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Abstract

The structure of a 0-Hecke algebra H of type (W, R) over a field is examined. H has 2" distinct
irreducible representations, where n = | R |, all of which are one-dimensional, and correspond
in a natural way with subsets of R. H can be written as a direct sum of 2” indecomposable left
ideals, in a similar way to Solomon’s (1968) decomposition of the underlying Coxeter group W.

Subject classification (Amer. Math. Soc. (MOS) 1970): 16 A 48.

1. Introduction

NotaTON. {i}, ..., §...,i,} denotes the set {i,...,i,}—{i}, U denotes set union
and n denotes set intersection. (xyx...), denotes the product of the first n terms of
the sequence x,y, x, y, X, ... ACC denotes the ascending chain condition and DCC
denotes the descending chain condition. Let S be a set and A a subset of S. Then
| A| denotes the number of elements in 4, and A denotes the complement of 4 in S.

Let K be any field, and let (W, R) be a finite Coxeter system, with root system @,
positive system ®+ and simple system Il. For each JS R, let ®;, @} and I1; be
the corresponding root system, positive system and simple system. w;€ R is the
reflection in the hyperplane perpendicular to r;€Il. For each JS R, let

X;={weW: wlIl;))c®+} and Y,={weW: wlIl)=®+,wIl;)<®},
where J = R—J. We shall assume all the standard results on finite Coxeter systems,

as found in Bourbaki (1968), Carter (1972) and Steinberg (1967).
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1.1 DerFINITION. The 0-Hecke algebra H over K of type (W, R) is the associative
algebra over K with identity 1 generated by {a;: w; € R} subject to the relations:
(i) a} = —a; for all w,eR,
(ii) (a;4;50;..)n, = (a;0;a;...), for all w, w;€R, w;#w;, where ny = the order
of wyw;in W,

For all we W, define a,, = a;, ... a;,, where w = w, ... w; is a reduced expression
for we W in terms of the elements of R. Note that g, = 1, where 1, denotes the
identity element of W. It is easy to show that a,, is independent of the reduced
expression for w, and that every element of H is a K-linear combination of elements
a,, for we W.

By Bourbaki (1968) (Exercise 23, p. 55), {a,,: we W} are linearly independent
over K and so form a K-basis of H.

1.2 SoME EXAMPLES. (i) Let G = G(g) be a Chevalley group over the finite field
F = GF(q) of q elements, where g = p™ for some prime p and positive integer m.
Then G has a (B, N) pair (G, B, N, R) and Weyl group W such that for each w,eR
there is a positive integer c; such that | B: Bn B*| = ¢%. If K is a field of character-
istic p, then the Hecke algebra Hx(G, B) is a 0-Hecke algebra.

(ii) Let G be a finite group with a split (B, N) pair (G, B, N, R, U) of rank n and
characteristic p with Weyl group W, and let X be a field of characteristic p. Then
the Hecke algebra Hx (G, B) is a 0-Hecke algebra of type (W, R) over K.

1.3 LEMMA. For all w,eR and all we W,
[aw‘w if lwyw) = l(w)+1,
a;a,, =
—ay, flww)=Iw)-1;
Ay, I Hwwy) = I(W)+1,

Q4 ={
—a, ifl(ww) =Kw)~1.

Proor. If I(w;w) = I(w)+1, then a,,,, = a;a,, by the definition of a,,,,. Suppose
I(w; w) = I(w)—1; then there is a reduced expression for w beginning with w;: say
w = w; W’ where I(w) = I(w')+ 1. Then a,, = q,a,,, and so

a;8,=a0;0:0y,, = —Q;Qyy = —Qqy,.

Similarly for a,,a;.

1.4 COROLLARY. (1) For all w, w' € W,
(@) aya,, = ta,, for some w” € W, with I(w") > max (I(w), [(w"));
(b) a0,y = G,y if and only if ww') = l(w)+1I(w');
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©) apa, =(—1)"a, if and only if Wr)e®~ for each r,cll;, where
J = {w;€R: w; occurs in some reduced expression for w'}.

(d) apa, =(—1)"a,, if and only if (W) 1(r)eD for each r,cIl;, where
J ={w;€R: w; occurs in some reduced expression for w};

(e) a,a,, = ta,. with (w")>I(w), where I(w)>I(w"), if and only if there exists
r.€lly such that w(r))e @+, where J = {w;€R: w; occurs in some reduced
expression for w'}.

(2) Let wy be the unique element of maximal length in W. Then for all we W,

Ay, = (— 1 a, and a,a,=(—1)"a,.

2. The nilpotent radical of H

Let N be the nilpotent radical of H. Since H is a finite-dimensional algebra over
K, H has the DCC and ACC and so N is also the Jacobson radical of H, and is the
unique maximal nilpotent ideal of H.

There is a natural composition series for H, consisting of (two-sided) ideals of H
such that every factor is a one-dimensional H-module. This series arises as follows:
list the basis elements {a,,: we W} in order of increasing length of w, and if w,
w’' € W have the same length it does not matter in which order a4, and g, occur
on the list. Rename these elements Ay, ks, ..., Ay, Tespectively. Note that ; = 1 and
hw, = a,,,. Let H; be the ideal of H generated by {h,: m>j}. H; has K-basis
{h: m>j} and dimension | W|—j+1. Then

2.1 H=H,>Hy>...>Hyp =a, H>0

is the natural composition series of H described above. H;/H; , is a one-dimensional
H-module, 1<i<|W]|, where Hy,q =0, with basis h;+H;,,, where h; = a,, for
some we W. Either a2 = (—1)™a,, or a? € H;,,; in the first case, the factor ring
H,/H; , is generated by an idempotent, and in the second case it is nilpotent.

2.2 LEMMA. The number of factors which are generated by an idempotent is equal
to 2™, where n = | R|.

Proor. The factors generated by idempotents correspond to elements we W
such that a2 = (—1)*’q,, Let we W be such an clement. Write w = w; ... w;,
where I(w) = 5, and letJ = {w;: 1 <j<s}. Then we W, and by 1.4(1c), w(ll )= o
Hence w = w,;, the unique element of maximal length in W;. Conversely, for
each subset J of R, a2, , = (—1)*gq, . Hence the number of factors which are
generated by an idempotent is equal to the number of subsets of R, that is, 2%,
where n = | R|.
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By Schreier’s theorem, any series of ideals of H can be refined to a composition
series, and all so obtained have the same number of terms in them as the patural
series, and with the factors in one—one correspondence with those of the natural
series. In particular, consider H> N> 0. This can be refined to a composition series
H=H\>..>Hyp>Hpy,;=0, where N=H,, 2<r<|W|+1. Now each
factor Hy/Hy,,, i>r, is nilpotent as H;<N, and each factor Hy/H;,, i+1<r,
must be generated by an idempotent as H;/N< H/N, a semi-simple ring. Hence the
number of factors which are nilpotent is equal to the dimension of N. Thus,
dim N = | W|—2", where n = | R|.

We can, however, give a precise basis of N.

2.3 THEOREM. Let we W, and suppose w+# wy; for any JS R. Write w = w; ... w,,
I(w) =, and let J(w) = {w; : 1<j<s}. Then E(w) = a,,+(— Ity s
nilpotent, and {E(w): we W, ws# w,yy for any J< R} is a basis of N.

PrRoOOF. Show E(w) is nilpotent by induction on /(wgyj(,,))—I(w). Note that if
w = w,y for some JS R then E(w) = 0. Suppose (Wyz(,,)) — (W) = 1. Then since a
reduced expression for w involves all w; €J(w), w# wy (), there exists r;€ll 5,

such that w(r;) e ®*. So @ = (— 1y g, . Thus
EW)? = a3, + 84 By, + iy Qo+ Qs
=ab, ., Where b= (—1y®1=142(— 1)) 4 (1))

=0 as l(wys () = I(W)+1.

Now suppose I(Wg s (,)) — {(w)> 1. Consider the product a,,a,, Since w# Wyj (s
there exists r;€ll;(,, such that w(r;)e®+. As any reduced expression for w
involves all w;eJ(w), we have a,a,, = (—1)2W3g  with weW;, and
I(w') > l(w). Further, J(w') = J(w). Then

E(w)2 = 0120 + 2( - l)l(wol(u))+1 awol(w) + ( - l)l(wo'"",) awo.l(w)
= (1) Ay +(— 1) @osum+1 Qo051
= (= 1)) (@ + (— e HwIt g

= (= 1)) E(w).

As [(w')> I(w), either w' = wy;(,,) and thus E(w)®> =0 or w’'+# wyz(, and then by
induction E(w') is nilpotent. Thus E(w) is nilpotent.

Finally, note that we get a nilpotent element for each we W, w+# w,, for any
J< R. The set of all E(w), w# wy; for any J< R, is obviously linearly independent,
and there are | W|—2" elements in all, where n =| R|. Hence they are a K-basis
for N.
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2.4 COROLLARY. H/N is commutative.

ProoOF. We show that a;a;—a;a;€ N for all w;, w;e R. If a;a; = a;a,, the result is
obvious. So suppose a@;a;#a;a;. Then we can form E(w;w;) and E(w;w;) and
E(w,w))— E(w;w;) = a;a;—a;a,€ N as each of E(w;w;) and E(w;w;) is in N.

3. The irreducible representations of H

Consider the one-dimensional H-modules which arise from the natural compo-
sition series of H. Let the factor H;/H, , be generated as left H-module by a,,+ H; ;.
The action of H on this element is determined as follows: for each w, e R,

{ —(a,+H,,) fwir)ed-,

oot Hien) = if wi(r) €O,

Forany we W, let J(w) = {w;: 1 <j<s} where w = w;, ... w; is a reduced expression
for w. Then for w e W,

(=1 a,+Hyy) i wi Il )@,
a{a,+Hy) ={ 0 if there exists r; €1l 5, such
that w=i(r,) e @+,

Hence the action of H on a,,+ H;,, depends on w=L

3.1 DerINITION. For each JE R, let A be the one-dimensional representation of
H defined by
0 ifwed,
Afa) = «
—1 ifw;ed.
For all we W, let w=w, ...w; with I(w)=s. Then Aj(a,) = As(a;)... A,(a;).
Extend A; to H by linearity.

For each JS R, let H;;)/H;s)41 be the factor of the natural series which is
generated by a,,;+H;;)4;. Then the left H-module H;(;)/H; )4, affords the
representation Ay of H.

Since each composition factor of H is one-dimensional, it follows that all
irreducible representations of H are one-dimensional. Let p be an irreducible
representation of H. Then p is completely determined by the values u(a;) for all
w;€R. Since p is an algebra homomorphism, p(a;)? = —u(a;) for all w;e R. Let
w@) = u;eK for all w;eR. Then u? = —u; in K implies that #; =0 or u;, = — 1.
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Thus each irreducible representation of H can be described by an n-tuple (i, ..., 4,,),
where n = | R|, with #; =0 or —1 for all i. In particular, A, corresponds to the
n-tuple (uy, ..., u,) where u; =0 if w;€J and u; = —1 if w;eJ. There are 2" such
irreducible representations, and they all occur in the natural series of H.

2™ maximal ideals of H are determined as follows: for each JS R, form the
n-tuple (u,, ...,u,), where u; =0 if w,eJ and u; = —1 otherwise. Let M; be the
left ideal of H generated by {a,—u;1: w;€ R}. Then M, =kerA;, and as each
A; is irreducible, M is a maximal left ideal of H.

Now H/N is semi-simple Artinian. So by extending K to its algebraic closure K
and considering H as an algebra over K, we deduce that

HIN>RoK®...®K, a direct sum of 2" fields.
(Actually, we will show that
HINK®K®...®K, 2" copies of K,
regardless of which field X is.)

4. Some decompositions of H

For each JS R, let H; be the subalgebra of H generated by {a;: w,€J}.

4.1 DErFINITION. For each JS R, let

er= % @, oy=(-1f*a,,,
weWy

4.2 LEMMA. For all w;elJ,
a;e;=0=¢ya; and a,0y=-—0;=0;a,.
Proor. Use 1.3.

4.3 LEMMA. Let wo; = w; ... w;, I(Wo;) = 5. Then
ey =(1+a;)...(1 +a;)
and is independent of the reduced expression for wgyy.
Norarion. For all we W, if w = w; ... w; with I(w) = 1, write
(1+a,]=1+a)...(1+a;).

By the following proof it follows that [l +a,] is independent of the reduced
expression for w.
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Proor. Firstly, we show that [1 +a,, ] is independent of the reduced expression
for wys. Since we can pass from one reduced expression for wy; to another by
substitutions of the form (w;w;w;...)n, = (W;w;w;...),, i#j, where ny is the
order of w; w; in W, we need to show that

[1 +a(w,w,w,...),,0,] =1 +a(ijmj...) ]

",

To do this, we use induction on n, n<ny, to show that

n n—1
[l +a (waopo;... ),,] =1+ mzla(w‘wfw;... | + m}-‘lla(wpmv,... Yme

This is clearly true for n = 1. Suppose it is true for all integers <k, and suppose
that k is odd. Then
[l +a(w‘w w;...);,.,,l] = [l +a(w(ij‘),‘] (1 +aj)
k-1

k
= (1 + E a(w,w,w‘...),.."' 2 a(w,»wm,...),,.) (1 +a1)
me=l m=]

k k-1
= (1 + mz=1a (w‘ij‘... ),,. +m§1a(ij;w,... ),,) + aj

}(kz—l) wcz—n
+ a a;+ a e @
oo, oo dam G & S0 Jum

wcz-n wi-n
+ a a1 BT A waspw;... am Y+
m=l w0y Yam—179 Munl 0Dy Yo
Now,

Aropooy.. Jamar G = —Btrwgopo, an % 1 SMSHK—1),

and

W aoyonoy.Iamr b = ~ Aliopogsy. Jem—y B 1 SM<IEK-1),

where @, wy,...), = 1. Then
k=1

k
[l +a(w;wﬂn‘...);+1] =1 +mz=1a(wmpa‘...),,.+ ’Ela(ijlw,...),.

+ a(wnopa;...)gaj + a(w,w‘w,... | J Y a;

k+1 k
=1+ "Ela(wmpo‘...),.+m§10(w,wm,...),,'

Similarly, we get the above result if we assume k is even.
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Similarly, for all n<n,,

n n-1
[ +a(wpm,...),.] =1+ mzla(w,w,w,...),,"' mzla(w‘wp‘...),,.'

Then, for all n<ny,

1+ a(w}wfuy‘...),,] -1+ a(w,wnaj...),,] = A(waopw,...), ™ Swpow,...)

When n = ny, this difference is zero, and so

[1 +a(w‘w,w‘...),.”] = [1 +a(W’W‘W’... ’,.”]

and thus [1+a,,,] is independent of the reduced expression for w,, chosen.

Finally, [1+a,,,] is a linear combination of certain a,, with we W;. We show by
induction on /(w) for all we W; that a,, occurs in the expansion of [1 +a,, ] with
coefficient 1. If /(w) =0, then w =1 and obviously 1 occurs with coefficient 1.
Suppose I(w)>0. Let w = w'w;, w' € W, w;€J, where I(w) = I(w')+ 1. By induction
a,y occurs in [1+a,,,] with coefficient 1. Choose an expression for wy; ending in
wj, and then [1+a,,,] = [1+ay,,,](1 +4;). Since I(w'w;) > I(w'), the only contri-
bution to a,, from the last bracket is from the 1. If instead we take a; from the
last bracket, we get a,,, with coefficient 1. Now suppose a,, occurs in [1+a,,,,,]
with coefficient m. Then

ma,(1+a;) = ma,+ma,a; = ma,~ma, =0 asw(r)ed .

Thus a,, occurs in the expansion of [1+a,,,] with coefficient 1, and hence
e J = [1 +aWoJ]‘

4.4 CoroLLARY. (1) If J, L& R, JnL+®D, then oye;, =0 and eyoz, = 0.

(2) If LSJSR, theneyey=ey=eyep andopoy =0y =0;0;.

Proor. Use 4.2 and 4.3.

4.5 LEMMA. Let ye Y, for some JS R. Thenay 03 = a,and a,05e5 = L ew, Qyws

with I(yw) = I(y)+ l(w) for all we Wy, that is, a, 05 e, is equal to a, plus a sum of
certain a,, with I(w)>I(y).

Proor. If yeY;, then y = ww,; for some we W with I(y) = [(w)+1(w,z). Hence
a,05 = (—1)wPq, a, a,. andsoa, o0z =a, NowforallweW,, asyeY,;< X,
we have I(yw) = I(y)+I(w). So for all we W}, a,a,, = a,,,. Thus

a,05e5=ayey= a = =a,+
v Lhid we}l:VJ vaw wazl:V.yayw av weWEJ.wﬂamm

and l(yw)>1(y) if w#1, weW,.
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4.6 LeMMA. For y€ Yy, a, occurs in the expansion of a, ez o0z with coefficient 1,
and if, for any we W, a,, occurs in the expansion of a, ey 03 with non-zero coefficient,
then w =y or I(w)>I(y).

PROOF. By 4.5, a,e; = Ty e, Gy With I(yw) = I(y)+I(w) for all weW;. So

Gy€505= 3 Gyyp05=0y05+ 2 Guy0j.
weWy weWsw¥l

From the proof of 4.5, a, 05 = a,, and for all weW;, w#1,
Ay, 05 = Gy — 1) a,, . = ta,

for some w' € W with I(w") 2 I(yw) > I(y).

4.7 THEOREM. (i) The elements {a,05e; =a,e;: yeY;,JER} are linearly
independent and form a basis of H.

(ii) The elements {a,ey03: y€Y;,J< R} are linearly independent and form a basis
of H.

PROOF. (i) Suppose that for each ye Y, and each J< R there is an element k, € X
such that 3 ;. 3 . 7, kya,e5 = 0. Let

Sn = z 2 ky ay ey.
JER veYslv)2n
We show that if S, = 0, then k,, = O whenever /() = n and hence S,,, =0.

Let y5, ..., », be those elements of W for which I(y;) = n. Then by 4.5, if y;€Y;
for some J(i)S R,

ay,e;z() = ay,+(a linear combination of certain a,, where I(w) > I(y))-

Hence,
[
S, = Xk, a,,+(a linear combination of certain a,, with I(w)>n).
i=1

If S, =0, then as {a,,: we W} are a basis of H, we must have k, =0 for all 4,
1<i<t Then S,,; =0.

Since S, = 0, k,, = O for all y whenever I(y) = 0, and then S; = 0. By induction,
all k,, are zero, and so {a, e;: y€Y;,J< R} is a set of linearly independent elements.
As there are | W| of them, they must form a basis of H.

(ii) This is proved using similar arguments.
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4.8 COROLLARY. (i) For any LS R, the elemenis of the set
{ay05e;03 = ayeyo0p: yeYyJ= L}

are linearly independent.

(i) For any L= R, the elements of the set {a,ejo0z5e: y€Ys,J2L} are linearly
independent.

PROOF. (i) a,€; 05 = Ty w, 005 As JSL, L<J and 50 6,50 = a,,;. Then

ayey05=0a,0p+ X Gy,0f
w e W w5l

=ay,+ X G,,0f asyeYy,
weW,wel

= a,+(a linear combination of certain a,, with I{(w)> I(y)).

The result now follows by using an argument similar to that used in the proof
of 4.7,

(ii) For any yeY,, a,e;05 = ay+(Zypwkyay,), where k,eK and &, =0 if
I(w)<I(y). Then

ayeyozer = a,,eL+(wZWkwa,,) er, ky€K given as above,
€
=a,+( X k;,a,) for certain k, €K, with k,, = 0 if I(w) <I(y).
weW

Once again the result is given using an argument similar to that given in the proof
of 4.7.

4.9 THEOREM. (i) For each a€ H and for any J< R, there exist elements k, € K
such that

aojey= 3, kyaye;=( X kyajoze;).
vel¥y veX¥s

(i) For each ac H and for any JS R, there exist elements k, € K such that

ae;05= 3 kya,e;o;.
veXy

Proor. (i) As {a,,: we W} is a basis of H, we may write @ = 3, . 4,8, With
u, €K for all we W. It is thus sufficient to express a,,05 e as a linear combination
of the elements {a,e;: yeY,} for all we W. Use induction on /(w) to prove this.

If [(w)=0, then w=1 and loje; = (—1y*)q, e;. The result is true for
w=1as wyy€Y;.
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Suppose I(w)>0. Let w=w,w’ for some w,eR, w e W, Il(w)=Iw)+1. By
induction,

aw,o‘;e.,=”2;,7 uya,e; for some u,ek.
exry

Then

a,05e5 = a;d,05€y = y% u,a;a,e;.
EXy

Hence for each y € Y; we have to express a;a, e as a combination of {a,e;: ve Y,}.
Now for any ye Yy,

—aye;, ifyNr)ed-,

0, if y=Y(r;) = r; for some r;ell,,
(4.10) a,a,e; = as then a;a, = a,q;,

ayy€y, where w,yeY; if y(r,)ed*,

yXr,)#r; for any r;ell ;.

The result follows. !

(i) Since {a,ep0;: yeY[,LE R} is a basis of H, there exist elements u, €K
such that

aej;o05 = u,a,eror.
s LZE:RVEZYLV”LL

Choose any M< R with MnJ#@. Then ae; 05 ey = 0; so

> 3 u,a,eropep=0.
y @y €L OF €M
LSRyeY;:

But o7 ey =0 if Lo M#@. So the only non-zero terms in the above equation
involve those LS R for which Ln M = &. Thus

> u,a,e;opepy=0.
vy €Lof ey
LMSLSRyeYy

By 4.8(ii), u, =0 for all yeY;, MSL<R. Hence we have that u, =0 for all
yeYy, with LnJ#@. Thus

aejy045 = u,a,eros.
s LEZJUGEYLnyL

Let S;={weW: u,#0, weY, for some L<J}. Suppose S;#. Choose an
element y,€.S; of minimal length, and suppose y,€ Y, for some J,<J. Consider

ae;0505, = LECJJ VCZY u,a,e50:03,.
SJyYsY,

As Jy<J, ej05035, = ey05,=0. Then
™ Y X uyayerojoj5,=0.

LceJ veY,
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Now if LeJ and yeY;,

a,e;0;05 =4a,03 + P k,a
VELTLTe T T e T ewitostay ©
where k€K, and a,03, = *a,, for some we W with [(w) 2 1(y).
Since y, is of minimal length in S, the coefficient of a,, on the left side of (*) is
uy,. As {a,: we W} is a basis of H, so u, =0, which is a contradiction. Hence
Sy=@Qandae;o; =3, y,u,a,e;05.

REMARK. Let z€Z. Then z can be regarded as an element of K in a natural way
—it is the element z1 x = 1z +... + 14 (z times), where 1 is the identity of K.

4.11 CoROLLARY. (1) For each we W, there exist rational integers u, = u,(w)
such that a,05e; =%, y,u,a,05¢€;.

(2) For each we W, there exist rational integers u, = u,(w) such that

a,e 053 = 2, U,a,€503.
u% J vy, ¥y J

Proor. (1) Follows from the proof of 4.9(1).

(2) List the elements y,, ..., ¥,, of Y, in order of increasing length; if i <j then
I(y)) <l(y;). Let c;; be the coefficient of a,, in @, e, 0. Clearly c;; is an integer as
a,e;03 is an integral combination of certain elements a,,, w' e W. Also, ¢;; = 1
foralli, 1 <i<m,and c;; = 0if i <j by 4.6. Let h; be the coefficient of @, in a,,e;03.
Clearly A, is an integer, and

m m
hi= ijcij where aneg0j5 = Ekiame.,oj
i=1 =1

for some k;€ K. Hence, h; = 3!z} k;c;+k;. Let i = 1. Then hy = k,, an integer.
Now use increasing induction on i to show k; is an integer for all {, 1 <i<m.

4.12 THEOREM. (1) Ho ; e is a left ideal of H with K-basis{a,05e; =a,e;. yeY,}.
Hence dimHojey; = |Y;|. Let Yy ={yy,...,ye}, with {(y)<lyy) if i<j, and let
HJ,'i = {Z‘;_‘kjawo‘;e_,: kJGK}; then

Hoje; =Hy >H;o>...>H;,>0

is a composition series of Hoje; of left H-modules, and Hy;/H;,,, affords the
representation Ay of H, where y;1€ Yy, and Hy 4y = 0. Finally, H = X8 . Hoj e,
a direct sum of 2" left ideals, where n = | R|.

(2) Heyo3 is a left ideal of H with K-basis {a,eyo;:y€Y;}. Hence
dimHejyo5 =|Y;|. LetY; = {yy, ..., ¥s}, With (y) <I(y;) if i<j, and let

8
HJ,'i = {jékjayjeJOj: kjeK .
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then
Heyo3=H;3>Hyp>...>H; >0

is a composition series of Heyoj of left H-modules, and H;[H; ;., affords the
representation Ay of H, where y7' € Yy, and Hy 4 = 0. Finally, H = 3% He; 03,
a direct sum of 2™ left ideals, where n = | R|.

PrOOF. The results follow by 4.7, 4.8, 4.10 and the fact that

dmH=|W|= 3 ||
JER

4.13 CoroLLARY. Hoje; and Hejoj are indecomposable left ideals of H, for
all JE R, and they are isomorphic as left ideals of H.

Proor. From the theory of Artinian rings and the fact that H/N is a direct
sum of 2* irreducible components (see remarks at the end of Section 3), it follows
that H can be expressed as the direct sum of 2” indecomposable left ideals. Hence
Hoje; and He;o0; must be indecomposable left ideals of H for all JS R.

To show they are isomorphic, first note that Hey;0;5 = Hoje;03. Then define
the homomorphism f;: Hoje;—>Heyo3 by filacje;)=aoze;0;, for all
aozjeyeHojzey. As f; is given by right multiplication by o3, it is well defined and
is a homomorphism of left ideals of H. f, is onto, since He;0; = Hojeyo0; and
an element aoje;05€ Heyoyz is the image under f; of aojze,. f; is one-one as
dim Hoje; = dim He; 03. Hence f; is an isomorphism of left ideals of H.

4.14 COROLLARY. (1) For any LER,

Ho; = Y®Hojeyo;, and dimHoz= ¥ |Y,;|=]|X;z]|
J<L JEL

(2) For any LER,

Hep= Y®Heso5er, anddimHer= ¥ |Y,]=]|X.|.
J2L J2L

ProOOF. Use 4.12 and 4.8.

4.15 THEOREM. For any JS R,
He; ={ac H: aa, = 0 for all w;eJ}

={aeH: a(l+a)=a for all weJ}.
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Further, Hey; = X%, Hoze;, and He; has basis {a,e;: we X;} and dimension
| X;|. Finally,

Hoje; ={acH: aa; =0 for all w;eJ, ae;, = 0 for all L> J}
= Heyn( N kerey),
JoL

where ker ey, = {ac H: aey, = 0}.

ProoF. Clearly, He;<{ac H: aa; = 0 for all w;eJ}. Conversely, take ac H and
suppose aa; =0 for all w;eJ. Then a(l+a,) =a for all w;eJ, and so ae; =g,
and so a€ He;. Thus the first part is proved.

Now Hoger<He; for all L2J, and so X$.;,Hoze;<He;. By 4.4,
dim He; =| X,/|, and as dim Hoz e;, =| Yz |, we have He; = 3,9, , Hoz ey,

Let a= X, wupa,cHe;, where u,€K. Let w;eJ. Then aa; =0, and so
Dwew Uy Apa; = 0. Now

Y u,a,a;= > U > U, a,, =0.
weW weW,wirg)edt weW,wir) ed™
That is,
U, Qo™ Y Uy @y, = 0.
weW,wirgde®™ weW,wirg)ed™

Since {a,,: we W} form a basis of H, we have u,,,, = u,, for all we W with w(r,) ed-,
Hence u,, = y,,, for all we W, with w(r;)€e @+, Now if we W, w can be expressed
uniquely in the form w = yw;, where ye X, wyeW, and I(w)=I(y)+I(w;).
Write wy = w; ... w,, w;,€J, l(wy) = t. By the above, we have

Uy = Uy, = oo = Uy, = Uy

Hence a =3, x,u,a,e;. Conversely, for each yeX,, a,e;e€He;, and as
{a,e;: ye X} is linearly independent and dim He; = | X;|, {aye;: ye X} is a
basis of He;.

Finally, Hoje;<{acH:aa;=0 for all w;eJ, ae;, =0 for all L>J}. Let
a= 1Y, v, ¥, a,01€r, U, €K, satisfy aa; = 0 for all w;eJ and aey, = 0 for all
L>J. Since ae Hey, u, =0 for all ye Yy if JEL. Soa= X125 cv, Uy9y0LeL-
Set S;={weW: u,#0, weY,, L>J}. Suppose S;#@. Then there exists an
element y, of minimal length in S;; suppose y,€ Yy, M>J. Then aey = 0. Also
oyeyey =0as M>J. For other LoJ, if yeYy,

a,o0fer ey = a,er ey = a,+(a combination of certain a,,

we W, with Il(w) > I(y)).
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Thenaey =0gives Xy _ ; 2y v, %, 9y 0f €€y = 0. As y,is of minimal lengthin Sz,
the coefficient of a,, in the left-hand side of the last equation is u,,. By the linear
independence of {a,,: we W}, we have u, = 0, which is a contradiction. Hence
Sy=Qanda=3, y,u,a,05e;€Hoze;. Thus

Hosey ={acHe;: aer, = 0 for all L>J}.
4.16 THEOREM. For any J<= R,
Hoy;={acH: a(l+a) =0 for all w;eJ}.

Hoy has basis {a,: weYz,LcJ}, dimension |X;| and Hoy= X9, Hezoy.
Finally, Hesoy; ={acHoy: aoy, =0 for all L>J}.

ProOF. Similar to the proof of 4.15.

4.17 LeMMA. Let 5 be the character of the representation of H on Hoje ;. Then

Y takes values as follows: for each we W, let w = w;, ... w; be a reduced expression

Jor w, and set J(w) = {wy: 1<j<t}. Then §;(a,) = (— 1)) N (w), where Nj(w)
= the number of elements y € Y such that y (11 ;. ) S P~.

Proor. Use 4.10.

4.18 LEMMA. Let ¢, be the character of the representation of H on He;y. Then
& takes values as follows: for we W let w = wy, ... w,, be a reduced expression for w.
SetJ(w) = {w;,: 1<j<t}. Then ¢ ,(a,,) = (— 1) M;(w), where M ;(w) = the number
of elements x € X such that x X1 7, ) S @~. Also, My(w) = 3755 Nr(w).

PROOF. Hej has basis {q,e;: we X;}. For any w;€R,
r —ag,e; if wi(r)<0,

A€y, Where wywe X if wi(r)>0, and

a;a,ey = w(r,)#r; for any r;ell,

0 if w™(ry) = r; for some r;€ll;, for then

a;a, = a,a; and a;ey; = 0.
The result now follows.

4.19 LEMMA. Let p; be the character of the representation of H on Hoy. Then p.y
takes values as follows: for each we W, let w = w;, ... w;, be a reduced expression for
w, and set J(w) = {w;: 1<j<t}. Then py(a,) = (— 1)) L ,(w), where Ly (w) = the
number of elementsz€ Z j such that 2 (I ; (,,,)) S P, and Z y = {we W: w(Il )= @-}.
Notethat Z; = ¥ 1.7 Yz,
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PrOOF. Hoy has basis {a,,: weZ;}. For all w;eR,

{ —a, if w(r)<0,

a =

i Gy if wHr)>0.

If weZj, w;e R and w(r;) >0, then w,weZ,, for if r;eIl ;, w(r;) = —s for some
se®+, and w(s)<O0 if and only if s = r;. But if s = r;, w™I(r;) = —r,—impossible.
The result now follows.

4.20 COROLLARY. (1) ¢y = X ;5 3y for all JER.
@ py=2Zyar¥s for all JSR.

A direct sum decomposition of H into indecomposable left ideals is equivalent
to expressing the identity of H as a sum of mutually orthogonal primitive
idempotents. Let 1 = X ;crqs and 1= 3 ;cpps; be the decompositions of 1
corresponding to the decompositions H =}3¢. p Hoze, and H = X8_, He 05
respectively, where Hqy; = Hoze; and Hp; = Hejoj3. (There does not appear to
be a specific expression for the g, or the p; in terms of {a,05e;: yeY,} or
{a,ey05: y€Y;} respectively).

421 THEOREM. Let {qr: J< R} be a set of mutually orthogonal primitive idem-
potents with gy € Hoze; for all IS R such that 1 = X ;. nq,. Then Hoze, = Hy,,
and if N is the nilpotent radical of H, Noje; = Ng; is the unique maximal left
ideal of Hq,, and Hq;/Nq;~ K. Hq;/Nq; affords the representation A; of H
defined in 3.1. Finally,

HI/N~ 3® Hq,/Ng;~ KO K®...® K, 2" summands, wheren= R.
JER

PrOOF. By the theory of Artinian rings, Ng is the unique maximal left ideal of
Hgq,, and H/N> 33 p Hq;/Nq,. Since g;€ Hoze;, Hgy<Hojey. As

H= 3®Hq;= 3®Hoje,,
JER JSR

we must have Hq; = Hojze, for all J< R. Then Ng; = NHq; = NHojey; = Nojey
is the unique maximal left ideal of Hg;. But

Y  uyayojey:u,eK}
Ve ¥ pu#wol
is a maximal left ideal of Hoje; (see 4.10), and so
Ng;={ X  u,a,05e;: u,ek}.
ve X ,yskwed
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Then Hg;/Ng; is a one-dimensional H-module generated by a,, ;0 e;+ Ng; which
affords the representation A; of H, and since every element of Hg;/Ng; is of the
form ka,, ;05 e;+ Nq; for some k € K, Hq;/Nq;= K for all J< R. Hence the result.

4.22 THEOREM. Let {p;: J< R} be a set of mutually orthogonal primitive idem-
potents with py€ Hey o3 for all JS R such that 1 = 3 ;c ppy. Then Heyo; = Hp,,
and if N is the nilpotent radical of H, Nejo03 = Np; is the unique maximal left ideal
of Hp;, and Hp;/Np;= K. Hp;/Np; affords the representation A; of H defined in
3.1. Finally, HHN= $8. . Hp;/Np; = KO K® ... ® K, 2" summands, where n = | R|.

4.23 LemMA. {ka,,, ,,05e;: k€K} and {kayy,,, ey05: kEK} are minimal sub-
modules of Hojey and He;oj; respectively, where wyw,; is the unique element of
maximal length in Y;. These minimal left ideals both afford the representation X5
of H, where J={w;ER: there exists w;€J with wyw; = w;w,}, or, alternatively,
15 is defined by wy(I1;) = —I13.

4.24 Note. By the same methods, H = Z$.pe;05H and H= X% po5e; H,
both being direct sum decompositions of H into 2% right ideals, where n = |R |
Further, eyo; H has K-basis {ejoja,: y'€Y;}, and oje; H has K-basis
{ojeya,: y"1€Y,}. All the results for the left ideals He;, Ho;, He,035 and Hoje;
have analogues for the right ideals e; H, oy H, oje; H and ey o3 H respectively.

Let G be a finite group with a split (B, N) pair of rank n and characteristic p
with Weyl group W, and let K be a field of characteristic p. Then the above
decomposition of H = Hy(G, B) gives a decomposition of 1§, where 15 is the
principal character of the subgroup B of G, which will be discussed in a later paper.

5. The Cartan matrix of H

We have that H= Y%, U,, where U; = Hoze; is an indecomposable left
H-module. Thus {U;:J< R} are the principal indecomposable H-modules.
{Us/radU;: J< R}, where radU; is the unique maximal submodule of U, are
irreducible H-modules, such that M, = U,/rad U, affords the representation A;
of H.

DEeFINITION. The Cartan matrix C of H, where H is of type (W, R), with |R| =n,
is a 2™ x 2™ matrix with rows and columns indexed by the subsets of R, and if we
write C = (c;), then

¢y = the number of times M, is a composition factor of Uj.
13
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5.1 THEOREM, For all J, LE R,

cor =Yy (Y| =Yoo (Y)Y = cps.

Hence C is a symmetric matrix.

PROOF. U has K-basis {a,05e; = a,e;: yeY,}. Let yy, ..., y, be all the elements
of Y; written in order of increasing length; if i>j then /(y;)>/(y;). Then set
U;(0) = {Zjsiky,ay,e5: ky €K} Uy(i) is a left ideal of H for all i, and
U;@)>Uy(i+1) for all i, 1<i<s—1. Then Uy = U (1)>U;(2)>...>Uy(s)>0 is
a composition series of U, with U;(i)/U;(i+1) being an irreducible H-module
with basis a,, e;+U;(i+1) and affording the irreducible representation A,
defined in 3.1, where L is determined as follows: recall 4.10; let w;e R and y; €Y.

Then
—aye; if y7i(r) <0,
0 if y7Y(rj) = r;, for some r,€ll,
aj aw ey = {
Ayy65  Where w;y; = y, for some y,€ Y, with i</, if
\ y7Y(ry)>0 but y;Yr))#ry, for any riell.
Hence
~1 if y7%(ry) <0,
A YA aj e d .
0 if y7Y(rp)>0.

That is, y7leY;.
Hence ¢;;, = the number of elements yeY; such that y~1eY,

=|¥;n (YL)_II =|Y,n(Y;)?|

since if ye Yy n(Yy)™, then yleY, n(Y,)™L

5.2 THEOREM. Let H be the 0-Hecke algebra over the field K of type (W,R),
where W is indecomposable. Then if | R|> 1, H has three blocks. If |R| = 1, then H
has two blocks.

ProoF. If |R|=1, then W= W(4,) and H= H(1+a)® H(—a,), where
R ={w,;}. Both (14+4,) and (—aq,) are primitive idempotents as well as being
central. Hence H has only two blocks.

Now suppose that [R|>1. ep = [1+a,,] and (—1)}®q,, are primitive and
centrally primitive idempotents in H and so correspond to two distinct blocks.
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The other primitive idempotents in H, that is, {g;: J# @, R} as in 4.21, determine
at least one other block. We will show that provided W is indecomposable the
Cartan matrix C’ corresponding to the indecomposables U for J# @, R and the

irreducibles My, for L# @, R cannot be expressed in the form C' = [ G 0 ]

0 G
(see Dornhoff (1972), Theorem 46.3).
Suppose that C’ can be put in the form above. Let

S, ={J<R: U; and M; index the rows and columns of C;},
S ={J<R: U; and M index the rows and columns of C,}.

Suppose for some J< R, |J| = n—1 (where n =| R|), that J& S;. Then we show

(1) for all LR with |L|=n—1, LS,

(2) by decreasing induction on |J| for all J# @, R that J€ .

(a) Suppose J={wy,...,W;,...,w,} and L ={w,,...,W;,;,...,w,}, where the
nodes corresponding to w; and w;_, in the graph of W are joined. Then the order
of w;wy,, is greater than 2. Now wy; = w;€Y,; and wyz = w;,, €Y;. Since the
order of w;w;,, is greater than 2, w;,w;€Y; and w;w;,€Y,; that is,
Wi W; €Y, (YY)l Hence J€S, if and only if Le S,.

Hence if there is some J€ S, with |J| = n—1, then all L R with |[L| = n—1 are
in S, by the above.

(b) Suppose that for all JER with |[J|>m that J€S,. Choose L<R with
|L|=m. We show LeS,. Suppose L={w;,...,w;} with 1<i<..<i,<n.
Since W is indecomposable and L# ), R, then |YL| >1. Choose some wijeL and
w, €L such that w;,w;. has order r, where r>3. Then w; woz €Yy, (as woz(ry)#r;
for any r;elly, for wyz(r;) =r; for some r,ell, implies that r; =r; and wyz
is a product of reflections corresponding to roots orthogonal to r;, and so for all
wieL, Wi Wy, = Wy W, whichis a contradiction). Now consider (wil_ Wor) ™! = Wor Wy,
Then suppose w; € L, w; # w;. Then woz w, (r;) € @*. Also wyz, w;(r;) € O~. Suppose

wieL. Then
Wof, Wi,(" ®) = Wor(ry+ur. i,) with u>0
= Woz(ri) +uwo(ry).
If u = 0, that is, if Wy, Wy = W Wi, then wyz wij(rk)e(l)". If u>0, as wyp(ry) =—r;

for some r;ellz, and wyz(r))€Q*, wop(r)#r;, for any r; €ll;, we have
Woz, Wi (ri) E®*. Hence wyz w; €Yy, where

M ={L—{w}}u{w,€L: w,w, has order >2}
= {L—{{w,-!}} u{w,eL: the node corresponding to w,, in the graph of

W is joined to that corresponding to w;}.
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Now |[M|>|L] if the node corresponding to w;, is joined to at least two nodes
corresponding to elements of £, and then L€ S, by induction.

Let P; be the node of the graph of W which corresponds to w;eR, 1<i<n.
Then suppose P;, is joined to only one P for all w, €L. Then the above argument
showsthat L = {w,,...,w; }and M = {w,, ..., wi,,..., w; ,wy} belong to the same §;,
where i = 1 or i = 2. Since [L|<n—2,|L]>2. Let w;, and w,, be any two elements
of L, such that there exists a sequence P, = P, P;, ..., P, = P, of nodes such that
P;, and P, are joined for all i, 0<i<r—1, and P, corresponds to an element of
L for all i, 1<i<r—1. If r=1, then P, and P, are joined. Without loss of
generality, we may suppose there exists w; €L such that P; is joined to P, . Then
let M ={L—{w;}}u{w,}. M and L belong to the same S;, and by the above, as
M has an element wy, such that w, w; and w; w,, both have order >2, where
W;,, Wi, € M, w; #wy,, then MeS,. If r = 2, then L and M are in the same ;, where
M = {L—{{w; }} U{wy, wy,}, and by induction M€ S,;. If r>2, define

Ly=L,

Ly = {L—{w;}}u{w},

L_,={L, ;- {Wj,_,}} v {Wf,_,}-

Then Ly, L,,...,L,_; are all in the same S;, and by the above, L, ,€S;.
Hence L€ S;. Then S, = &, and so H has precisely three blocks.

5.3 THeOREM. Let H be a 0-Hecke algebra of type (W, R). Suppose W is
decomposable, and let W = Wy x Wy x ... x W,, where each W, is an indecomposable
Coxeter group, and the corresponding Coxeter system is (W, R;). Let H; be the
0-Hecke algebra of type (W,, R,), and let m; be the number of blocks of H;,. Then H
has mym, ... m, blocks.

PrOOF. Suppose that 1 = 3t_; e, where the e; are mutually orthogonal centrally
primitive idempotents in H. Then the number of blocks of H is equal to ¢.
Now for all we W;, w’ € W, where 1<i,j<r and i # j, we have that

Ay = Quny = Qurw = Qyy Qyps

and so it follows that if f; is a centrally primitive idempotent of H,, then f; .../,
is a centrally primitive idempotent of H. Suppose 1, = 25-‘31 fi; wherefor a fixed i,
{fi;: 1<j<1(i)} is a set of mutually orthogonal central primitive idempotents in
H;. Then lg =3, ... 34 f. .1, a sum of mutually orthogonal central

primitive idempotents in H, and so H has #(1)#(2) ... ¢(r) blocks, where (i) = m,.
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