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Abstract
We construct a geometry of interaction (GoI: dynamic modelling of Gentzen-style cut elimination) for
multiplicative-additive linear logic (MALL) by employing Bucciarelli–Ehrhard indexed linear logicMALL(I)
to handle the additives. Our construction is an extension to the additives of the Haghverdi–Scott categori-
cal formulation (a multiplicative GoI situation in a traced monoidal category) for Girard’s original GoI 1.
The indices are shown to serve not only in their original denotational level, but also at a finer grained
dynamic level so that the peculiarities of additive cut elimination such as superposition, erasure of sub-
proofs, and additive (co-) contraction can be handled with the explicit use of indices. Proofs are interpreted
as indexed subsets in the category Rel, but without the explicit relational composition; instead, execution
formulas are run pointwise on the interpretation at each index, with respect to symmetries of cuts, in a
traced monoidal category with a reflexive object and a zero morphism. The sets of indices diminish over-
all when an execution formula is run, corresponding to the additive cut-elimination procedure (erasure),
and allowing recovery of the relational composition. The main theorem is the invariance of the execution
formulas along cut elimination so that the formulas converge to the denotations of (cut-free) proofs.

Keywords: Geometry of interaction; Multiplicative Additive Linear Logic; Indexed Linear Logic; Cut Elimination; Traced
Monoidal Category; Execution Formula

1. Introduction
The indexed multiplicative-additive linear logic MALL(I), introduced by Bucciarelli– Ehrhard
(2000), is a conservative extension of Girard’s MALL in which all formulas and proofs come
equipped with sets of indices. The usual MALL is stipulated to be the restriction to the empty
set. The status of the indexed syntactical system is noteworthy as it stems from the denotational
semantics of Rel, a simple, yet pivotal categorical model of MALL. With the enabling of an explicit
notion of location in linear proof theory, the indices can enumerate the locations of formulas and
proofs, corresponding to denotational interpretations of MALL. The notion of location becomes
a requirement for the additives, although it is redundant for the multipicatives, for which the
singleton {∗} suffices. To work with parallelism, which the additives bring intrinsically, different
locations need to be handled rather than the sole location ∗. In the context of parallelism, superpo-
sitions are known to typically arise under the syntactic additive &-rule. Indices allow one to deal
with superpositions by identifying multiple occurrences of formulas in the different indices and
by enlarging (or restricting) the indices.
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1026 M. Hamano

The original motivation for indexed logic was to provide a bridge between a truth-valued
semantics (for provability) for MALL(I) and the denotational semantics of (nonindexed) MALL.
By means of this bridge, Bucciarelli–Ehrhard obtained a new kind of denotational completeness
theorem in Bucciarelli and Ehrhard (2000) for MALL and later extended it to the exponential in
Bucciarelli and Ehrhard (2001).

This paper investigates indexed MALL from the perspective of a dynamic semantics for cut
elimination, a topic that – to the best of our knowledge – has remained untouched aside from
the precursory work of Duchesne (2009) since the original work of Bucciarelli–Ehrhard (2000).
The dynamic semantics is the Girard project of Geometry of Interaction (GoI), whereby cut elim-
ination is modelled, using operator algebras (Girard 1989) and more generally traced monoidal
categories (Joyal et al. 1996). The GoI project was successful (Girard 1989; Haghverdi and Scott
2006) for MLL with the exponential, and inspired a new model of computation for β reduction of
λ-calculus (Danos and Regnier 1995). This paper aims to initiate an exploration of how to com-
bine the two notions of location, which the indexed logic brings, and of dynamics, which GoI
brings to cut elimination. The combination is important in understanding additive cut elimi-
nation. For this goal, we employ the indices to construct a GoI model for (non-indexed) MALL.
We combine the Haghverdi–Scott categorical GoI situation (Haghverdi and Scott 2006) with the
indices in such a way that that the original MLL GoI situation represents a collapse to the single-
ton index {∗}. The dynamics of cut elimination is captured by a feedback mechanism determined
by traces of morphisms interpreting proofs. We further augment the situation with two kinds
of actions, identical and zero, over the symmetries interpreting the cut rule. These two actions
provide representations of matches and of mismatches amongst locations. These come into play
during a Gentzen-style cut-elimination procedure, in which one encounters noncommunication
of individual proofs, due to the additive parallelism. Crucial instances of GoI situation such as
Rel+ andHilb2 (Haghverdi and Scott 2006) are directly lifted to our framework, the latter of which
is the operator algebraic origin of the Girard project.

We study Girard’s execution formula (Girard 1989) in the general categorical setting of a traced
symmetric monoidal category. The execution formula accommodates indices, and faithfully sim-
ulates MALL cut elimination by a hybrid method relating the indexed syntax to the relational
semantics. Each location in the relation interpreting a proof is first assigned an endomorphism
on a reflexive object U. The cut rule before execution is interpreted as a tensor product of two
premise morphisms, more loosely than their composition. This interpretation allows extraction
of the dynamical meaning of the cut, which the usual categorical composition hides by virtue of
its static approach. In the loose interpretation, there remain redundant indices when interpreting
rules: however, they are shown to disappear, while running the Execution formula in terms of the
categorical trace structure. The disappearance of indices is modelled by zero morphisms, which
exist in the traced monoidal categories for GoI. Proof-theoretically, the zero morphisms allow us
to interpret discarding subproofs specific to additive cut elimination, and in the way of theory of
indices, they provide a way to to interpret mismatches amongst locations. In tracedmonoidal cate-
gories, the zero morphisms are supposed to act partially on symmetries for cut formulas, and also
to act partially on retractions and co-retractions of the reflexive objects. The latter action arises
via tracing along the zero morphisms which takes feedback into account along with the zero. We
prove zero convergence, which means that execution formulas converge to zero when two proofs
interact with mismatched locations. Thus the execution formulas terminate to the denotational
interpretations of proofs, while diminishing sets of indices in order to recover the relational com-
position. This is realised by properly coupling indices to trace axioms, especially for ‘generalized
yanking’ and ‘dinaturality’. The former axiom directly designates that traces are primitive enough
to retrieve the categorical composition in a monoidal category, and the latter axiom concerns the
interaction of bidirectional flow of morphisms.

In contrast to the precursory work of Duchesne (2009) concerning both indices and GoI,
the present paper accommodates the indices directly in GoI semantics in order to simulate
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(nonindexed) MALL cut elimination. The diminution of sets of indices is a typical dynamic
aspect our GoI captures using the zero morphisms of our traced monoidal category. The
precursor in Duchesne (2009), on the contrary, first accommodates the index into the static
category of Rel, using the semantic method of localisation, of which the indexed syntax
provides a precise description. Then (nonindexed) dynamic GoI action over the indexed
denotational semantics is investigated to characterise the static fix points as the denotational
interpretation.

We prove two main results: (i) (Invariance of the execution formula during MALL normalisa-
tion): The execution formula in our dynamic categorical modelling is shown to converge to the
denotational interpretation of proofs in the static categorical model. This characterises the normal-
isation of proofs by categorical invariants. (ii) (Diminution of indices while running the execution
formula): The execution formulamay converge to 0, making the redundant indices disappear. Part
(i) is seen as a pointwise collection of invariants, as previously established for the multiplicatives
(Girard 1989; Haghverdi and Scott 2006). Part (ii) is specific to the additives: Proof-theoretically, it
reflects erasure of subproofs as well as additive (co) contraction and superposition, in cut elimina-
tion. Category-theoretically, it ensures that our categorical ingredient (the execution formula) is
fine grained enough to retrieve a static monoidal category as well as a relational category handling
indices.

The rest of this paper is organised as follows: Section 2 introduces a syntax MALL[c](I) for
indexed MALL with a cut list as well as its relational counterpart Rel[c]. A fundamental lemma
is proved, which connects a provable MALL[c](I) sequent to an indexed subset of the interpre-
tation of a MALL proof with cuts. In Section 3, MALL proof reduction for cut elimination is
lifted to MALL(I) proof transformation with diminishing sets of indices. Section 4 concerns our
MALL GoI interpretation by means of the indexed system in a traced symmetric monoidal cat-
egory with zero morphism. Execution formulas are run indexwise, and the main theorem is
proved.

2. MALL(I) with Cut List and Relational Semantics
2.1 MALL(I)with cut list
(Inference rules ofMALL[c] with cut formulas)
We accommodate a stack to record cut formulas into the syntax of the multiplicative-additive
linear logic MALL. To stress this, the system is written as MALL[c]. To accommodate the stack into
the additive fragment, one has to work with superpositions that arise inside the stack as well as in
the conclusion (outside the stack).

A MALL[c] sequent � [�], � with a cut list is a set � of formula occurrences together with
pairwise dual formulas occurrences � inside the brackets. Each dual pair in � is written A,A⊥.
Sequents are proved using the following rules:

�A,A⊥ ax � [�1], �1,A � [�2], �2, B
� [�1,�2], �1, �2,A⊗ B ⊗ � [�], �,A, B

� [�], �,A` B `

� [�1], �1,A � [�2], A⊥, �2

� [�1,�2,A,A⊥], �1, �2
cut

� [�1,�], �,A1 � [�2,�], �,A2
� [�1,�2,�], �,A1&A2

&
� [�], �,A1

� [�], �,A1 ⊕A2
⊕1

� [�], �,A2
� [�], �,A1 ⊕A2

⊕2

Note: In the &-rule, not only is � superposed in the conclusion, but so is� in the stack. The super-
position amongst cut formulas inside the stack causes the well-known additive (co-) contraction
that arises in MALL cut elimination. The formulas occurrences � is not deterministically chosen
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in the premises, so that � in general is neither empty (i.e. never superimpose cuts) nor max-
imal (i.e. superimpose as many cuts as possible). Thus, the &-rule has several possible instances
depending on the choice of�. The exchange rule is eliminated under the assumption that formula
occurrences are implicitly tracked by the premises and the conclusion of a rule.

We extend the above accommodation of cut lists to Bucciarelli–Ehrhard indexed system
MALL(I) (Bucciarelli and Ehrhard 2000). To stress this, the system is written as MALL[c](I). The
extension stipulates that a set of indices is consistently associated with each formula (including
cut formulas) and sequent (including cut lists).

We fix an index set I, once and for all. Each formula A of MALL(I) is associated with a set
d(A)⊆ I, called the domain of A.

(MALL(I) formulas and domains)
Formulas in the domain J are defined by the following grammar: 0∅ and T∅ are
formulas of the domain ∅. For any J,K, L⊆ I such that K ∩ L= ∅ and K ∪ L= J,

XJ ::= 1J | ⊥J | XJ ⊗XJ | XJ `XJ | XK ⊕XL | XK&XL.

For any MALL(I) formula A with d(A)= J, its negation A⊥ with d(A⊥)= J is defined using the
De Morgan duality for the MALL formula.

(Restriction)
For a MALL(I) formula A with d(A)= J and K ⊆ J, the restriction A�K of A by K is defined to be a
MALL(I) formula in the domain J ∩K as follows:

0∅�K= 0∅ and T∅�K= T∅. ⊥J�K=⊥J∩K and 1J�K= 1J∩K (A⊗ B)�K=A�K⊗ B�K
(A` B)�K=A�K` B�K (A⊕ B)�K=A�K⊕ B�K (A&B)�K=A�K& B�K

It trivially follows that (A⊥)�K= (A�K )⊥. If � is a sequence of MALL(I) formulas A1, . . . ,An of
domains J, we define ��K=A1�K , . . . ,An�K .

(Inference rules ofMALL[c](I) with cut lists)
We augment MALL[c] with indices. This makes it possible to accommodate a stack recording cut
formulas to the originalMALL(I) (Bucciarelli and Ehrhard 2000). Although this is straightforward
for the multiplicative fragment, careful treatment is required for the listing of cut formulas in the
additive fragment. Two kinds of sequences of formulas are considered in our MALL[c](I)-syntax:
One is a sequence � whose all formulas occurrences have a same domain J uniformly, which is
denoted by d(�)= J. The other is a sequence � whose any formula occurrence has a domain
contained in J, which is denoted by d(A)⊆ J. Each sequent is of the form �J [�], �, in which
d(�)= J and d(�)⊆ J with d(A)= d(A⊥)⊆ J for any pairwise dual formulas A and A⊥ in �

within the stack.

Note: The uniformity requirement that all formulas in � have the same domain I does not apply
to the stack � of the cut formulas. Formulas from different cuts have various domains contained
in J.

Axioms and cut:

�J 1J �∅ �, T∅
�J [�1], �1,A �J [�2], A⊥, �2

�J [�1,�2,A,A⊥], �1, �2
cut

Note that d(A)= d(A⊥)= J for
cut formulas A and A⊥.
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Multiplicative rules:

�J [�], �

�J [�], �,⊥J
⊥J

�J [�1], �1,A �J [�2], �2, B
�J [�1,�2 ], �1, �2,A⊗ B ⊗ �J [�], �,A, B

�J [�], �,A` B `

Additive rules:

�J1 [�1,��J1 ], ��J1 ,A1 �J2 [�2,��J2 ], ��J2 ,A2
�J1+J2 [�1,�2,� ], �,A1&A2

&

Note that the superposed context � encompasses the whole domain J = J1 + J2, while the
superposed context � in the stack has a domain contained in J.

�J [�], �,A1
�J [�], �,A1 ⊕A2

⊕1
�J [�], �,A2

�J [�], �,A1 ⊕A2
⊕2 Note d(A3−i)= ∅ in

each rule ⊕i (i= 1, 2).

MALL(I) has no propositional variables; the only atomic formulas are the constants. Then, the
usual identity axiom is readily derived:

Lemma 2.1 (Identity). �J A,A⊥ is provable for any MALL(I) formula A of domain J.

Lemma 2.2 (Restricting provable sequents). If �J [�], � is provable, then so is �J∩K [��K ],
��K for any K ⊆ I.

For each inference rule of MALL[c](I), if the conclusion sequent has the domain ∅, then so does
the premise sequent(s). Thus, the rules for sequents deriving the empty domain are identified
with the rules ofMALL[c]. As a consequence, everyMALL[c](I)-proof π for �∅ [�], � contains only
sequents of the empty domain. Hence π is considered as a MALL-proof for � [�], �. To sum up,

Lemma 2.3. MALL[c](I) is a conservative extension of MALL[c].

Accordingly, in the sequel MALL[c] is identified with MALL[c](∅).

2.2 MALL[c](I) and Relational Semantics Rel[c]

It is well known that the category Rel of sets and relations constitutes a denotational seman-
tics of MALL, that is, the interpretation is invariant, (π[�],�)∗ = (π ′

[�′],�)
∗, for any reduction

π[�],� � π ′
[�′],� of MALL cut elimination. In particular, the denotation of π is equal to that of a

cut-free π ′ when �′ is empty. The cut rule is interpreted by relational composition in Rel, and this
interpretation makes the semantics denotational.

Definition 2.4 (Denotational interpretation (π[�],�)∗ in Rel). Every MALL proof π[�],� of a
sequent � [�] � is interpreted as a subset of an associated set of the conclusion (without the cut
list),

(π[�],�)∗ ⊆ |�| (1)

Note that in the interpretation, the cut formulas � become invisible by virtue of the relational
composition: Two relations R1 ⊆G1 ×D and R2 ⊆D×G2 compose in Rel

R2 ◦ R1 = {(g1, g2) | ∃ d ∈D (g1, d) ∈ R1 ∧ (d, g2) ∈ R2} ⊆G1 ×G2
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1030 M. Hamano

The interpretation π∗ of (1) is known in Bucciarelli and Ehrhard (2000) as the relational interpre-
tation of MALL proofs in a compact closed category Rel× with biproducts +. The interpretation is
specified as follows accordingly to the MALL rules, for which we refer to the above MALL[c]-rules
ridden of the cut lists. First, every formula A is interpreted as a set |A|, and every sequence
� =A1, . . . ,An as |�| = |A| × · · · × |An|: When A is A1 ⊗A2 or A1 `A2, |A| = |A1| × |A2|, and
when A is A1 ⊕A2 or A1&A2, |A| = ({1} × |A1|)∪ ({2} × |A2|).

Then
(axiom) π∗ = {(a, a) | a ∈ |A|} ⊆ |A,A⊥|
(cut rule) π∗ = {(γ1, γ2) | (γ1, a) ∈ π∗

1 and (a, γ2) ∈ π∗
2 } ⊆ |�1, �2|

(&-rule) π∗ = {(γ , (1, a)) | (γ , a) ∈ π∗
1 } ∪ {(γ , (2, a) | (γ , a) ∈ π∗

2 } ⊆ |�,A1&A2|
(⊕i-rule) π∗ = {(γ , (i, a)) | (γ , a) ∈ π∗

i } ⊆ |�,A1 ⊕A2|
(⊗-rule) π∗ = {(γ1, γ2, (a1, a2)) | (γ1, a1) ∈ π∗

1 and (γ2, a2) ∈ π∗
2 } ⊆ |�,A1 ⊗A2|

(`-rule) π∗ = {(γ , (a1, a2)) | (γ , a1, a2) ∈ π
′∗} ⊆ |�,A1 `A2|

Our aim in this paper is to investigate a dynamics of cuts hidden in such a static categori-
cal composition. We begin by interpreting proofs in Rel but without performing cuts by means
of relational composition. To stress this interpretation with the unexecuted cuts, the categorical
framework is denoted by Rel[c], in which the cut list [�] is interpreted explicitly.

To deal with the additives in Rel[c], we have to work with a sublist and the set of all the sublists:
Let � be C1, C⊥

1 , . . . , Cm, C⊥
m. For a subset S of {1, . . . ,m}, let �S denote the sublist . . . Ci, C⊥

i . . .

where i ranges in S. Then the set sl(�) of all the sublists (including � and �∅) is defined as

sl(�) := {�S | S⊆ {1, . . . ,m}} (2)

Consequently, we interpret (2) as an object in Rel in terms of the disjoint union of each
interpretations of the sublists:

[ sl(�)]=
∑

S⊆{1,...,m}
|�S|, (3)

in which |�S|, for a nonempty sequence, is the usual interpretation of the sequence in Rel and
|�∅| := {∗} = |⊥|. The disjoint sum � is taken over different S’s.

In what follows in this paper, when S is clear from context, a sublist �S is often abbreviated by
�̂, whose hat indicates a pairwise deletion of some cut formulas.

Lemma 2.5. If � = �1, . . . ,�k such that �i are lists of pairwise dual formulas, then

[sl(�)]∼= [sl(�1)]× · · · × [sl(�k)]

For example, a particular choice of each �i is Ai,A⊥
i .

In what follows in Sections 2 and 3, ∼= denotes an iso modulo the symmetry of the set-
theoretical cartesian product. In the sequel, the symmetry corresponds to the exchange of formula
occurrences. As the exchange is always clear from the context and fixed, we use the terminolo-
gies ⊆∼= and ∈∼= consistently as follows: A⊆∼= B (resp. a ∈∼= B) means that A is a subset (resp. a
member) of σ (B) where σ is the exchange for ∼=.

Definition 2.6 (Interpretation |π[�],�| of proofs with unexecuted cuts in Rel[c]). Every MALL
proof π[�],� of a sequent � [�], � is interpreted by

|π[�],�| ⊆ [sl(�)]× |�|,
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which is defined inductively and in the same manner as in Definition 2.4, except for the cut rule
to make the interpretation differ from the standard (1) in that � is visible without performing the
relational composition.

(cut rule)

When π is

π1
� [�1], �1,A �

π2

[�2], A⊥, �2

� [�1,�2,A,A⊥], �1, �2
cut

|π[�1,�2A,A⊥],�1,�2 | :∼= |π1
[�1],�1,A| × |π2

[�2],A⊥,�2
|

⊆ [sl(�1)]× |�1| × |A| × [sl(�2)]× |A⊥| × |�2| ⊆∼= [sl(�1,�2)]× |A| × |A⊥| × |�1| × |�2|
The symmetry used for the definition is the exchange between the conclusion of the cut and merging
those of πi’s. In obtaining the last inclusion, Lemma 2.5 is used because the two lists �1 and �2 are
disjoint.

(&-rule)

When π is

π1
� [�1,� ], �,A1

π2
� [�2,� ], �,A2

� [�1,�2,� ], �,A1&A2
&

|π[�1,�2,�],�, A1&A2 | :=
{ (λ1, (1, a1)) | (λ1, a1) ∈ |π1

[�1,�],�,A1
| } + { (λ2, (2, a2)) | (λ2, a2) ∈ |π2

[�2,�],�,A2
| } ⊆

( [sl(�1,�)]×|�|×{1} × |A1| )+( [sl(�2,�)]×|�|×{2} × |A2| )⊆ [sl(�1,�2,�)]× |�|×|A1&A2|
For the last inclusion, the monotonicity, [sl(�i,�)]⊆ [sl(�1,�2,�)] is used.

We extend Bucciarelli–Ehrhard translation of Definitions 2.7–2.8 to accommodate cut formu-
las inside the stack.

Definition 2.7 (Translation of indexed relation γ to MALL(I) sequent �〈γ 〉 Bucciarelli and
Ehrhard 2000). To any MALL formula A and a family a ∈ |A|J , a formula A〈a〉 of MALL(I) is
associated, with domain J so that A〈a〉�∅ is A. For a sequence � =A1, . . . ,An of MALL formu-
las, every γ ∈ |�|J is written uniquely as γ = γ 1 × · · · × γ n with γm ∈ |Am|J , and we set �〈γ 〉 =
A1〈γ1〉, . . . ,An〈γn〉.

– For A= 0 or A= T, if J �= ∅, we have |A|J = ∅, and A〈a〉 is undefined. If J = ∅, |A|J has
exactly one element, namely, the empty family ∅, and we set 0〈∅〉 = 0 and T〈∅〉 = T.

– If A= 1 or A= ⊥, a is the constant family, and we set 1〈( ∗ )J〉 = 1J and ⊥ 〈( ∗ )J〉 =⊥J .
– If A= B⊗ C, then a= b× c with b ∈ |B|J and c ∈ |C|J , and we set A〈a〉 = B〈b〉 ⊗ C〈c〉
which is a well-formed formula of MALL(I) of domain J. Here b× c denotes the mediat-
ing morphism of the set-theoretical cartesian product.
Similarly, for A= B` C, we set A〈a〉 = B〈b〉` C〈c〉.

– If A= B⊕ C, then a= b+ c with b ∈ |B|K and c ∈ |C|L and K + L= J. Then we set A〈a〉 =
B〈b〉 ⊕ C〈c〉 which is a well-formed formula of MALL(I) of domain J.
Similarly for A= B& C, we set A〈a〉 = B〈b〉& C〈c〉.

(Notation)
Let X be a set and J = J1 + J2. Every x ∈ XJ yields the restrictions xi = x�Ji∈ XJi with i= 1, 2.
Conversely, the two restrictions allow us to recover x. We write this as x= x1�x2.
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1032 M. Hamano

Definition 2.8 (Translation to MALL[c](I) sequent �J [�〈〈δ〉〉], �〈γ 〉). Let � be a sequence of
pairwise dual MALL formulas and δ ∈ [sl(�)]J for some J ⊆ I. Then the MALL(I) sequence �〈〈δ〉〉 of
pairwise dual formulas is associated such that d(�〈〈δ〉〉)⊆ J and �〈〈δ〉〉�∅ is � as follows.

First, we write � = �1, . . . ,�n, where each �i is a list of two dual formulas Ai and A⊥
i . By

Lemma 2.5, δ = δ1 × · · · × δn, so δi ∈ [sl(�i)]J . Because sl(�i)= {�i,�∅}, we have [sl(�i)]=
|Ai,A⊥

i | + {∗}. Recall that {∗} interprets the empty list in (3). Thus every δi makes J divide into
J = Ji +Ki to yield δi = δi�Ji� δi�Ki so that δi�Ji∈ |Ai,A⊥

i |Ji and δi�Ki∈ | ∗ |Ki . (explicitly Ji = {x |
δi(x) ∈ |Ai,A⊥

i |} and Ki = {x | δi(x)= ∗}.) Then, using the δi�Ji , we define
�〈〈δ〉〉 = �1〈δ1�J1〉, . . . , �n〈δn�Jn〉,

in which the two dual formulas in each �i〈δn�Ji〉 have the same domain Ji ⊆ J.
Then, by employing Definition 2.7, for a given MALL sequent � [�], �, every ν ∈ (|sl(�)| × |�|)J

is associated with aMALL(I) sequent, for which we write ν = δ × γ , so that δ ∈ [sl(�)]J and γ ∈ |�|J :

�J ([�], �)〈ν〉 = �J [�〈〈δ〉〉], �〈γ 〉 (4)

Here �J ([�], �)〈ν〉 restricted to ∅ is � [�], �. Note that all the formulas in �〈γ 〉 have domain J,
while each formula in �〈〈δ〉〉 has a domain contained in J. The �〈〈δ〉〉’s inside the stack become a list
of pairwise dual MALL(I) formulas in which each pair has the same domain.

The translations commute with restriction of indices, and Lemma 2.2 can be restated:

Lemma 2.9 (Restricting translation).

– For any γ ∈ |�|J , it holds that �〈γ �J∩K〉 = �〈γ 〉�K.
– For any δ ∈ [sl(�)]J , it holds that �〈〈δ�J∩K〉〉 = �〈〈δ〉〉�K.
– If �J [�〈〈δ〉〉 ], �〈γ 〉 is provable, then so is �J∩K [�〈〈δ〉〉�J∩K ], �〈γ 〉�J∩K.

2.3 Fundamental lemma
Indexed linear logic arises essentially due to its tight connection to the relational semantics. The
connection is realised by a fundamental lemma due to Bucciarelli & Ehrhard (proposition 20
of Bucciarelli and Ehrhard 2000) establishing a correspondence between indexed sets in Rel
and indexed sequents in MALL(I). The former is semantic in MALL, while the latter is syntactic
in MALL(I). The fundamental lemma is shown to be preserved under our extended syntax and
semantics, designed to accommodate cut formulas in MALL[c](I) and in Rel[c], respectively.

Proposition 2.10 (Fundamental lemma à la Bucciarelli–Ehrhard). For ν ∈ (|sl(�)| × |�|)J with
J ⊆ I, the following two statements are equivalent and induce a relationship ρ�∅= π between π of
(i) and ρ of (ii):

(i) There exists a MALL[c] proof π such that

ν ∈ |π[�],�|J .

(ii) There exists a MALL[c](I) proof ρ of the sequent

�J ([�], �)〈ν〉.

Proof. See Lemmas B.1 and B.2 in the Appendix B.1.
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3. Lifting MALL Reduction over Indices
This section describes how our indexed syntaxMALL[c](I) analyses Gentzen-style reduction of cut
elimination for nonindexedMALL. EveryMALL reduction with cut elimination is shown to be lifted
to a directed transformation between twoMALL(I) proofs. These transformations diminish sets of
the indices of proofs overall.

Definition 3.1 (MALL[c](I) proof transformation �I with diminishing sets of indices). A
MALL[c](I) transformation�I with diminishing sets of indices, written as ρ �J [�], � �I ρ′

�J′ [�′], � , is a
transformation from one MALL[c](I) proof ρ for �J [�], � to another, ρ′ for �J′ [�′], � with J′ ⊆ J,
satisfying the following condition:

– (Restriction to the empty domain)
Restricting the two MALL[c](I) proofs to ∅ gives rise to a MALL[c] reduction π[�],� � π ′

[�′],�
by cut elimination.
Schematically, this can be written as ρ �J [�], �

�∅
��

�I ρ′
�J′ [�′], �

�∅
��

π[�],� � π ′
[�′],�

The transformation ρ �I ρ′ is called a lifting of π � π ′. The lifting simulates a MALL proof
reduction for cut elimination in terms of MALL(I) proof transformation.

The lifting in Definition 3.1 is not unique for a given MALL[c] reduction, as for any subset J′′ of
J′, ρ �I ρ′�J′′ obviously becomes a lifting for ρ and ρ′ under this definition.

Example 3.2. The following is a MALL[c](I) reduction with diminishing sets of indices whose
restriction to ∅ is a Gentzen reduction eliminating the pairwise dual additive connectives & and
⊕ in the cut formulas:

{ .... π i

�Ji [�i,��Ji ], ��Ji ,Ai

}i=1,2

�J1+J2 [�1,�2,�], �,A1&A2
&

.... π3

�J1+J2 [�3],�,A⊥
1

�J1+J2 [�3],�,A⊥
1 ⊕A⊥

2
⊕1

�J1+J2 [�1,�2,�,�3, (A1&A2), (A⊥
2 ⊕A⊥

1 )], �,�
cut

�I

.... π1

�J1 [�1,�], �,A1

.... π3

�J1 [�3�J1 ],��J1 ,A⊥
1 �J1

�J1 [�1,�,�3�J1 ,A1,A⊥
1 �J1 ], �,�

cut

The sets of the indices are diminished from J1 + J2 to J1 as a result of erasing the subproof π2

within the proof transformation.

Proposition 3.3 (Lifting to indexed transformation). Let ν ∈ |π[�],�|J and consider a MALL
reduction π[�],� � π ′

[�′],� . Then there exist J′ ⊆ J and ν′ ∈ |π[�′],�|J′ lifting the given reduction:
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1034 M. Hamano

ρ �J ([�], �)〈ν〉

�∅
��

�I ρ′
�J′ ([�′], �)〈ν′〉

�∅
��

π[�],� � π ′
[�′],�

ρ and ρ′ are MALL proofs ensured by the fundamental lemma (Proposition 2.10) for the sequents
�J ([�], �)〈ν〉 and �J′ ([�′], �)〈ν′〉, respectively. Hence, we can also denote the lifting by

ν ∈ |π[�],�|J �I ν′ ∈ |π ′
[�′],�|J′ .

Note: There is no straight connection between ν and ν′ such as the former is the restriction to the
latter.

Proof. For every kind of reduction�, we can directly construct ν′ together with J′. There are three
crucial cases:
(Crucial case 1)

� B, B⊥
.... π ′

� [�],A, �
� [�, B⊥,A], B, �

cut

(with A and B being different occurrences of the same formula) reduces to
.... π ′

� [�], B, �

(identifying the occurrence of A with B).
Let ε ∈ |axB,B⊥|J and τ ∈ |π ′

[�],A,�|J . Then, for each j ∈ J, we have εj = (bj, bj) with bj ∈ |B| =
|B⊥|, and τj = (δj, aj, λj) with δj ∈ [sl(�)], aj ∈ |A| and λj ∈ |�|. Note that νj = (δj, bj, aj, bj, λj). We
define

J′ = {j ∈ J | bj = aj} and ν′ = τ�J′ .

(Crucial case 2)
This case is the MALL reduction arisen by Example 3.2 above, when restricting to the empty
domain ∅ and identifying MALL(∅) with MALL.

By π ’s last rule, ν ∼= τ × λ with τ ∈ |&(π1, π2)|J and λ ∈ | ⊕1(π3)|J , where the conclusion of π i

with i= 1, 2 is � [�i,�], �,Ai and that of π3 is � [�3],�,A⊥
1 . Then the &-rule of the left premise

divides J into J = J1 + J2. We define

J′ = J1 and ν′ = τ�J1×λ′

where λ′ ∈ |π3|J′ is defined by λ′
j := (x, a) if λj = (x, (1, a)).

(Crucial case 3) Here π

.... ρ

� [�],�,A

{ .... π i

� [�i,�],A⊥, �, Bi

}i=1,2

� [�1,�2,�],A⊥, �, B1&B2
&

� [�,�1,�2,�,A,A⊥],�, �, B1&B2
cut
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reduces to π ′ ⎧⎪⎨⎪⎩
.... ρ

� [�],�,A

.... π i

� [�i,�],A⊥, �, Bi
� [�,�i,�,A,A⊥],�, �, Bi

cut

⎫⎪⎬⎪⎭
i=1,2

� [�1,�2,A,A⊥, A,A⊥,�,�],�, �, B1&B2
&

Note that in the last &-rule of π ′, � and � inside the stack are chosen to be superposed.
By π ’s last rule, ν ∼= λ × τ , so λ ∈ |ρ[�],�,A|J and τ ∈ |&(π1, π2)|J . The last &-rule of the right
premise divides J into J = J1 + J2 so that τ ∼= τ1�τ2 and τi ∈ |π i

[�i,�],A⊥,�,Bi |Ji . Then λ�Ji ×τi ∈∼=
| cut (ρ, π i)|Ji . We define

J′ = J and ν′ ∼= (λ�J1×τ1)�(λ�J2×τ2).

4. MALL GoI Interpretation
4.1 Execution formula with zero action on symmetries of cuts
4.1.1 Interpretation of indexed point in MALL proof

Our categorical framework is a minimal part of the Haghverdi–Scott GoI situation (Haghverdi
and Scott 2006) with a reflexive object U in a traced symmetric monoidal category C with tensor
unit I. Ours in addition requires that C has zero morphisms, in particular, a zero endomorphism
0U on U:

(C, ⊗, I, sU,U , j :U ⊗U �U: k, 0U) (5)

sU,U is a symmetryU ⊗U −→U ⊗U of tensor product. j :U2 �U: k denotes a pair of morphisms
j and k, respectively, from U2 to U and the other way around. j and k are called, respectively,
co-retraction and retraction for the reflexive U when k ◦ j=U ⊗U =U2. The m-ary tensor fold-
ing � ⊗ · · · ⊗ �︸ ︷︷ ︸

m

is denoted by �m both for object � or morphism �. The trace structure will be

introduced later in (14).
We require the commutativity of the pair (j, k) and the zero 0U ;

k ◦ 0U ◦ j= 0U ⊗ 0U (6)
Indeed, (6) is equivalent to the two commutativity j ◦ (0U ⊗ 0U)= 0U ◦ j and (0U ⊗ 0U) ◦ k=
k ◦ 0U .

Note: The zero morphism 0U is absorbing with respect to composition, but not with respect to
tensor. That is f ⊗ 0U and 0U ⊗ f are not in general 0U2 for any endomorphism f on U.

Lemma 4.1 (tensoring zero). 0U ⊗ 0U = 0U2 . More generally, 0mU = 0Um for any natural number
m.

Proof. The first assertion is derived by the condition (6). The general assertion is by iterating the
condition (kn ⊗U) ◦ (k ◦ 0U ◦ j) ◦ (jn ⊗U)= 0n+2

U .

The zero endomorphism 0U acts on the symmetry s as follows.

Definition 4.2 (zero action (sU,U)0). 0 action on the symmetry sU,U on U2 is defined to annihilate
the symmetry sU,U to the zero endomorphism on U2.

(sU,U)0 := 0U⊗U
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1036 M. Hamano

Alternatively, the action is defined to be the following decomposition in terms of conjugation (both
precomposing and composing):

(sU,U)0 := (0U ⊗ 0U) ◦ sU,U ◦ (0U ⊗ 0U)= 0U ⊗ 0U = 0U⊗U

We abbreviate sU,U and (sU,U)0 as s and s0, respectively.
To avoid collapsing the categorical framework whose GoI interpretation becomes the degener-

ate zero, we assume

s is nonzero; that is, s and s0 are distinct endomorphisms onU2 in C. (7)

This is a technical assumption for the main theorem (Theorem 4.16) of this paper to characterise
the diminution of the index set in terms of the convergence to the zero, distinguishable from the
other morphisms.

The zero morphism, which is required in our framework, exists in crucial examples of GoI
situations: (i) Rel+ is Rel with the disjoint union + of sets as ⊗ and a reflexive object N. The
empty relation on N is the zero morphism. Furthermore 0N + 0N = 0N+N sufficient to the con-
dition (6). (ii) The monoidal subcategories Pfn and PInj of Rel+, both in which resides the zero
morphism. PInj is known to be equivalent to the original category Hilb2 of Hilbert spaces and
partial isometries for Girard’s GoI 1 (Girard 1989).

Note: The above examples of GoI situations happen to be sum-style monoidal structures
(Haghverdi and Scott 2011), whose ⊗ is given by the disjoint union. The style is known to cap-
ture the notion of feedback as data flow in terms of streams of tokens around graphical networks.
However our categorical framework (5) in the present paper is the general one, hence does not
assume that the monoidal product is sum-style.

The ith constituent xi of x= (x1, . . . , x�) ∈ |π[�],�| of Definition 2.6 corresponds, in terms of
the membership relation, to the ith occurrence of formulas �̂, � with a unique sublist �̂.

Lemma 4.3 (Tag of xi with x= (x1, . . . , x�) ∈ |�̂| × |�| for x ∈ |π[�],�|). Every element x=
(x1, . . . , x�) ∈ |π[�],�| interpreting π in Definition 2.6 belongs to |�̂| × |�| with a unique sublist
�̂ of �. That is, for x= (x1, . . . , x�), there exists a unique sublist �̂ such that the ith constituent
xi ∈ |Ai| for the ith formula Ai in �̂ (resp. in �) when i≤ 2m (resp. i> 2m), where 2m is the num-
ber of formulas in �̂. The formula Ai is called the tag of the ith constituent xi of x in |π |. Note the
sublist �̂ is determined not only by π but also by x, as shown in the construction (8) in the following
proof.

Proof. As |π[�],�| ∼= |π[�],�|{∗}, by (4) in Definition 2.8 when J is the singleton set {∗}, every x=
(x1, . . . , x�) factors x= x′ × x′′ so that

�{∗} ([�], �)〈x〉 = �{∗} [�〈〈x′〉〉], �〈x′′〉
While all the formulas in the sequence �〈x′′〉 of MALL(I) formulas has domain {∗}, each formula
in the sequence �〈〈x′〉〉 has the domain either {∗} or ∅. Thus the unique sublist �̂ is determined
by the following two steps: (i) Ridding �〈〈x′〉〉 of all the formulas D such that d(D)= ∅, which
yields the subsequence of �〈〈x′〉〉. (ii) �̂ is defined to be the subsequence of (i) restricted to ∅ (i.e.
forgetting the domain) in order to obtain non-indexed formulas.

To be short for (i) and (ii), the sublist �̂ is the unique one making �̂〈〈x′〉〉 agree with
�〈〈x′〉〉 ridden of all the formulas whose domain is ∅. (8)

Note whenever a cut formula occurs in �̂, so does its dual formula, hence x′ = (x1, . . . , x2m) for a
natural numberm, then x′′ = (x2m+1, . . . , x�). By Definitions 2.7 and 2.8, themembership relation
for the assertion of xi and the ith formula in �̂, � follows.
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In what follows, we make permutations (xτ (1), . . . , xτ (�)) amongst the constituents implicit so
that x is up to the permutation. This is because the permutation corresponds to the exchange
rule eliminated from our syntax. The permutations will be reflected by the symmetry of monoidal
product of C, in the following interpretation x , which we denote by ∼=.

Definition 4.4 (Endomorphism x on tensor folding U’s and tensor folding σx of symmetry s
and of zero s0).

– Every x= (x1, . . . , x�) ∈ |π[�],�| is interpreted as an endomorphism x π on the tensor prod-
uct U� together with an endomorphism σπ

x on a subfactor U2m of U�. The endomorphism σπ
x

interprets cut rules in π[�],� and is an m-ary tensor folding of morphisms which are either
s1 = s or s0 = 0 (cf. Definition 4.2) both on U2:

x π :U� −→U� and σπ
x = ⊗m

i=1 s
η(i) where ηx is a {0, 1}-valued function. (9)

To distinguish each ith component U of U�, we label each component Uxi with xi by abuse of
notation, since the label xi is always clearly specified to designate the ith constituent of x. Then
xi ∈ |Ai| so that Ai is the tag of xi. Under this labelling, η(i) of sη(i) on Ua ⊗Ua′ is defined to be
the Kronecker delta δa,a′ , where the tags of a and a′ are pairwise dual formulas in �̂. That is,

σπ
x = ⊗ sδa,a′ where a and a′ range so that their tags are pairwise (10)

dual cut formulas in �̂.

We define ( x π , σπ
x ) by induction on the construction of the proof π .

– We simultaneously define that a component Uxi such that the tag of xi is a formula in � is
contracted by the induction on π 1. Since Uxi appears both in the co-domain and in the domain
of x , every contracted component in the domain (resp. co-domain) of x is a domain
(resp. co-domain) of a unique retraction (resp. co-retraction), called associated retraction (resp.
associated co-retraction) 2. We simply say i is contracted when so is Uxi .

In the definition, π1 and π2 denote the two premise proofs of the binary rules, and π ′ of the
unary rules.

(Axiom)
x= (∗̄, ∗) ∈ |A⊥,A|withA= 1 andA⊥ =⊥. We define x π to be a symmetry sU∗̄,U∗ onU∗̄ ⊗U∗
of C. Because π is cut-free, σπ

x is empty by definition.
x has no contracted component so that neither U∗ nor U∗̄ are contracted.

(Cut rule)
x= (v1, v2, a, a′,w1,w2) ∈ |�̂1| × |�̂2| × |A| × |A⊥| × |�1| × |�2|, so x1 = (v1,w1, a) and x2 =
(v2, a′,w2) belong respectively to |π1| and to |π2|.
We define

x π
∼= x1 π1 ⊗ x2 π2 and σπ

x is σπ1
x1 ⊗ σπ2

x2 ⊗ (sUa,Ua′ )
δa,a′

That is, if a= a′ (resp. a �= a′), then σπ
x on Ua ⊗Ua′ is s (resp. s0), and σπ

x on the remaining
components is σx1 ⊗ σx2 . Note the definition makes sense because σ

π1x1 ⊗ σ
π2x2 acts on the domain

distinct both from Ua and Ua′ .
We say the cut (of the last rule of π)matches (resp.mismatches) in x if a= a′ (resp. otherwise).

(`-rule)
x= (v, (a, b)), so that x’ = (v, a, b) ∈ |π ′|. Note A` B is the tag of (a, b) in π , while A (resp. B) is
the tag of a (resp. b) in the premise. x π is obtained directly from x’ π ′ onU�+1 =U� ×U(a,b)
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by the retraction Ua ⊗Ub �U(a,b). That is, x π = x’ (j,k)
π ′ = (U�−1 ⊗ j) ◦ x’ π ′ ◦ (U�−1 ⊗

k). We also define σπ
x by σπ ′

x’ .

(⊗-rule)
x= (v1, v2,w1,w2, (a, b)) ∈ |�̂1| × |�̂2| × |�1| × |�2| × |A| × |B|, so that x1 = (v1,w1, a) and
x2 = (v2,w2, b) are respectively from |π1| and |π2|. Note A⊗ B is the tag of (a, b) in π , while
A (resp. B) is the tag of a (resp. b) in π1 (resp. in π2). The endomorphism x is obtained
directly from x1 π1 ⊗ x2 π2 on U�+1 =U� ×U(a,b) by the retraction Ua ⊗Ub �U(a,b). That
is, x π

∼= ( x1 π1 ⊗ x2 π2 )(j,k) = (U�−1 ⊗ j) ◦ ( x1 π1 ⊗ x2 π2 ) ◦ (U�−1 ⊗ k). We also
define σπ

x by σ
π1x1 ⊗ σ

π2x2 .
In the above both multiplicatives rules (⊗ and `), the introduced U(a,b) in the domain

(resp. co-domain) is a contracted component, and the assoc-ret (resp. assoc-coret) is k :U(a,b) �

Ua ⊗Ub (resp. j :Ua ⊗Ub �U(a,b)). Other contracted components are those of (v, a, b)
for ` and (v1,w1, a) and (v2,w2, b) for ⊗ distinct from the components Ua and
Ub. Note that (v, a, b) ∈ |premise of`| and (v1,w1, a) ∈ |left premise of ⊗| and (v2,w2, b) ∈
|right premise of ⊗|.
(&-rule)
x is either (v, (1, a)) or (v, (2, a)), so that (v, a) are either from |π1| or |π2|, respectively. Note
A1&A2 is the tag of (i, a) in π , whileAi is the tag of a in π1 or in π2 when i= 1 or i= 2, respectively.
We define x π = (v, a) πi by relabelling the component Ua either by U(1,a) or U(2,a) for the
domain (equally for the codomain) of x π . We also define σπ

x by σ
πi
(v,a).

(⊕i-rule) Same as &-rule but using the unique premise π ′ deterministically.
In the above both additive rules (& and⊕i), contracted components are those of (v, a) under

the relabelling Ua by U(i,a) for the component of the domain (equally of the codomain). Note that
(v, a) belongs to one of |left premise| and |right premise| in &-rule depending on i= 1 or i= 2,
and obviously to |the unique premise| in ⊕i-rule.

In the sequel, the pair of Definition 4.4 is simply written ( x , σx) by omitting π , since the
proof π will be always specified clearly from the context.

(Remark on Definition 4.4 ) [The endomorphism x as an I/O box]
The endomorphism x is seen as an input/output (I/O) box on the (n+ 2m)-ary tensor folding
ofU, whose inputs/outputs are the formulas occurring in �, �̂, in which � contains n occurrences
of formulas, and a sublist �̂ contains 2m occurrences of (pairwise dual) formulas. The formulas
are the tags of xis where x= (x1, . . . , x�) ∈ |π[�],�|.
The endomorphism σx is seen as a more special box consisting of m-ary tensor folding of {s, s0}
for the I/O formulas in the sublist �̂. See Figure 1 below for ( x , σx).

A characterisation of contracted component is derived:

Figure 1. ( x , σx ) of Definition 4.4 and assoc-rets and assoc-corets of Definition 4.4.
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Lemma 4.5. Uxi is a contracted component of x for x ∈ π if and only if xi’s tag contains a
multiplicative connective (i.e. ⊗ or `).

Proof. Straightforward accordingly to the inductive step of Definition 4.4, in which the retraction
and the co-retraction are used only for multiplicatives rules (` or ⊗) so that x is constructed
x’ (j,k) or ( x1 ⊗ x2 )(j,k), respectively.

(Labelling associated retractions�i and co-retractions�i)
Every associated retraction � (resp. associated co-retraction �) is by Definition 4.4 uniquely
labelled with a contracted i such that the tag of xi is a formula in �. The labelling is written �i
(resp. �i). In what follows, the labelling is made implicit except when an explicit labelling makes
an explanation easier to understand.

(Assoc-rets and assoc-corets in I/O box x )
When the endomorphism x is seen as the I/O box, the assoc-rets and the assoc-corets are those
�’s and �’s whose domains and co-domains lie respectively amongst the inputs and the outputs
of x . By the construction of x , they lie pairwise in the inputs and the outputs. See Figure 1
for x depicting the occurrence of the assoc-rets �’s and the assoc-corets �’s.

(Convention omitting IdUs) When an indicated occurrence of a contracted componentU is clear
from the context, � ◦ x (resp. x ◦�) is an abbreviation for the composition ( IdU ⊗ · · · ⊗
IdU ⊗�⊗ IdU ⊗ · · · ⊗ IdU ) ◦ x (resp. x ◦ ( IdU ⊗ · · · ⊗ IdU ⊗�⊗ IdU ⊗ · · · ⊗ IdU ),
where the domain of � (resp. the codomain of �) is the contracted U. This abbreviation is
generalised for plural indicated occurrences of contracted components U1, . . .Ur in U� as
follows: (⊗r �) ◦ x (resp. x ◦ (⊗r �)) stands for the composition (resp. precomposition)
to x by the morphism tensoring � (resp. �) on the contracted components indicated and
IdU on the remaining components. Note because r ≤ �, the abbreviation is for omitting identities
on Us.

x
◦�...◦�

resp. x
�◦...
�◦

In the sequel, the two abbreviations are pictured as above respectively. Using a notation of the r-
ary tensor folding of� (resp.�), it is also written by�r ◦ x (resp. x ◦�r). This convention
is equally employed when indicated occurrences of assoc-(co)rets are clear from the context.

Under this convention, for any contracted component in the co-domain (resp. domain) of x ,
it holds;

� ◦� ◦ x = x (resp. x ◦� ◦�= x ) (11)

Figure 2. Equation (11).

That is, � ◦� composes (resp. precomposes) with any retraction (resp. co-retraction) as the
identity. In other word, � ◦� is a projector on a contracted component in the codomain (resp.
domain) by composition (resp. precomposition). Pictorially,

In Equation (11), the assoc-coret (resp. assoc-ret) occurs explicitly as the last composed� (resp.
the first precomposed�). Thus, the leftmost� (resp. rightmost�) in (11) is seen labelled�i (resp.
�i) such that the tag of xi is a formula occurrence in �, where x= (x1, . . . , x�) ∈ |π[�],�|. Since
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1040 M. Hamano

every contracted component occurs pairwise in the co-domain and the domain of x , the two
equations can be written successively all at once;

�i ◦� ◦ x ◦� ◦�i = x

The co-domain and the domain U� of x have in general several contracted components Us
labelled with xis, where i ranges in the set r of the contraced is. Thus, for all the several pairs of
contracted components in the domain and the co-domain of x , the parallel compositions and
precompositions with� ◦�s to each contracted components act as the identity on x :

x = (⊗i∈r (�i◦� )) ◦ x ◦ (⊗i∈r (� ◦�i ))
= (� ◦� )r ◦ x ◦ (� ◦� )r = (�r◦�r ) ◦ x ◦ (�r◦�r ) (12)

where r is the cardinality of r, hence is a number of the contracted components, and the third
equality is by (� ◦� )r =�r◦�r , as (− )r is the r-ary tensor folding. Since the last composed�r

(resp. the first precomposed �r) in the rightmost expression of (12) are the explicit occurrences
of the assoc-rets (resp. assoc-corets), the endomorphism x is written so that all the assoc-rets
�r and the assoc-corets �r can be made explicit as follows:

x =�r ◦ x o ◦�r
where x o =�r ◦ x ◦�r (13)

Roughly speaking, x o is x stripped of all the assoc-rets and assoc-corets. which is depicted
in the following Figure 3:

Figure 3. Equation (13).

4.1.2 The action εx annihilating associated (co)retractions

This subsection is concerned with defining the action εx (Definition 4.8) over the associated retrac-
tions (resp. co-retractions) in Definition 4.4 above. The action εx arises from σx of (9) when the
feedback on the trace of C is taken into account, and annihilates, using the zero morphism 0U , a
certain class of retractions and co-retractions. This class is defined in Definition 4.8 in terms of
zero input and output.

In what follows, we shall see how feedback stemming from Gentzen cut elimination for aMALL
proof π acts on the assoc-rets and the assoc-corets of x for x ∈ |π[�],�|. The action is stipu-
lated in terms of the zero morphism added in our framework. First, in a categorical framework
of Girard’s GoI project, the feedback is modelled by the trace structure (cf. Haghverdi and Scott
2006) defined by the seven axioms below:

TrZX,Y : C(X ⊗ Z, Y ⊗ Z)−→ C(X, Y) (14)
There are three kinds of naturality axioms: naturality in X and naturality in Y , and dinaturality in
Z. The other axioms are vanishing I,II, superposing and yanking. See Appendix A.1 for the seven
axioms: the three naturalities and the four axioms.

In our setting of Definition 4.4, the endomorphism x is on Un+2m so that n and 2m are the
numbers of formulas respectively in � and in a sublist �̂, and σx is on the subfactor U2m. Then
the feedback is calculated by

ex (σ , x) := TrU
2m

Un,Un (( Id⊗σx) ◦ x ) (15)
See Figure 4.
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Figure 4. Equation(15): ex (σ , x)with feedback.

Figure 5. Equation (16): naturality of assoc-rets and assoc-corets.

Note that when x ∈ |π[�],�| comes from a proof π of the multiplicative fragment, the equa-
tion is exactly the GoI interpretation of the proof π[�],� (cf. Haghverdi and Scott 2006). This is
because in themultiplicative fragment, the index set I becomes redundantly the singleton {∗}, thus
|π[�],�| = {x}, whereby σx is a simple tensor folding of the symmetry s (free of 0 morphism).

By the naturalities of traces, the assoc-corets (resp. the assoc-rets) of x commute with
TrU

2m
Un,Un , hence taking a trace of (11) composed with Id⊗σx yields for any i such that ith

component of x= (x1, . . . , x�) is contracted.

TrU
2m

Un,Un (( Id⊗σx) ◦ (�i ◦� ◦ x )) =�i ◦ TrU2m
Un,Un (( Id⊗σx) ◦ (� ◦ x ))

=�i ◦� ◦ ex (σ , x)

(resp. TrU
2m

Un,Un (( Id⊗σx) ◦ ( x ◦� ◦�i)) = ex (σ , x) ◦� ◦�i).

Thus all the assoc-rets and assoc-corets of x are written explicitly;

TrU
2m

Un,Un (( Id⊗σx) ◦ x ) = (⊗i∈r �i) ◦ TrU2m
Un,Un

(
( Id⊗σx) ◦ x o) ◦ (⊗i∈r �i)

=�r ◦ TrU2m
Un,Un

(
( Id⊗σx) ◦ x o) ◦�r (16)

where r is the set of all contracted is and r is the cardinality of r.
Equation(16) is depicted in Figure 5, in which the dotted squares are the scopes of the traces and
the shifting of the scopes are naturalities of the�s and the�s.

While inside the sole x , the assoc-rets and the assoc-corets (written explicitly in (13)) do
not interact with zero morphisms because the construction of x of Definition 4.4 is free from
the zero morphisms. Remember that the zero morphisms reside only in σx as subfactors (cf. (9)).
However, when they are put inside the context TrU2m

Un,Un (( Id⊗σx) ◦ −) (written explicitly in (16)),
they may interact with zero morphisms arising from σx via the feedback of the trace. That is, the
trace in a monoidal category takes feedback into account, hence makes the zeros stemming from
σx interact with the assoc-rets and the assoc-corets of x . This yields a certain action εx on the
assoc-(co)rets of x , as defined in Definition 4.8 below.
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1042 M. Hamano

Definition 4.6 (zero input (resp. output) of assoc-coret (resp. assoc-ret) with respect to the
interpretation σx of cuts).
(zero input of assoc-coret�) An assoc-coret� of x is said to have zero input with respect to σx
when � decomposes in ex (σ , x) either as � ◦ (0U⊗U) or as � ◦ (U ⊗ 0U).

(zero output of assoc-ret �) An assoc-ret � of x is said to have zero output with respect to σx
when � decomposes in ex (σ , x) either as (0U⊗U) ◦� or as (U ⊗ 0U) ◦�.

Why do we use the terminology zero input (resp. output)? The object U ⊗U of �’s domain
(resp. �’s co-domain) can be regarded as having two inputs (resp. outputs), one left component
U and the other right one. Then the decomposition in each case says that one of two inputs (resp.
outputs) is zero.

Pictorially,
0U−→

−→
U

� or
U−→

−→
0U

� for the zero input and �

0U−→
−→
U

or �

U−→
−→
0U

for the zero output.

Note that Definition 4.6 is alternatively stated as follows: When the assoc-coret (resp. assoc-
ret) is written explicitly as ex (σ , x) =� ◦ g (resp. ex (σ , x) = g ◦�) (cf. (11)), the assoc-coret �
(resp. assoc-ret �) has zero input (resp. output) iff either 0U ⊗U or U ⊗ 0U acts trivially on g by
composing (resp. precomposing) to the indicated component U ⊗U.

Example 4.7. Let π[A&A,A⊥⊕A⊥] A⊥,A⊗B,B⊥ be a proof
obtained by a ⊗-rule between π1 of Appendix C (the first
paragraph) and axB⊥,B. Let x := ν2 × (�̄, �) ∈ |π |, where ν2
is in Appendix C and (�̄, �) ∈ |axB⊥,B|. Then x has the
unique pair of assoc-ret and assoc-coret both interpreting
the ⊗-rule. See the left-hand dotted rectangle representing
x with the assoc-ret and the assoc-coret. The pair of

assoc-ret and assoc-coret appears explicitly in the first and
the second of the following equations (in which σx = s0U,U):

TrU
2

U3,U3 (( Id⊗σx) ◦ x ) =� ◦ TrU2

U4,U4
(
( Id⊗σx) ◦ x o) ◦�

=� ◦ (s0U,U ⊗ sU,U) ◦�,
where x o is x without the assoc-ret and the assoc-coret.

See the above figure whose LHS and RHS are the first and the last equations, respectively, The
assoc-coret (resp. assoc-ret) has zero input (resp. output) because the right picture depicts� (resp.
�) having a zero input (resp. output) from the northwest (resp. to the northeast). Hence 0U⊗U
composes (resp. precomposes) to s0U,U⊗ sU,U trivially.

Definition 4.8 (action εx on assoc-rets and assoc-corets of x ). The endomorphism σx of
Definition 4.4 for x ∈ |π[�],�| yields the following action εx on the assoc-rets and the assoc-corets
of x . The action εx acts on each assoc-ret and assoc-coret as either zero or the identity by
(pre)composition on them, as follows:

�εx =

⎧⎪⎨⎪⎩
�0 if � has a zero output

w.r.t σx
� otherwise

�εx =

⎧⎪⎨⎪⎩
�0 if � has a zero input

w.r.t σx
� otherwise

where zero actions�0 and�0 are defined respectively as follows:

�0 := 0U,U⊗U = k ◦ 0U = (0U ⊗ 0U) ◦ k �0 := 0U⊗U,U = 0U ◦ j= j ◦ (0U ⊗ 0U)
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Figure 6. Execution formula Ex (σ , x), where � (resp.
�) denotes�0 (resp.�0).

That is, the zero annihilates the pair of assoc-ret and assoc-coret j :U ⊗U �U : k to the pair of the
zero morphisms j0 :U ⊗U �0 U : k0, where j0 =�0 and k0 =�0.

The action εx of Definition 4.8 is by definition conjugate on the pairwise tensor foldings (⊗i∈r
�i,⊗i∈r �i )= (�r ,�r) of the assoc-rets and the assoc-corets represented in (13), where r= {i |
i is contracted with x= (x1, . . . , x�)}. Hence we may formulate the action on x by conjugation:

x εx := (�εx )r ◦ x o ◦ (�εx )r (17)

Pictorially,

x εx := x o
�εx �εx
...

...
�εx �εx

This action of εx, by naturalities, extends to the action εx on the corresponding retractions and
co-retractions in (16):

(TrU
2m

Un,Un (( Id⊗σx) ◦ x ) )εx := (�εx )r ◦ TrU2m
Un,Un

(
( Id⊗σx) ◦ x o) (�εx )r

= TrU
2m

Un,Un
(
(�εx )r ◦ ( Id⊗σx) ◦ x o ◦ (�εx )r

)
by nats

= TrU
2m

Un,Un
(
( Id⊗σx) ◦ (�εx )r ◦ x o ◦ (�εx )r

)
by (16)

= TrU
2m

Un,Un
(
( Id⊗σx) ◦ x εx

)
by (17)

Note by (15) that the LHS of the first equation is ex (σ , x)εx . Recall that r is the number of the
assoc-rets �i (equally the assoc-corets�i) of x such that i is contracted.

4.1.3 The Execution formula
Definition 4.9 (Execution formula Ex (σ , x) for x ∈ |π[�],�|). For every x ∈ |π[�],�|, the endo-
morphism Ex (σ , x) is defined by

Ex (σ , x) := ex (σ , x)εx

= TrU
2m

Un,Un
(
( Id⊗σx) ◦ x εx

)
,

where ( x , σx) is the pair of the endomorphism on Un+2m and on the subfactor U2m in Definition
4.4 and εx is the action in Definition 4.8 on the assoc-rets and the assoc-corets of x . The domains
(resp. the co-domains) of the assoc-rets (resp. the assoc-corets) lie amongst the subfactor Un in the
domain (resp. the co-domain) of x . See Figure 6.

Example 4.10. Let x be of Example 4.7. Since εx acts as zero both on the unique assoc-ret � and
on the unique assoc-coret�, Ex (σ , x) =�0 ◦ (s0U,U ⊗ sU,U) ◦�0 = 0U3,U3 .
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Figure 7. Proposition 4.15 and Lemma 4.14 and Equation (21) pictorially, where� and� denote respectively�0 and�0.

Finally, the execution formula is run pointwise for every enumerated set ν in interpretation of
a proof in Rel[c].

Definition 4.11 (Execution formula ExJ (σ , ν) for ν ∈ |π[�],�|J). Let π[�],� be a MALL[c] proof.
For every ν ∈ |π[�],�|J , Ex (σ , ν) ∈ |�|J is defined indexwise by:

( ExJ (σ , ν) )j = Ex
(
σ , νj

)
for every index j ∈ J

4.2 Zero convergence of execution formula
This subsection concerns the main proposition (Proposition 4.15), which says that communicat-
ing two proofs via mismatched pair yields zero convergence of Ex. We start with the tracing zero
lemma derivable from some trace axioms.

Lemma 4.12 (Tracing zero). For any natural number n≥ 1,

TrUUn,Un
(
0Un+1

) = 0Un (18)

Proof. First by Lemma 4.1 0Um = (0U)m for any natural number m. Then by superposing
TrUUn+1,Un+1

(
0Un+2

) = 0Un ⊗ TrUU,U
(
0U2

)
, it suffices to prove the assertion for n= 1. Second,

observe the equation3

(0U ⊗U) ◦ sU,U ◦ (0U ⊗U)= 0U ⊗ 0U = (U ⊗ 0U) ◦ sU,U ◦ (U ⊗ 0U) (19)

Thus TrUU,U
(
0U2

) = 0U ◦ TrUU,U
(
sU,U

) ◦ 0U = 0U ◦U ◦ 0U , where the first equation is by natural-
ities and the second equation is by yanking.

We prepare the following Lemma 4.14, which will directly entail the main Proposition 4.15.

Definition 4.13 (action δx). For x ∈ |π[�],�|, let us put x into the context ( Id⊗ 0U) ◦ (− ) ◦
( Id⊗ 0U), allowing interaction of the assoc-rets and the assoc-corets of x with the two zeros
0U in the context. Zero input (resp. zero output) of assoc-ret (resp. assoc-coret) in this context is
defined in the same manner, yielding the action, say δx, on the assoc-rets and the assoc-corets of x
same as in Definition 4.8 (but simpler without the feed back): That is, the morphism �δx is defined
to be �0 (resp. �) if � decomposes in ( Id⊗ 0U) ◦ x ◦ ( Id⊗ 0U) either as (0U ⊗ U) ◦� or
(U ⊗ 0U) ◦� (resp. otherwise). Symmetrically,�δx is defined to be�0 (resp.�) if� decomposes in
( Id⊗ 0U) ◦ x ◦ ( Id⊗ 0U) either as � ◦ (0U ⊗ U) or � ◦ (U ⊗ 0U) (resp. otherwise).

Lemma 4.14 (lemma for Proposition 4.15).

( Id⊗ 0U) ◦ ex (σ , x)δx ◦ ( Id⊗ 0U)= 0Un ,
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where ex (σ , x)δx is ex (σ , x) of (15) whose x is replaced by x δx using the action δx of Definition
4.13.

See Figure 7 (upper right) depicting the equation. The lemma holds up to the the permutations
τ on Un so that the left ex (σ , x) is read by τ−1 ◦ ex (σ , x) ◦ τ . Hence the assertion is independent
of the choice of U for the 0U. The choice is of one formula occurrence from �, as each occurrence is
interpreted by the distinct U.

Proof. Induction on the construction of π for x in Definition 4.4. In the proof, Equation(19) in
the proof of Lemma 4.12 is used. In the following, for i= 1, 2, xi are the premises of x (i.e. x1 = y
and x2 = z in Definition 4.4), and exi denotes ex (σ , xi).

(axiom)
( Id⊗ 0U) ◦ ax ◦ ( Id⊗ 0U)= ( Id⊗ 0U) ◦ sU,U ◦ ( Id⊗ 0U)= 0U ⊗ 0U .

(⊗-rule)(case 1) U is introduced by the ⊗-rule.
( Id1 ⊗ 0U ⊗ Id2 ) ◦� ◦ (ex1 ⊗ ex2) ◦� ◦ ( Id1 ⊗ 0U ⊗ Id2 )

=� ◦ ((( Id1 ⊗ 0U) ◦ ex1 ◦ ( Id1 ⊗ 0U))⊗ (( Id2 ⊗ 0U) ◦ ex2 ◦ ( Id2 ⊗ 0U)) ◦�= 0Un1 ⊗ 0Un2

The last equation is by I.H.’s on x1 and x2 .

(⊗-rule) (case 2) other than case 1:
In this case, the U for the 0U of Id⊗0U is a factor from the (co)domain of xi . We assume
without loss of generality that i= 1. Then, ( Id⊗ 0U) ◦ ex1 ◦ ( Id⊗ 0U)= 0Un1 by I.H on x1. This
directly implies that the co-retraction and the retraction (j, k) interpreting the ⊗-rule are acted
by δ as zero, denoted by (j0, k0), since j’s output and k’s input both on x1 are zeros by the I.H.
Hence, when (j, k) is written by (�,�),
�0 ◦ (0Un1 ⊗ ex2) ◦�0 =� ◦ (0Un1 ⊗ (0U ⊗ Id ) ◦ ex2 ◦ (0U ⊗ Id )) ◦�

=� ◦ (0Un1 ⊗ 0Un2 ) ◦�= 0Un

The first equation is by the assumption and the second equation is by I.H. on x2 .

(cut rule)
By the rule,

ex(σ , x)= TrU
2

Un,Un
(
( Id1 ⊗sU,U ⊗ Id2 ) ◦ (ex1 ⊗ ex2)

)
We assume without loss of generality that the U for the 0U of the Id⊗ 0U is a factor from the
(co)domain of x1 . Then, LHS of the assertion is equal to
( Id⊗ 0U) ◦ TrU2

Un,Un
(
( Id1 ⊗sU,U ⊗ Id2 ) ◦ (exδ1 ⊗ exδ2)

) ◦ ( Id⊗ 0U)
= TrU

2
Un,Un

(
( Id⊗ 0U) ◦ (( Id1 ⊗sU,U ⊗ Id2 ) ◦ (exδ1 ⊗ exδ2)) ◦ ( Id⊗ 0U)

)
naturalities

= TrU
2

Un,Un
(
( Id1 ⊗sU,U ⊗ Id2 ) ◦ (( Id⊗ 0U) ◦ exδ1 ◦ ( Id⊗ 0U))⊗ exδ2)

)
by the asm.

= TrU
2

Un,Un
(
( Id1 ⊗sU,U ⊗ Id2 ) ◦ (0Un1+1 ⊗ exδ2)

)
I.H. on x1

= TrU
2

Un,Un
(
( Id1 ⊗(0U ⊗U) ◦ sU,U ◦ (0U ⊗U)⊗ Id2 ) ◦ (0Un1+1 ⊗ exδ2)

)
dinaturality

= TrUUn1 ,Un1

(
0Un1+1

) ⊗ TrUUn2 ,Un2

(
(0U ⊗ Id ) ◦ exδ2

)
(19) and superposing

= TrUUn1 ,Un1

(
0Un1+1

) ⊗ TrUUn2 ,Un2

(
(0U ⊗ Id ) ◦ exδ2 ◦ (0U ⊗ Id )

)
dinaturality

= 0Un1 ⊗ 0Un2 I.H. on x2
The first dinaturality is via the decomposition 0Un1+1 = (Un1 ⊗ 0U) ◦ 0Un1 ◦ (Un1 ⊗ 0U) and the
second dinaturality is via the decomposition 0U = 0U ◦ 0U .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000062
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.35, on 14 Jul 2025 at 21:06:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000062
https://www.cambridge.org/core


1046 M. Hamano

Figure 8. Pictorial Proof of Lemma 4.14.

(`-rule and additives)
Direct from the construction.
See Figure 8 for a pictorial proof depicting the above rewriting in each case.

Proposition 4.15 (Mismatch gives rise to zero convergence of Ex). For twoMALL proofs π i
[�i],�i,Ai

with i= 1, 2, let xi = λi × (γi, ai) ∈ |π i
[�i],�i,Ai

| so that ai ∈ |Ai| with a1 �= a2 and A1 and A2 are
pairwise dual formulas. Then

Ex
(
σa1,a2 , Ex (σ , x1) ⊗ Ex (σ , x2)

) = 0Un1+n2 where σa1,a2 = sδa1,a2

Note that the LHS of the assertion is, by Definition 4.9, the following, in which ε is the action
arising from σa1,a2 = s0Ua1 ,Ua2

of Definition 4.8:

TrU
2(1+m1+m2)

Un1+n2 ,Un1+n2

(
( Id⊗σa1,a2 ⊗ σx1 ⊗ σx2 ) ◦ ( x1 εx1 ⊗ x2 εx1 )ε

)
(20)

= TrU
2(1+m1+m2)

Un1+n2 ,Un1+n2

(
( Id⊗σa1,a2 ) ◦ ((Ex (σ , x1) ⊗ Ex (σ , x2) )ε

)
by nats and vanish IIs

In the above xj is an endomorphism on U2(mj+1)+nj with the subfactor U2mj for σxj .
Before the proof of Proposition 4.15, let us observe a general equation derivable from certain

trace axioms (dinaturality and yanking), where f : X ⊗U −→ Y ⊗U and 0U,I (resp. 0I,U) is the
zero morphism from U to the tensor unit I (resp. the other way around).

TrUX,Y
(
( Id⊗ 0U) ◦ f

) = ( Id⊗ 0U,I) ◦ f ◦ ( Id⊗ 0I,U) (21)
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Note first that the zero morphisms 0U,I and 0I,U above are derivable from 0U using the trace:

0U,I = TrUU,I

(
U ⊗U 0U⊗0U−→ U ⊗U

j−→U ∼= I ⊗U
)

0I,U = TrUU,I

(
I ⊗U ∼=U k−→U ⊗U 0U⊗0U−→ U ⊗U

)
See Figure 7 (lower right) depicting Equation (21).

(proof of (21))
By the decomposition 0U = 0I,U ◦ 0U,I , the LHS is TrIX⊗I,Y⊗I

(
( Id⊗ 0U,I) ◦ f ◦ ( Id⊗ 0I,U)

)
, by

dinaturality, which is equal to the RHS by vanishing. (end of proof of (21))
Finally we go to:

Proof of Proposition 4.15. We prove the following instance of the proposition using Equation (20),
where n= n1 + n2, since σa1,a2 = s0 = 02U :

TrU
2

Un,Un
(
( Id⊗ 02U) ◦ (Ex1 ⊗ Ex2)ε

) = 0Un1+n2 where Exi = Ex (σ , xi)

For this, it suffices to show the following stronger equation, as exi is Exi ridden of the zero action
on the assoc-rets and the assoc-corets (cf. Definition 4.8):

TrU
2

Un,Un
(
( Id⊗ 02U) ◦ (ex1 ⊗ ex2)ε

) = 0Un1+n2 where exi = ex (σ , xi)
By superposing (after the distribution of ε over ⊗), the LHS is equal to

TrUUn1 ,Un1

(
( Id⊗ 0U) ◦ exε1

) ⊗ TrUUn2 ,Un2

(
( Id⊗ 0U) ◦ exε2

)
(22)

On the other hand, Lemma 4.14 and (21) say for all i= 1, 2

TrUUni ,Uni

(
(0U⊗ Id ) ◦ exδi

) = 0Uni

Since the two actions ε and δ coincide again by (21), the formula (22) becomes equal to 0Un1 ⊗
0Un2 = 0Un .

4.3 Main theorem
This section concerns the main theorem of this paper.

Theorem 4.16 (Ex is invariant and diminishes sets of indices).
Let ν ∈ |π[�],�|J �I ν′ ∈ |π ′

[�′],�|J′ be any MALL[c](I) proof transformation. Then

(i)
ExJ (σ , ν)�J′= ExJ′

(
σ , ν′) and ∀j ∈ J \ J′ Ex

(
σ , νj

) = 0
(ii) In particular, when π ′ is cut-free so that �′ is empty, then

ExJ (σ , ν)�J′= ν′ and J′ = {j ∈ J | Ex (
σ , νj

) �= 0 }

Proof. We prove (i) according to the cases of Proposition 3.3, since (ii) follows directly from (i)
as follows: For a cut-free π ′, σν′ is empty, hence Ex

(
σ , νj

) = ν′
j , where ν′

j �= 0 holds directly
both from the construction of Definition 4.4 and from the non-collapsing assumption (7).

The invariance of (i) is direct by the yanking axiom in case 1, and by induction on the proof
π in cases 2 and 3: This proof method directly comes as an instance of the known method in the
symmetric traced monoidal category modelling multiplicative GoI (Haghverdi and Scott 2006).
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Thus we prove the zero convergence for the diminution of J. The following crucial cases are those
of the proof of Proposition 3.3.

(Crucial case 1)
Each instance of ν at j ∈ J \ J′ is νj = (δj, bj, aj, bj, λj), so that aj �= bj since j �∈ J′,
then Ex

(
σ , νj

) = 0 by Proposition 4.15.

(Crucial case 2)
J = J1 + J2 diminishes into J1. Each instance of τ at j2 ∈ J2 is τj2 = (ω, δ2, γ , (2, a2)) ∈ |&(π1, π2)|.
Thus each instance of ν at j2 ∈ J2 is νj2 = (ω, δ2, δ3, (2, a2), (1, a1), γ , ξ ) ∈ |π |. Since (2, a2) �=
(1, a1), we have Ex

(
σ , νj2

) = 0 by Proposition 4.15.

(Crucial case 3)
J does not diminish in this case.

Appendix C is read as an elucidating example of Theorem 4.16.

5. Conclusion and Future Work
This paper offers two main contributions:

(i) Presenting an indexedMALL system for stacking cut formulas and its relational counterpart
to simulate MALL proof reduction of cut elimination.

(ii) Constructing an execution formula for the interpretation of MALL proofs equipped with
indices. The MALL proof reduction is characterised by the convergence of the execution
formula to the denotational interpretation. Furthermore, the zero convergence of the exe-
cution formula characterises the diminution of indices, which is specific to additive cut
elimination.

Our explicit use of indexed-syntactical manipulations directly overcomes known difficulties in
additive GoI. We hope that this paper, from the perspective of indexed linear logic, will shed light
on an approachable understanding of the preceding literature on additive GoI, from precursory
ones (Duchesne 2009; Girard 1995) to more recent developments (Girard 2011; Seiller 2016).

We discuss some future directions.
For a genuineMALLGoI without bypassing via indexed logic, a syntax-free counterpart is required
to replace the indices. We construct such a genuine GoI (Hamano 2018) using an algebraic ingre-
dient: a scalar extension of Girard’s ∗-algebra of partial isometries over a boolean polynomial
semi-ring. The genuine GoI may help us connect our syntactic manipulation of indices to Girard’s
semantic use of clauses for predicates in the precursory MALL GoI (Girard 1995).

In a syntactic direction, the status of Gentzen cut elimination for MALL(I) remains open since
the present paper only concerns lifting the image to the indices of MALL cut reduction. The status
will complement the reduction-free cut elimination, known to be derivable from the Fundamental
lemma 2.10 (cf. Bucciarelli and Ehrhard 2000, 2001; Hamano and Takemura 2008).

Extending the present paper to the exponentials is challenging to use Bucciarelli–Ehrhard LL(I)
(Bucciarelli and Ehrhard 2001) for modelling GoI. This will involve extending our methodology
of a traced monoidal category with a zero morphism to the whole GoI situation (Haghverdi and
Scott 2006, 2011), compatibly with the multisets interpretation of the exponential connective in
Rel. The explicit accommodation of the indices to GoI will give a novel approach to the (non
indexed) GoI modelling for the exponentials.

Acknowledgements. The author wish to thank the referees for detailed and very helpful comments that have greatly
improved the presentation.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0960129521000062
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.35, on 14 Jul 2025 at 21:06:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0960129521000062
https://www.cambridge.org/core


Mathematical Structures in Computer Science 1049

Notes
1 For the choice of xi (i.e. a choice of a formula (not in the cut list � but) in � ), the construction is free from cut.
2 assoc-ret (resp. assoc-coret) for short.
3 In a more general setting, the natural iso (b⊗U) ◦ sU,U ◦ (a⊗U)∼= a⊗ b∼= (U ⊗ a) ◦ sU,U ◦ (U ⊗ b), for any endomor-
phisms a and b on U.
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Appendix A. Axioms of Traced Monoidal Category
Definition A.1 (Trace axioms of the family TrZX,Y of (14) Haghverdi and Scott 2006; Joyal et al.
1996).

(1) (Natural in X)
TrZX,Y

(
f
) ◦ g = TrZX′,Y

(
f ◦ (g ⊗ Z)

)
where f : X ⊗ Z −→ Y ⊗ Z and g : X′ → X

(2) (Natural in Y)
g ◦ TrZX,Y

(
f
) = TrZX′,Y

(
(g ⊗ Z) ◦ f ) where f : X ⊗ Z −→ Y ⊗ Z and g : Y → Y ′

(3) (Dinatural in Z)
TrZX,Y

(
(Y ⊗ g) ◦ f ) = TrZ

′
X,Y

(
f ◦ (X ⊗ g)

)
where f : X ⊗ Z −→ Y ⊗ Z and g : Z′ → Z

(4) (Vanishing I )
TrIX,Y

(
f ⊗ I

) = f where f : X −→ Y

(5) (Vanishing II )
TrZ⊗W

X,Y
(
f
) = TrZX,Y

(
TrWX⊗Z,Y⊗Z

(
f
))

where f : X ⊗ Z ⊗W −→ Y ⊗ Z ⊗W
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(6) (Superposing)
g ⊗ TrZX,Y

(
f
) = TrZW⊗X,V⊗Y

(
g ⊗ f

)
where f : X ⊗ Z −→ Y ⊗ Z and g :W −→V

(7) (Yanking)
TrXX,X

(
sX,X

) = X for the symmetry sX,X : X ⊗ X −→ X ⊗ X

Lemma A.2 (Generalised Yanking Haghverdi and Scott 2011). Let sZ,Y denote the symmetry
from Z ⊗ Y to Y ⊗ Z.

TrZX,Y
(
sZ,Y ◦ ( f ⊗ g)

) = g ◦ f where f : X −→ Z and g : Z −→ Y

Proof. LHS nat= TrZZ,Y
(
sZ,Y ◦ (Z ⊗ g)

) ◦ f dinat= TrYZ,Y
(
(Y ⊗ g) ◦ sZ,Y

) ◦ f . Inside the trace (Y ⊗ g) ◦
sZ,Y = sY ,Y ◦ (g ⊗ Y), thus TrYZ,Y

(
sY ,Y ◦ (g ⊗ Y)

) nat= TrYY ,Y
(
sY ,Y

) ◦ g yank= g

Appendix B. Omitted Proofs
B.1 Proof for Proposition 2.10 (Fundamental Lemma)
Lemma B.1 ((i) implies (ii)). Let π[�],� be a proof of a sequent � [�], � in MALL[c]. Let δ × γ ∈
|π[�],�|J (for some J ⊆ I) with δ ∈ [sl(�)]J and γ ∈ |�|J . The sequent �J [�〈〈δ〉〉], �〈γ 〉 has a proof
ρ in MALL[c](I) such that ρ�∅= π .

Proof. By construction on the MALL proof π . The proof figures are referred in Definition 2.6.

(cut rule)
δ × γ ∼= δ1 × δ2 × γ1 × γ2 with δ1 × γ1 ∈ π1

[�1],�1,A and δ2 × γ2 ∈ π2
[�2],A⊥,�2

. By I.H’s on
(δi × γi) s, there are MALL(I)-proofs of the sequents �J [�1〈〈δ1〉〉], �1〈γ ′

1〉,A〈γ ′′
1 〉 and �J

[�2〈〈δ2〉〉], A⊥〈γ ′
2〉, �2〈γ ′′

2 〉 with γi = γ
′
i × γ

′′
i . Note that A〈γ ′′

1 〉 and A⊥〈γ ′
2〉 are dual formulas

since they have the same domain J. Hence, the cut between the dual formulas is applied to prove
�J [ �1〈〈δ1〉〉,�2〈〈δ2〉〉,A〈γ ′′

1 〉,A⊥〈γ ′
2〉 ], �1〈γ ′

1〉, �2〈γ ′′
2 〉. The assertion follows since �1〈〈δ1〉〉 ×

�2〈〈δ2〉〉 = (�1,�2)〈〈δ1 × δ2〉〉.
(&-rule)
Let ν = |π[�],�|. Then ν = {(x1, z, y, (1, a1)) | (x1, z, y, a1) ∈ ν1} + {(x2, z, y, (2, a2)) | (x2, z, y,
a2) ∈ ν2} ∼= ν1�ν2 with γi ∈ |π i

[�i,�],�,Ai
|J1 and J = J1 + J2. By I.H’s on π i s, there are MALL(I)-

proofs of �Ji [�i〈〈δ′
i〉〉,�〈〈δ′′

i 〉〉 ], �〈γ ′
i 〉,Ai〈γ ′′

i 〉 with δi = δ
′
i × δ

′′
i and γi = γ

′
i × γ

′′
i . Because

�〈γ ′
1
�γ

′
2〉�Ji= �〈γ ′

i 〉 and �〈〈δ′′
1
�δ

′′
2〉〉�Ji= �〈〈δ′′

i 〉〉 by Lemma 2.2, the &-rule is applied to prove
�J1+J2 [ �1〈〈δ′

1〉〉,�2〈〈δ′
2〉〉,�〈〈δ′′

1
�δ

′′
2〉〉 ], �〈γ ′

1
�γ

′
2〉, A1〈γ ′′

1 〉&A2〈γ ′′
2 〉.

LemmaB.2 ((ii) implies (i)). Let� [�], � be a sequent ofMALL[c]. Let ν ∈ (sl(�)× �)J (for some
J ⊆ I) and let ρ be a proof of �J ([�], �)〈ν〉 in MALL[c](I). Then ν ∈ |(ρ�∅ )[�],�|J

Proof. By the construction on the MALL(I) proof ρ.

(cut rule)

ρ is

ρ1

�J [�1], �1,A �J

ρ2

[�2], A⊥, �2

�J [�1,�2,A,A⊥], �1, �2
cut

.
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The conclusion is written as �J ([�1,�2,A,A⊥], �1, �2)〈ν〉. From the construction, ν ∼=
ν1 × ν2 so that the conclusions of ρ1 and ρ2 are, respectively, �J ([�1], �1,A)〈ν1〉 and �J
([�2], A⊥, �2)〈ν2〉. By I.H’s on ρis, ν1 ∈ |(ρ1�∅ )[�1],�1,A|J and ν2 ∈ |(ρ2�∅ )[�2],A⊥,�2 |J . The asser-
tion follows since
|(ρ1�∅ )[�1],�1,A|J × |(ρ2�∅ )[�2],A⊥,�2 |J ∼= |(ρ�∅ )[�1,�2,A,A⊥],�1,�2 |J .
(&-rule)

ρ is

ρ1

�J1 [�1,� ], �,A1
ρ2

�J2 [�2,� ], �,A2
�J1+J2 [�1,�2,� ], �,A1&A2

&

ν is of the form ν1�ν2 so that the conclusions of ρi s are �Ji ([�i,�], �,Ai)〈νi〉. By I.H’s on ρis,
νi ∈ |(ρi�∅ )[�i,�],�1,Ai |Ji . The assertion follows since

|(ρ1�∅ )[�1,�],�,A1 |J1�|(ρ1�∅ )[�2,�],�,A2 |J2 ∼= |(ρ�∅ )[�1,�2,�],�,A1&A2 |J1+J2

Appendix C. Indices and Additive Cut Elimination
This appendix elucidates the fundamental idea of the paper. The appendix may read as a prologue
of the paper by readers yet familiar with MLL GoI interpretation on a reflexive object in a traced
monoidal category.

Consider a sequence π1 � π2 � π3 of cut eliminations for proofs in the additive fragment of
MALL. In our sequent notation, pairwise cut formulas, if present, are stored inside a stack [ · ]
in a sequent. The first reduction, intrinsic to the additives, eliminates a & in a cut, whereby the
subproof ax2 is pruned. The second reduction eliminates a redundant cut against an axiom:

�A⊥,A
ax1 �A⊥,A

ax2

�A⊥,A&A
&

�A⊥,A
ax3

�A⊥ ⊕A⊥,A
⊕1

� [A&A,A⊥ ⊕A⊥] A⊥,A
cut

� �A⊥,A
ax1 �A⊥,A

ax3

� [A,A⊥] A⊥,A
cut

� �A⊥A
ax1

Step 1 (Interpretation |π | in Rel with unperformed cuts and indices for additives)
We begin by interpreting proofs in Rel but without relational composition. For this, the cut rule is
interpreted same as the tensor rule. This interpretation is consistent with the syntactic convention,
starting from Girard’s GoI 1, which puts the cut formulas into a stack.

For simplicity and in accordance with the fact that the multiplicative dual elements 1 and ⊥
are interpreted in Rel as the singleton set, we take A= 1 and, dually, A⊥ = ⊥, so that |1| = |⊥| is
the singleton, whose unique element is denoted ∗ or ∗̄ (obviously, ∗ = ∗̄), depending on whether
it comes from |A| or |A⊥|, respectively.

An axiom is interpreted in Rel by the diagonal, so that |axi| = {(∗̄, ∗)} ⊆ |A⊥| × |A|. The
proof π2 is interpreted as |cut(ax1, ax2)| = {(∗̄, ∗, ∗̄, ∗)} ⊆ |A⊥| × [ |A| × |A⊥| ] × |A|, in which
the pair (∗, ∗̄) in the cut slot from [ |A| × |A⊥| ] remains explicit, rather than being hidden
by relational composition through ∗ = ∗̄. Note that both interpretations |π2| and |π3| are sin-
gletons. More generally, it is straightforward to see that any proof in the multiplicatives can
be interpreted by a singleton whenever literals are interpreted by singletons. However, this
is not the case for the additives. When interpreting π1 with additive rules, singletons prove
insufficient, and this is where the indices become necessary: The left and right premises of π1
are interpreted, respectively, by |&(ax1, ax2)| = {(∗̄, (1, ∗)), (∗̄, (2, ∗))} ⊆ |A⊥| × (|A| + |A|) and
| ⊕1(ax3)| = {((1, ∗̄), ∗)} ⊆ (|A⊥| + |A⊥|)× |A|. A set of indices J = {1, 2} is employed to describe
these two interpretations: the first yields δ ∈ |&(ax1, ax2)|J so that δ1 = (∗̄, (1, ∗)) and δ2 =
(∗̄, (2, ∗)), and the second yields τ ∈ | ⊕1(ax3)|J , so τ1 = τ2 = ((1, ∗̄), ∗).
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Then π1 is interpreted by ν:

ν := δ × τ ∈ |cut(&(ax1, ax2),⊕1(ax3))|J ⊆ (|A⊥| × [ (|A|+|A|)× (|A⊥|+|A⊥|) ]× |A|)J ,
and therefore (δ × τ )1 = (δ1, τ1)= (∗̄, (1, ∗), (1, ∗̄), ∗) and (δ × τ )2 = (δ2, τ2)= (∗̄, (2, ∗), (1,
∗̄), ∗), where δ × τ denotes the mediating morphism of the set-theoretical cartesian prod-
uct. Summing up, |π1| = {vj | j ∈ J = {1, 2}}, where v1 = (∗̄, (1, ∗), (1, ∗̄), ∗) and v2 = (∗̄, (2, ∗),
(1, ∗̄), ∗).

Step 2 (ExJ (σ , ν) for ν ∈ |π |J : Executing cuts using trace structures)
In addition to Step 1, our GoI interpretation runs an execution formula for |πi| to perform cut
elimination against the unperformed cut formulas, syntactically in the stack and semantically in
the noncompositional interpretation.

Each point in |π | is interpreted as an endomorphism on a certain tensor folding of a reflexive
object U in a traced monoidal category C with a zero morphism on U. The object U uniformly
interprets each element in the interpretation of the conclusion of π ; e.g. in |π1|,U has the elements
∗̄, ∗, (1, ∗̄), (1, ∗) and (2, ∗). In the following, these points are identified with their interpretation
U.

For the most primitive case, e.g. for |π3|, each diagonal point (∗̄, ∗) interpreting the axiom is
interpreted as a symmetry of C:

s∗̄,∗ :U∗̄ ⊗U∗ −→U∗̄ ⊗U∗ (C1)
The unique point of |π2| is interpreted by the endomorphism Ex (σcut, |π2|) onU∗̄ ⊗U∗, in which
σcut, as the interpretation of the cut, is the symmetry s∗,∗̄ acting on the cut formulas:

Ex (σcut, |π2|) = Tr∗⊗∗̄
∗̄⊗∗,∗̄⊗∗

(
(∗̄ ⊗ σcut ⊗ ∗) ◦ (s∗̄,∗ ⊗ s∗̄,∗)

)
(C2)

Note that the symmetries s’s occurring in (C2) interpret respective axioms.
This is equal to (C1) in C by the trace axioms. The adjacent diagrams illustrate (C1) and (C2),
where the equality is found in the diagram for (C2) by chasing arrows with respect to both
composition and feedback.

∗̄

���
��

��
��

� ∗̄

*

ax1

����������
*

∗̄

���
��

��
��

� ∗̄

*
��

��

�� ��

�	ax1

����������
*

���
��

��
��

� *

∗̄

���
��

��
��

� ∗̄
σcut

���������� ∗̄ ��

�	��

�� ��

*

ax3

����������
*

Diagram of (C1) Diagram of (C2)

The GoI interpretation of π1 is that for the indexed ν ∈ |π1|J in Step 1, which is defined pointwise
(for j ∈ J = {1, 2}) at ν1 and ν2, in which σν1 and σν2 are stipulated respectively by σcut and 0, where
σcut is a symmetry s(1,∗),(1,∗̄) for the cut formulas while 0 is the zeromorphism 0U2 resulting by zero
action on a symmetry s(2,∗),(1,∗̄):
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Ex
(
σν1 , ν1

) = Tr(1,∗)⊗ (1,∗̄)
∗̄⊗∗ , ∗̄⊗∗

(
(∗̄ ⊗ σcut ⊗ ∗) ◦ (s∗̄,(1,∗) ⊗ s(1,∗̄),∗)

)
, (C3)

in which σcut arises because of the matching (1, ∗)= (1, ∗̄).
Ex

(
σν2 , ν2

) = Tr(2,∗)⊗ (1,∗̄)
∗̄⊗∗ , ∗̄⊗∗

(
(∗̄ ⊗ 0 ⊗ ∗) ◦ (s∗̄,(2,∗) ⊗ s(1,∗̄),∗)

)
(C4)

in which 0 arises because of the mismatch (2, ∗) �= (1, ∗̄).
Here (C3) is equivalent to (C2), while (C4) reduces to 0 in C by virtue of the trace axioms with zero
morphisms. The next two diagrams, for (C3) and (C4), illustrate that (C4) yields a zero morphism
because chasing any arrow results in passing through 0.

∗̄

���
��

��
��

∗̄

(1, ∗)
��

��

�� ��

�	ax1

���������
(1, ∗)

���
��

��
��

(1, ∗)

(1, ∗̄)

���
��

��
��

(1, ∗̄)
σcut

���������
(1, ∗̄) ��

�	��

�� ��

*

ax3
���������
*

∗̄

���
��

��
��

∗̄

(2, ∗)
��

��

�� ��

�	ax2

���������
(2, ∗)

���
��

��
��

(2, ∗)

(1, ∗̄)

���
��

��
��

(1, ∗̄)
0

���������
(1, ∗̄) ��

�	��

�� ��

*

ax3
���������
*

Diagram of (C3), j= 1 Diagram of (C4), j= 2

At j= 2, Ex
(
σν2 , ν2

) = 0, so we delete the index 2, reducing J into the singleton {1}. For index 1,
Ex

(
σν1 , ν1

)
is identical to the symmetry (C1) of |π3| and, hence, to the denotational interpretation.
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