_{i}) \in \Phi^{+}, \\ & y^{-1}(r_{i}) \neq r_{j} \text{ for any } r_{j} \in \Pi_{J}. \end{cases}$$ The result follows. (ii) Since $\{a_y e_L o_{\hat{L}}: y \in Y_L, L \subseteq R\}$ is a basis of H, there exist elements $u_y \in K$ such that $$ae_J o_{\hat{J}} = \sum_{L \subseteq R} \sum_{y \in Y_L} u_y a_y e_L o_{\hat{L}}.$$ Choose any $M \subseteq R$ with $M \cap \hat{J} \neq \emptyset$. Then $ae_J o_{\hat{J}} e_M = 0$; so $$\sum_{L\subseteq R} \sum_{\mathbf{y}\in Y_L} u_{\mathbf{y}} a_{\mathbf{y}} e_L o_{\hat{L}} e_{\mathbf{M}} = 0.$$ But $o_{\hat{L}}e_M = 0$ if $\hat{L} \cap M \neq \emptyset$. So the only non-zero terms in the above equation involve those $L \subseteq R$ for which $\hat{L} \cap M = \emptyset$. Thus $$\sum_{L,M\subseteq L\subseteq R} \sum_{y\in Y_L} u_y \, a_y \, e_L \, o_{\hat{L}} \, e_M = 0.$$ By 4.8(ii), $u_y = 0$ for all $y \in Y_L$, $M \subseteq L \subseteq R$. Hence we have that $u_y = 0$ for all $y \in Y_L$, with $L \cap \hat{J} \neq \emptyset$. Thus $$ae_J o_{\hat{J}} = \sum_{L \subseteq J} \sum_{y \in Y_L} u_y a_y e_L o_{\hat{L}}.$$ Let $S_J = \{w \in W : u_w \neq 0, w \in Y_L \text{ for some } L \subset J\}$. Suppose $S_J \neq \emptyset$. Choose an element $y_0 \in S_J$ of minimal length, and suppose $y_0 \in Y_{J_0}$ for some $J_0 \subset J$. Consider $$ae_{J} o_{\hat{J}} o_{\hat{J}_{0}} = \sum_{L \subseteq J} \sum_{y \subseteq Y_{L}} u_{y} a_{y} e_{L} o_{\hat{L}} o_{\hat{J}_{0}}.$$ As $J_0 \subset J$, $e_J \circ_{\hat{J}} \circ_{\hat{J}_0} = e_J \circ_{\hat{J}_0} = 0$. Then $$\sum_{L \in J} \sum_{y \in Y_L} u_y a_y e_L o_{\hat{L}} o_{\hat{J}_0} = 0.$$ Now if $L \subseteq J$ and $y \in Y_L$, $$a_{y}e_{L}o_{\hat{L}}o_{\hat{J}_{0}} = a_{y}o_{\hat{J}_{0}} + \sum_{w \in WJ(w)>l(y)} k_{w}a_{w}$$ where $k_w \in K$, and $a_y \circ_{\hat{J}_0} = \pm a_w$, for some $w \in W$ with $l(w) \ge l(y)$. Since y_0 is of minimal length in S_J , the coefficient of a_{y_0} on the left side of (*) is u_{y_0} . As $\{a_w : w \in W\}$ is a basis of H, so $u_{y_0} = 0$, which is a contradiction. Hence $S_J = \emptyset$ and $ae_J o_{\hat{J}} = \sum_{u \in Y_J} u_u a_u e_J o_{\hat{J}}$. REMARK. Let $z \in \mathbb{Z}$. Then z can be regarded as an element of K in a natural way—it is the element $z1_K = 1_K + ... + 1_K$ (z times), where 1_K is the identity of K. - 4.11 COROLLARY. (1) For each $w \in W$, there exist rational integers $u_y = u_y(w)$ such that $a_w \circ_{\mathcal{I}} e_J = \sum_{y \in Y_J} u_y a_y \circ_{\mathcal{I}} e_J$. - (2) For each $w \in W$, there exist rational integers $u_y = u_y(w)$ such that $$a_{\mathbf{w}} e_{\mathbf{J}} o_{\hat{\mathbf{J}}} = \sum_{\mathbf{y} \in Y_{\mathbf{J}}} u_{\mathbf{y}} a_{\mathbf{y}} e_{\mathbf{J}} o_{\hat{\mathbf{J}}}.$$ PROOF. (1) Follows from the proof of 4.9(i). (2) List the elements $y_1, ..., y_m$ of Y_J in order of increasing length; if i < j then $l(y_i) \le l(y_j)$. Let c_{ij} be the coefficient of a_{v_i} in $a_{v_j} e_J o_{\hat{J}}$. Clearly c_{ij} is an integer as $a_{v_j} e_J o_{\hat{J}}$ is an integral combination of certain elements $a_{w'}$, $w' \in W$. Also, $c_{ii} = 1$ for all $i, 1 \le i \le m$, and $c_{ij} = 0$ if i < j by 4.6. Let h_i be the coefficient of a_{v_i} in $a_w e_J o_{\hat{J}}$. Clearly h_i is an integer, and $$h_i = \sum_{j=1}^m k_j c_{ij}$$ where $a_w e_J o_{\hat{J}} = \sum_{j=1}^m k_i a_{y_i} e_J o_{\hat{J}}$ for some $k_i \in K$. Hence, $h_i = \sum_{j=1}^{i-1} k_j c_{ij} + k_i$. Let i = 1. Then $h_1 = k_1$, an integer. Now use increasing induction on i to show k_i is an integer for all i, $1 \le i \le m$. 4.12 THEOREM. (1) $Ho_{\hat{j}}e_J$ is a left ideal of H with K-basis $\{a_y o_{\hat{j}}e_J = a_y e_J; y \in Y_J\}$. Hence $\dim Ho_{\hat{j}}e_J = |Y_J|$. Let $Y_J = \{y_1, ..., y_s\}$, with $l(y_i) \leq l(y_j)$ if i < j, and let $H_{J,i} = \{\sum_{j=1}^s k_j a_{y_j} o_{\hat{j}}e_J : k_J \in K\}$; then $$Ho_{\hat{J}}e_J = H_{J,1} > H_{J,2} > \dots > H_{J,s} > 0$$ is a composition series of $Ho_{\hat{J}}e_J$ of left H-modules, and $H_{J,i}/H_{J,i+1}$ affords the representation λ_M of H, where $y_i^{-1} \in Y_M$, and $H_{J,s+1} = 0$. Finally, $H = \sum_{J \subseteq R}^{\oplus} Ho_{\hat{J}}e_J$, a direct sum of 2^n left ideals, where n = |R|. (2) $He_Jo_{\hat{J}}$ is a left ideal of H with K-basis $\{a_y e_Jo_{\hat{J}}: y \in Y_J\}$. Hence $\dim He_Jo_{\hat{J}} = |Y_J|$. Let $Y_J = \{y_1, ..., y_s\}$, with $l(y_i) \leq l(y_i)$ if i < j, and let $$H_{J,i} = \left\{ \sum_{j=i}^{s} k_j a_{y_j} e_J o_j \colon k_j \in K \right\};$$ then $$He_{J} o_{\hat{J}} = H_{J,1} > H_{J,2} > ... > H_{J,s} > 0$$ is a composition series of $He_J o_{\hat{J}}$ of left H-modules, and $H_{J,i}/H_{J,i+1}$ affords the representation λ_M of H, where $y_i^{-1} \in Y_M$, and $H_{J,s+1} = 0$. Finally, $H = \sum_{J \subseteq R}^{\oplus} He_J o_{\hat{J}}$, a direct sum of 2^n left ideals, where n = |R|. PROOF. The results follow by 4.7, 4.8, 4.10 and the fact that $$\dim H = |W| = \sum_{J \subseteq R} |Y_J|.$$ 4.13 COROLLARY. $Ho_{\hat{j}}e_J$ and $He_Jo_{\hat{j}}$ are indecomposable left ideals of H, for all $J \subseteq R$, and they are isomorphic as left ideals of H. **PROOF.** From the theory of Artinian rings and the fact that H/N is a direct sum of 2^n irreducible components (see remarks at the end of Section 3), it follows that H can be expressed as the direct sum of 2^n indecomposable left ideals. Hence $Ho_{\hat{J}}e_J$ and $He_Jo_{\hat{J}}$ must be indecomposable left ideals of H for all $J \subseteq R$. To show they are isomorphic, first note that $He_J o_{\hat{J}} = Ho_{\hat{J}} e_J o_{\hat{J}}$. Then define the homomorphism $f_J \colon Ho_{\hat{J}} e_J \to He_J o_{\hat{J}}$ by $f_J(ao_{\hat{J}} e_J) = ao_{\hat{J}} e_J o_{\hat{J}}$, for all $ao_{\hat{J}} e_J \in Ho_{\hat{J}} e_J$. As f_J is given by right multiplication by $o_{\hat{J}}$, it is well defined and is a homomorphism of left ideals of H. f_J is onto, since $He_J o_{\hat{J}} = Ho_{\hat{J}} e_J o_{\hat{J}}$ and an element $ao_{\hat{J}} e_J o_{\hat{J}} \in He_J o_{\hat{J}}$ is the image under f_J of $ao_{\hat{J}} e_J$
. f_J is one-one as dim $Ho_{\hat{J}} e_J = \dim He_J o_{\hat{J}}$. Hence f_J is an isomorphism of left ideals of H. 4.14 COROLLARY. (1) For any $L \subseteq R$, $$Ho_{\hat{L}} = \sum_{J \subseteq L}^{\oplus} Ho_{\hat{J}} e_J o_{\hat{L}}, \text{ and } \dim Ho_{\hat{L}} = \sum_{J \subseteq L} |Y_J| = |X_{\hat{L}}|.$$ (2) For any $L \subseteq R$, $$He_L = \sum_{J \ni L} He_J o_{\tilde{J}} e_L$$, and dim $He_L = \sum_{J \ni L} |Y_J| = |X_L|$. Proof. Use 4.12 and 4.8. 4.15 THEOREM. For any $J \subseteq R$, $$He_{J} = \{a \in H : aa_{i} = 0 \text{ for all } w_{i} \in J\}$$ $$= \{a \in H : a(1+a_{i}) = a \text{ for all } w_{i} \in J\}.$$ Further, $He_J = \Sigma_{J \subseteq L}^{\oplus} Ho_{\hat{L}} e_L$, and He_J has basis $\{a_w e_J : w \in X_J\}$ and dimension $|X_J|$. Finally, $$\begin{split} Ho_{\hat{J}}e_{J} &= \{a \in H \colon aa_{i} = 0 \text{ for all } w_{i} \in J, \ ae_{L} = 0 \text{ for all } L \supset J\} \\ &= He_{J} \cap (\bigcap_{J \supset L} \ker e_{L}), \end{split}$$ where $ker\ e_L = \{a \in H: ae_L = 0\}.$ PROOF. Clearly, $He_J \le \{a \in H: aa_i = 0 \text{ for all } w_i \in J\}$. Conversely, take $a \in H$ and suppose $aa_i = 0$ for all $w_i \in J$. Then $a(1+a_i) = a$ for all $w_i \in J$, and so $ae_J = a$, and so $a \in He_J$. Thus the first part is proved. Now $Ho_{\hat{L}}e_L \leqslant He_J$ for all $L\supseteq J$, and so $\sum_{L\supseteq J}^{\oplus} Ho_{\hat{L}}e_L \leqslant He_J$. By 4.14, $\dim He_J = |X_J|$, and as $\dim Ho_{\hat{L}}e_L = |Y_L|$, we have $He_J = \sum_{L\supseteq J}^{\oplus} Ho_{\hat{L}}e_L$. Let $a = \sum_{w \in W} u_w a_w \in He_J$, where $u_w \in K$. Let $w_i \in J$. Then $aa_i = 0$, and so $\sum_{w \in W} u_w a_w a_i = 0$. Now $$\sum_{w \in W} u_w a_w a_i = \sum_{w \in W, w(r_i) \in \Phi^+} u_w a_{ww_i} - \sum_{w \in W, w(r_i) \in \Phi^-} u_w a_w = 0.$$ That is, $$\sum_{w \in W, w(r_l) \in \Phi^-} u_{ww_l} a_w - \sum_{w \in W, w(r_l) \in \Phi^-} u_w a_w = 0.$$ Since $\{a_w \colon w \in W\}$ form a basis of H, we have $u_{ww_i} = u_w$ for all $w \in W$ with $w(r_i) \in \Phi^-$. Hence $u_w = u_{ww_i}$ for all $w \in W$, with $w(r_i) \in \Phi^+$. Now if $w \in W$, w can be expressed uniquely in the form $w = yw_J$, where $y \in X_J$, $w_J \in W_J$ and $l(w) = l(y) + l(w_J)$. Write $w_J = w_{i_1} \dots w_{i_t}$, $w_{i_t} \in J$, $l(w_J) = t$. By the above, we have $$u_y = u_{yw_l} = \dots = u_{yw_J} = u_w.$$ Hence $a = \sum_{v \in X_J} u_v a_v e_J$. Conversely, for each $y \in X_J$, $a_v e_J \in He_J$, and as $\{a_v e_J : y \in X_J\}$ is linearly independent and dim $He_J = |X_J|$, $\{a_v e_J : y \in X_J\}$ is a basis of He_J . Finally, $Ho_{\hat{J}}e_{J} \leq \{a \in H: aa_{i} = 0 \text{ for all } w_{i} \in J, ae_{L} = 0 \text{ for all } L\supset J\}$. Let $a = \sum_{L} \sum_{v \in Y_{L}} u_{v} a_{v} o_{\hat{L}} e_{L}$, $u_{v} \in K$, satisfy $aa_{i} = 0$ for all $w_{i} \in J$ and $ae_{L} = 0$ for all $L\supset J$. Since $a \in He_{J}$, $u_{v} = 0$ for all $v \in Y_{L}$ if $J \not = L$. So $a = \sum_{L\supseteq J} \sum_{v \in Y_{L}} u_{v} a_{v} o_{\hat{L}} e_{L}$. Set $S_{J} = \{w \in W: u_{w} \neq 0, w \in Y_{L}, L\supset J\}$. Suppose $S_{J} \neq \emptyset$. Then there exists an element v_{0} of minimal length in S_{J} ; suppose $v_{0} \in Y_{M}$, $M\supset J$. Then $ae_{M} = 0$. Also $o_{\hat{J}} e_{J} e_{M} = 0$ as $M\supset J$. For other $L\supset J$, if $v \in Y_{L}$, $$a_y o_{\hat{L}} e_L e_M = a_y e_L e_M = a_y + (a \text{ combination of certain } a_w,$$ $$w \in W$$, with $l(w) > l(y)$). Then $ae_M = 0$ gives $\sum_{L \supset J} \sum_{y \in Y_L} u_y a_y o_{\hat{L}} e_L e_M = 0$. As y_0 is of minimal length in S_J , the coefficient of a_{y_0} in the left-hand side of the last equation is u_{y_0} . By the linear independence of $\{a_w : w \in W\}$, we have $u_{y_0} = 0$, which is a contradiction. Hence $S_J = \emptyset$ and $a = \sum_{y \in Y_J} u_y a_y o_{\hat{J}} e_J \in Ho_{\hat{J}} e_J$. Thus $$Ho_{\hat{J}}e_J = \{a \in He_J : ae_L = 0 \text{ for all } L \supset J\}.$$ 4.16 THEOREM. For any $J \subseteq R$, $$Ho_J = \{a \in H: a(1+a_i) = 0 \text{ for all } w_i \in J\}.$$ $\begin{array}{lll} \textit{Ho}_{\pmb{J}} & \textit{has} & \textit{basis} & \{a_{\pmb{w}} \colon \pmb{w} \in Y_{\hat{\pmb{L}}}, \hat{\pmb{L}} \subseteq \hat{\pmb{J}}\}, & \textit{dimension} & |X_{\pmb{J}}| & \textit{and} & \textit{Ho}_{\pmb{J}} = \sum_{L \supseteq \pmb{J}}^{\oplus} \textit{He}_{\hat{\pmb{L}}} o_{\pmb{L}}. \\ \textit{Finally}, & \textit{He}_{\hat{\pmb{J}}} o_{\pmb{J}} = \{a \in \textit{Ho}_{\pmb{J}} \colon \textit{ao}_{\pmb{L}} = 0 \text{ for all } L \supset \pmb{J}\}. \end{array}$ PROOF. Similar to the proof of 4.15. 4.17 LEMMA. Let ψ_J be the character of the representation of H on $Ho_{\hat{J}}e_J$. Then ψ_J takes values as follows: for each $w \in W$, let $w = w_{i_1} \dots w_{i_t}$ be a reduced expression for w, and set $J(w) = \{w_{i_j}: 1 \le j \le t\}$. Then $\psi_J(a_w) = (-1)^{J(w)} N_J(w)$, where $N_J(w) = the$ number of elements $y \in Y_J$ such that $y^{-1}(\Pi_{J(w)}) \subseteq \Phi^-$. PROOF. Use 4.10. 4.18 Lemma. Let ϕ_J be the character of the representation of H on He_J . Then ϕ_J takes values as follows: for $w \in W$ let $w = w_{i_1} \dots w_{i_t}$ be a reduced expression for w. Set $J(w) = \{w_{i_j}: 1 \le j \le t\}$. Then $\phi_J(a_w) = (-1)^{l(w)} M_J(w)$, where $M_J(w) = the$ number of elements $x \in X_J$ such that $x^{-1}(\Pi_{J(w)}) \subseteq \Phi^-$. Also, $M_J(w) = \sum_{L \ge J} N_L(w)$. **PROOF.** He_J has basis $\{a_w e_J : w \in X_J\}$. For any $w_i \in R$, $$a_{i} a_{w} e_{J} = \begin{cases} -a_{w} e_{J} & \text{if } w^{-1}(r_{i}) < 0, \\ a_{w_{i}w} e_{J}, & \text{where } w_{i} w \in X_{J} \text{ if } w^{-1}(r_{i}) > 0, \text{ and} \\ w^{-1}(r_{i}) \neq r_{j} \text{ for any } r_{j} \in \Pi, \\ 0 & \text{if } w^{-1}(r_{i}) = r_{j} \text{ for some } r_{j} \in \Pi_{J}, \text{ for then} \\ a_{i} a_{w} = a_{w} a_{j} \text{ and } a_{j} e_{J} = 0.\end{cases}$$ The result now follows. 4.19 LEMMA. Let μ_J be the character of the representation of H on Ho_J . Then μ_J takes values as follows: for each $w \in W$, let $w = w_{i_1} \dots w_{i_t}$ be a reduced expression for w, and set $J(w) = \{w_{i_j} : 1 \le j \le t\}$. Then $\mu_J(a_w) = (-1)^{l(w)} L_J(w)$, where $L_J(w) = t$ he number of elements $z \in Z_J$ such that $z^{-1}(\Pi_{J(w)}) \subseteq \Phi^-$, and $Z_J = \{w \in W : w(\Pi_J) \subseteq \Phi^-\}$. Note that $Z_J = \sum_{L \subseteq \hat{J}} Y_L$. PROOF. Ho_J has basis $\{a_w: w \in Z_J\}$. For all $w_i \in R$, $$a_i a_w = \begin{cases} -a_w & \text{if } w^{-1}(r_i) < 0, \\ a_{w_i w} & \text{if } w^{-1}(r_i) > 0. \end{cases}$$ If $w \in Z_J$, $w_i \in R$ and $w^{-1}(r_i) > 0$, then $w_i w \in Z_J$, for if $r_j \in \Pi_J$, $w(r_j) = -s$ for some $s \in \Phi^+$, and $w_i(s) < 0$ if and only if $s = r_i$. But if $s = r_i$, $w^{-1}(r_i) = -r_j$ —impossible. The result now follows. 4.20 COROLLARY. (1) $$\phi_J = \Sigma_{J \supseteq L} \psi_L$$ for all $J \subseteq R$. (2) $\mu_J = \sum_{J \supseteq L} \psi_L^2$ for all $J \subseteq R$. A direct sum decomposition of H into indecomposable left ideals is equivalent to expressing the identity of H as a sum of mutually orthogonal primitive idempotents. Let $1 = \sum_{J \subseteq R} q_J$ and $1 = \sum_{J \subseteq R} p_J$ be the decompositions of 1 corresponding to the decompositions $H = \{\sum_{J \subseteq R}^{\oplus} H o_{\mathcal{J}} e_J \text{ and } H = \sum_{J \subseteq R}^{\oplus} H e_J o_{\mathcal{J}}\}$ respectively, where $Hq_J = Ho_{\mathcal{J}} e_J$ and $Hp_J = He_J o_{\mathcal{J}}$. (There does not appear to be a specific expression for the q_J or the p_J in terms of $\{a_y o_{\mathcal{J}} e_J : y \in Y_J\}$ or $\{a_y e_J o_{\mathcal{J}} : y \in Y_J\}$ respectively). 4.21 THEOREM. Let $\{q_J\colon J\subseteq R\}$ be a set of mutually orthogonal primitive idempotents with $q_J\in Ho_{\hat{J}}e_J$ for all $J\subseteq R$ such that $1=\Sigma_{J\subseteq R}q_J$. Then $Ho_{\hat{J}}e_J=Hq_J$, and if N is the nilpotent radical of H, $No_{\hat{J}}e_J=Nq_J$ is the unique maximal left ideal of Hq_J , and $Hq_J/Nq_J\cong K$. Hq_J/Nq_J affords the representation λ_J of H defined in 3.1. Finally, $$H/N \cong \sum_{J \subseteq R}^{\oplus} Hq_J/Nq_J \cong K \oplus K \oplus ... \oplus K$$, 2^n summands, where $n = R$. PROOF. By the theory of Artinian rings, Nq_J is the unique maximal left ideal of Hq_J , and $H/N \cong \sum_{J\subseteq R}^{\oplus} Hq_J/Nq_J$. Since $q_J \in Ho_{\hat{J}}e_J$, $Hq_J \leq Ho_{\hat{J}}e_J$. As $$H = \sum_{J \subseteq R}^{\oplus} Hq_J = \sum_{J \subseteq R}^{\oplus} Ho_{\hat{J}} e_J,$$ we must have $Hq_J = Ho_{\hat{J}}e_J$ for all $J \subseteq R$. Then $Nq_J = NHq_J = NHo_{\hat{J}}e_J = No_{\hat{J}}e_J$ is the unique maximal left ideal of Hq_J . But $$\left\{ \sum_{\mathbf{y} \in Y, \mathbf{y} \neq \mathbf{w}_0 \hat{\mathbf{j}}} u_{\mathbf{y}} a_{\mathbf{y}} o_{\hat{\mathbf{j}}} e_{\mathbf{j}} \colon u_{\mathbf{y}} \in K \right\}$$ is a maximal left ideal of $Ho_{\hat{J}}e_{J}$ (see 4.10), and so $$Nq_J = \{ \sum_{y \in Y_J, y \neq w_0 \hat{\jmath}} u_y \, a_y \, o_{\hat{\jmath}} \, e_J \colon u_y \in K \}.$$ Then Hq_J/Nq_J is a one-dimensional H-module generated by $a_{w_0j}o_je_J+Nq_J$ which affords the representation λ_J of H, and since every element of Hq_J/Nq_J is of the form $ka_{w_0j}o_je_J+Nq_J$ for some $k \in K$, $Hq_J/Nq_J \cong K$ for all $J \subseteq R$. Hence the result. - 4.22 THEOREM. Let $\{p_J: J\subseteq R\}$ be a set of mutually orthogonal primitive idempotents with $p_J\in He_Jo_{\hat{J}}$ for all $J\subseteq R$ such that $1=\sum_{J\subseteq R}p_J$. Then $He_Jo_{\hat{J}}=Hp_J$, and if N is the nilpotent radical of H, $Ne_Jo_{\hat{J}}=Np_J$ is the unique maximal left ideal of Hp_J , and $Hp_J/Np_J\cong K$. Hp_J/Np_J affords the representation λ_J of H
defined in 3.1. Finally, $H/N\cong \sum_{J=R}^{\infty} Hp_J/Np_J\cong K\oplus K\oplus ...\oplus K$, 2^n summands, where n=|R|. - 4.23 Lemma. $\{ka_{w_0w_0J}o_{\hat{\jmath}}e_J\colon k\in K\}$ and $\{ka_{w_0w_0J}e_Jo_{\hat{\jmath}}\colon k\in K\}$ are minimal submodules of $Ho_{\hat{\jmath}}e_J$ and $He_Jo_{\hat{\jmath}}$ respectively, where w_0w_{0J} is the unique element of maximal length in Y_J . These minimal left ideals both afford the representation $\lambda_{\widehat{\jmath}}$ of H, where $J = \{w_i \in R \colon \text{there exists } w_j \in J \text{ with } w_0w_j = w_iw_0\}$, or, alternatively, $\Pi_{\widehat{\jmath}}$ is defined by $w_0(\Pi_J) = -\Pi_{\widehat{\jmath}}$. - 4.24 Note. By the same methods, $H = \sum_{J=R}^{\oplus} e_J o_{\hat{J}} H$ and $H = \sum_{J=R}^{\oplus} o_{\hat{J}} e_J H$, both being direct sum decompositions of H into 2^n right ideals, where n = |R|. Further, $e_J o_{\hat{J}} H$ has K-basis $\{e_J o_{\hat{J}} a_y \colon y^{-1} \in Y_J\}$, and $o_{\hat{J}} e_J H$ has K-basis $\{o_{\hat{J}} e_J a_y \colon y^{-1} \in Y_J\}$. All the results for the left ideals He_J , Ho_J , $He_J o_{\hat{J}}$ and $Ho_{\hat{J}} e_J$ have analogues for the right ideals $e_J H$, $o_J H$, $o_{\hat{J}} e_J H$ and $e_J o_{\hat{J}} H$ respectively. - Let G be a finite group with a split (B, N) pair of rank n and characteristic p with Weyl group W, and let K be a field of characteristic p. Then the above decomposition of $H = H_K(G, B)$ gives a decomposition of 1_B^G , where 1_B is the principal character of the subgroup B of G, which will be discussed in a later paper. #### 5. The Cartan matrix of H We have that $H = \sum_{J \subseteq R}^{\oplus} U_J$, where $U_J = Ho_J e_J$ is an indecomposable left H-module. Thus $\{U_J: J \subseteq R\}$ are the principal indecomposable H-modules. $\{U_J/\text{rad } U_J: J \subseteq R\}$, where $\text{rad } U_J$ is the unique maximal submodule of U_J , are irreducible H-modules, such that $M_J = U_J/\text{rad } U_J$ affords the representation λ_J of H. DEFINITION. The Cartan matrix C of H, where H is of type (W, R), with |R| = n, is a $2^n \times 2^n$ matrix with rows and columns indexed by the subsets of R, and if we write $C = (c_{JL})$, then c_{JL} = the number of times M_L is a composition factor of U_J . 5.1 THEOREM. For all $J, L \subseteq R$, $$c_{JL} = |Y_J \cap (Y_L)^{-1}| = |Y_L \cap (Y_J)^{-1}| = c_{LJ}.$$ Hence C is a symmetric matrix. PROOF. U_J has K-basis $\{a_y \circ_{\widehat{J}} e_J = a_y e_J \colon y \in Y_J\}$. Let y_1, \ldots, y_s be all the elements of Y_J written in order of increasing length; if i > j then $l(y_i) \geqslant l(y_j)$. Then set $U_J(i) = \{\sum_{j \geqslant i} k_{y_j} a_{y_j} e_J \colon k_{y_j} \in K\}$. $U_J(i)$ is a left ideal of H for all i, and $U_J(i) > U_J(i+1)$ for all i, $1 \leqslant i \leqslant s-1$. Then $U_J = U_J(1) > U_J(2) > \ldots > U_J(s) > 0$ is a composition series of U_J , with $U_J(i)/U_J(i+1)$ being an irreducible H-module with basis $a_{y_i} e_J + U_J(i+1)$ and affording the irreducible representation λ_L , defined in 3.1, where L is determined as follows: recall 4.10; let $w_j \in R$ and $y_i \in Y_J$. Then $$a_j a_{v_i} e_J = \begin{cases} -a_{v_i} e_J & \text{if } y_i^{-1}(r_j) < 0, \\ 0 & \text{if } y_i^{-1}(r_j) = r_k \text{ for some } r_k \in \Pi, \\ \\ a_{w_j v_i} e_J & \text{where } w_j y_i = y_l \text{ for some } y_i \in Y_J \text{ with } i < l, \text{ if } \\ \\ y_i^{-1}(r_j) > 0 \text{ but } y_i^{-1}(r_j) \neq r_k \text{ for any } r_k \in \Pi. \end{cases}$$ Hence $$\lambda_L: a_j \to \begin{cases} -1 & \text{if } y_i^{-1}(r_j) < 0, \\ 0 & \text{if } y_i^{-1}(r_i) > 0. \end{cases}$$ That is, $y_i^{-1} \in Y_L$. Hence c_{JL} = the number of elements $y \in Y_J$ such that $y^{-1} \in Y_L$ $$= |Y_J \cap (Y_L)^{-1}| = |Y_L \cap (Y_J)^{-1}|$$ since if $y \in Y_J \cap (Y_L)^{-1}$, then $y^{-1} \in Y_L \cap (Y_J)^{-1}$. 5.2 THEOREM. Let H be the 0-Hecke algebra over the field K of type (W, R), where W is indecomposable. Then if |R| > 1, H has three blocks. If |R| = 1, then H has two blocks. PROOF. If |R| = 1, then $W = W(A_1)$ and $H = H(1+a_1) \oplus H(-a_1)$, where $R = \{w_1\}$. Both $(1+a_1)$ and $(-a_1)$ are primitive idempotents as well as being central. Hence H has only two blocks. Now suppose that |R| > 1. $e_R = [1 + a_{w_0}]$ and $(-1)^{l(w_0)} a_{w_0}$ are primitive and centrally primitive idempotents in H and so correspond to two distinct blocks. The other primitive idempotents in H, that is, $\{q_J: J\neq\emptyset, R\}$ as in 4.21, determine at least one other block. We will show that provided W is indecomposable the Cartan matrix C' corresponding to the indecomposables U_J for $J\neq\emptyset$, R and the irreducibles M_L for $L\neq\emptyset$, R cannot be expressed in the form $C'=\begin{bmatrix} C_1 & 0 \\ 0 & C_2 \end{bmatrix}$ (see Dornhoff (1972), Theorem 46.3). Suppose that C' can be put in the form above. Let $S_1 = \{J \subset R : U_J \text{ and } M_J \text{ index the rows and columns of } C_1\},$ $S_2 = \{J \subseteq R : U_J \text{ and } M_J \text{ index the rows and columns of } C_2\}.$ Suppose for some $J \subseteq R$, |J| = n - 1 (where n = |R|), that $J \in S_1$. Then we show - (1) for all $L \subseteq R$ with |L| = n-1, $L \in S_1$, - (2) by decreasing induction on |J| for all $J \neq \emptyset$, R that $J \in S_1$. - (a) Suppose $J = \{w_1, ..., \hat{w}_j, ..., w_n\}$ and $L = \{w_1, ..., \hat{w}_{j+1}, ..., w_n\}$, where the nodes corresponding to w_j and w_{j+1} in the graph of W are joined. Then the order of $w_j w_{j+1}$ is greater than 2. Now $w_{0,\hat{j}} = w_j \in Y_J$ and $w_{0,\hat{L}} = w_{j+1} \in Y_L$. Since the order of $w_j w_{j+1}$ is greater than 2, $w_{j+1} w_j \in Y_J$ and $w_j w_{j+1} \in Y_L$; that is, $w_{j+1} w_j \in Y_J \cap (Y_L)^{-1}$. Hence $J \in S_1$ if and only if $L \in S_1$. Hence if there is some $J \in S_1$, with |J| = n - 1, then all $L \subseteq R$ with |L| = n - 1 are in S_1 by the above. (b) Suppose that for all $J \subseteq R$ with |J| > m that $J \in S_1$. Choose $L \subseteq R$ with |L| = m. We show $L \in S_1$. Suppose $L = \{w_{i_1}, ..., w_{i_m}\}$ with $1 \le i_1 < ... < i_m \le n$. Since W is indecomposable and $L \ne \emptyset$, R, then $|Y_L| > 1$. Choose some $w_{i_j} \in L$ and $w_k \in \hat{L}$ such that $w_{i_j} w_k$ has order r, where $r \ge 3$. Then $w_{i_j} w_{0\hat{L}} \in Y_L$ (as $w_{0\hat{L}}(r_{i_j}) \ne r_i$ for any $r_i \in \Pi_L$, for $w_{0\hat{L}}(r_{i_j}) = r_i$ for some $r_i \in \Pi_L$ implies that $r_{i_j} = r_i$ and $w_{0\hat{L}}$ is a product of reflections corresponding to roots orthogonal to r_{i_j} , and so for all $w_k \in \hat{L}$, $w_{i_j} w_k = w_k w_{i_j}$, which is a contradiction). Now consider $(w_{i_j} w_{0\hat{L}})^{-1} = w_{0\hat{L}} w_{i_j}$. Then suppose $w_{i_l} \in L$, $w_{i_l} \ne w_{i_j}$. Then $w_{0\hat{L}} w_{i_j}(r_{i_l}) \in \Phi^+$. Also $w_{0\hat{L}} w_{i_j}(r_{i_j}) \in \Phi^-$. Suppose $w_k \in \hat{L}$. Then $$\begin{split} w_{0\hat{L}} \, w_{i_j}(r_k) &= w_{0\hat{L}}(r_k + u r_{i_j}) \quad \text{with } u \geqslant 0 \\ &= w_{0\hat{L}}(r_k) + u w_{0\hat{L}}(r_{i_j}). \end{split}$$ If u=0, that is, if $w_{i_j}w_k=w_kw_{i_j}$, then $w_{0\hat{L}}w_{i_j}(r_k)\in\Phi^-$. If u>0, as $w_{0\hat{L}}(r_k)=-r_i$ for some $r_i\in\Pi_{\hat{L}}$, and $w_{0\hat{L}}(r_{i_j})\in\Phi^+$, $w_{0\hat{L}}(r_{i_j})\neq r_{i_s}$ for any $r_{i_s}\in\Pi_{\hat{L}}$, we have $w_{0\hat{L}}w_{i_j}(r_k)\in\Phi^+$. Hence $w_{0\hat{L}}w_{i_j}\in Y_M$, where $$\begin{split} M &= \{L - \{w_{i_j}\}\} \cup \{w_k \in \hat{L} : w_{i_j} w_k \text{ has order } > 2\} \\ &= \{L - \{\{w_{i_j}\}\} \cup \{w_k \in \hat{L} : \text{ the node corresponding to } w_k \text{ in the graph of } \\ W \text{ is joined to that corresponding to } w_{i_j}\}. \end{split}$$ Now |M| > |L| if the node corresponding to w_{i_j} is joined to at least two nodes corresponding to elements of \hat{L} , and then $L \in S_1$ by induction. Let P_i be the node of the graph of W which corresponds to $w_i \in R$, $1 \le i \le n$. Then suppose P_{i_j} is joined to only one P_k for all $w_k \in \hat{L}$. Then the above argument shows that $L = \{w_{i_1}, ..., w_{i_m}\}$ and $M = \{w_{i_1}, ..., \hat{w}_{i_j}, ..., w_{i_m}, w_k\}$ belong to the same S_i , where i = 1 or i = 2. Since $|L| \le n - 2$, $|\hat{L}| \ge 2$. Let w_{k_1} and w_{k_2} be any two elements of \hat{L} , such that there exists a sequence $P_{k_1} = P_{j_0}, P_{j_1}, ..., P_{j_r} = P_{k_2}$ of nodes such that P_{j_i} and $P_{j_{i+1}}$ are joined for all i, $0 \le i \le r - 1$, and P_{j_i} corresponds to an element of L for all i, $1 \le i \le r - 1$. If r = 1, then P_{k_1} and P_{k_2} are joined. Without loss of generality, we may suppose there exists $w_{i_2} \in L$ such that P_{i_2} is joined to P_{k_1} . Then let $M = \{L - \{w_{i_2}\}\} \cup \{w_{k_1}\}$. M and L belong to the same S_i , and by the above, as M has an element w_{k_1} such that $w_{k_1}w_{i_2}$ and $w_{k_1}w_{k_2}$ both have order >2, where $w_{i_2}, w_{k_2} \in \hat{M}$, $w_{i_2} \ne w_{k_2}$, then $M \in S_1$. If r = 2, then L and M are in the same S_i , where $M = \{L - \{w_{i_1}\}\} \cup \{w_{k_1}, w_{k_2}\}$, and by induction $M \in S_1$. If r > 2, define $$\begin{split} L_0 &= L, \\ L_1 &= \{L - \{w_{j_1}\}\} \cup \{w_{j_0}\}, \\ & \dots \\ L_{r-2} &= \{L_{r-3} - \{w_{j_{r-2}}\}\} \cup \{w_{j_{r-2}}\}. \end{split}$$ Then $L_0, L_1, ..., L_{r-2}$ are all in the same S_i , and by the above, $L_{r-2} \in S_1$. Hence $L \in S_1$. Then $S_2 = \emptyset$, and so H has precisely three blocks. 5.3 THEOREM. Let H be a 0-Hecke algebra of type (W,R). Suppose W is decomposable, and let $W=W_1\times W_2\times \ldots \times W_r$, where each W_i is an indecomposable Coxeter group, and the corresponding Coxeter system is (W_i,R_i) . Let H_i be the 0-Hecke
algebra of type (W_i,R_i) , and let m_i be the number of blocks of H_i . Then H has $m_1m_2\ldots m_r$ blocks. PROOF. Suppose that $1 = \sum_{i=1}^{t} e_i$ where the e_i are mutually orthogonal centrally primitive idempotents in H. Then the number of blocks of H is equal to t. Now for all $w \in W_i$, $w' \in W_j$, where $1 \le i, j \le r$ and $i \ne j$, we have that $$a_w a_{w'} = a_{ww'} = a_{w'w} = a_{w'} a_w,$$ and so it follows that if f_i is a centrally primitive idempotent of H_i , then $f_1 \dots f_r$ is a centrally primitive idempotent of H. Suppose $1_{H_i} = \sum_{j=1}^{t(i)} f_{ij}$ where for a fixed i, $\{f_{ij}: 1 \le j \le t(i)\}$ is a set of mutually orthogonal central primitive idempotents in H_i . Then $1_H = \sum_{j_1=1}^{t(1)} \dots \sum_{j_r=1}^{t(r)} f_{1j_1} \dots f_{rj_r}$, a sum of mutually orthogonal central primitive idempotents in H, and so H has $t(1)t(2)\dots t(r)$ blocks, where $t(i) = m_i$. ## Acknowledgement This work was carried out while the author was at the Mathematics Institute, University of Warwick, Coventry, England, supported by a scholarship from the Association of Commonwealth Universities. #### References - N. Bourbaki (1968), Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Hermann, Paris). - R. W. Carter (1972), Simple groups of Lie type (John Wiley and Sons, New York). - C. W. Curtis and I. Reiner (1962), Representation theory of finite groups and associative algebras (Interscience Publishers, New York). - L. Dornhoff (1972), Group representation theory, Part B. Marcel Decker, Inc., New York). - L. Solomon (1968), 'A decomposition of the group algebra of a finite Coxeter group', J. Algebra, 9, 220-239. - R. Steinberg (1967), Lectures on Chevalley groups (Yale University). Technical Education Division Education Department of W.A. 36 Parliament Place West Perth, Western Australia, 6005, Australia