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Abstract

We give presentations for the groups PSL(2,p"), p prime, which show that the deficiency of these
groups is bounded below. In particular, for p = 2 where SL(2,2") = PSL(2,2"), we show that
these groups have deficiency greater than or equal to - 2 . We give deficiency - 1 presentations
for direct products of SL(2,2"') for coprime n,-. Certain new efficient presentations are given
for certain cases of the groups considered.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 20F05; Secondary
20 D 06, 20 G 40.

1. Introduction

For any field F let SL(2, F) denote the group of 2 x 2 matrices of determinant
1 over F and let PSL{2, F) denote the factor of SL(2, F) by its centre. When
F = GF(pn) we write SL(2,p") and PSL(2,p") respectively. Considerable
effort has, over the years, been put into finding presentations of PSL(2,p)
with a small number of defining relations; see [15], [18]. However, except for
a few cases of particular values of p and n, nothing appears in the literature
on the corresponding problem of finding presentations with a small number
of defining relations for PSL(2,p"), n>2.

Presentations of PSL(2,p") with the number of defining relations increas-
ing with n are given by Bussey [3], Todd [16], Sinkov [14] and Beetham [1].
The Beetham presentation is particularly pleasing because of the symmetry
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displayed. In order to describe a lower bound on the number of defining
relations we introduce some terminology (see [12]).

Let G be a finite group. If G has a finite presentation (X\R) then the
deficiency of the presentation is\X\-\R\. The deficiency of G is the maximum
of the deficiencies of all finite presentations of G and is denoted by def G. An
upper bound for def G is given in terms of the rank of the Schur multiplier
M(G) of G,

(1.1) — def G > minimal number of generators of M(G).

A group G is said to be efficient if equality holds in (1.1). The Schur multiplier
of PSL(2,p") is given in [10]. We have that M(PSL(2,p")) is a non-trivial
cyclic group if p is odd or p = 2 and n - 2 while for n > 3, M(PSL(2,2")) -
1. Note that PSL(2,2") = SL(2,2").

We consider the deficiency of PSL(2,pn), p odd, and SL{2,2") in Sections
2 and 3 respectively. Although we are unable to show that these groups are
efficient in general we show in both cases that the deficiency does not decrease
with n. In particular, we show that

-2<def(5L(2,2"))<0.

Indeed for many values of n, Theorem 3.4 shows that def(5L(2,2")) > - 1 .
The methods of Sections 2 and 3 are used in Section 4 to give deficiency - 1
presentations for direct products of SL{2,2n>) for coprime «,.

The notation used is standard, for example [x,y] = x~ly~lxy = x~lxy.
The field notation and terminology is as in Cohn [9] except the definition of
the period of the polynomial f(t) which is the least / such that f(t) divides
/' - 1, see [2].

2. Presentations of PSL(2,p"), p an odd prime, n > 2

Let p be an odd prime and let a be a primitive zero of the irreducible
polynomial m{t) over GF(p) where

n-l

(=0

Consider the matrices

over the field GF{p") and denote by W, X, Y and Z respectively their images
under the canonical morphism from SL(2,pn) onto PSL(2,p"). Let 52/ =
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Z'XZ', 0 < / < [ ( « + l ) / 2 ] a n d S2i+i = ZlYZ~\ 0<i< [n/2]. I t is easy
to check that {W,X,Y,Z} is a set of generators for PSL(2,pn) and satisfy
the relations of the group

(2.1)

G= lw,x,y,z\w3 = (wz)2 = (wx)2 = (wyz)3 = xp = yp = z(p"-')/2 = 1,

n - 1

[x,s,] - [y,Si] = 1,1 < i < n - l,sn = Yl Sf',sn+l =
/=0 /=0 /

It is shown in [14] that in fact G = PSL(2,pn).
Now (So, S\, S2,..., Sn-1) is the image of the upper triangular subgroup of

SL(2,pn) in PSL{2,pn) so U = (so,si,s2,... ,sn-y) is abelian and d: s, -> a',
0 < i < n - 1 induces an isomorphism onto the additive group of GF(pn).
Now the elements of GF{pn) are of the form f(a) where f(t) is a polynomial
over GF(p) of the form

The inverse image of f(a) under 6 is SCQS\X • • • scjz\ and we denote this preim-
age by s?. Notice that in this notation the last two relations of (2.1) may
be written as sm^ = 1 and s""W = 1. Notice also that if f(t) is any
polynomial over GF(p) with f(a) - 0 then sf^ - 1 in (2.1). Further,
H = {U, z) = (x,y, z) is isomorphic to the image of the upper triangular sub-
group of SL(2,p") in PSL(2,pn) and has order pn(p" - l)/2. The presenta-
tion (2.1) contains 2n + l relations some of which could be easily eliminated
but we aim to make a substantial reduction in the number of relations. In
order to do this we introduce the groups K

(a,bo,biW = K = K = [bo,bj] = [bubj+l] =l,bk = bd
ob

e
},bk+l = bd

{¥j+x)

where

(Kl) p is an odd prime and I = (pn - l)/2;

(K2) e1 £ (d - I)2 (mod p) if k is even,

d1 £ {e - I)2 (mod p) if k is odd;

(K3) ; is odd and (7,/) = 1;

(K4) bit = a 'M~' , b2i+l - a%a-1.

The next theorem relates the order of the derived group of K to the number
of distinct zeros of a trinomial. It uses a method of proof similar to that in
[7, Theorem 3].
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THEOREM 2.1. The group K is metabelian with K' elementary abelian of
order p" where v is the number of distinct zeros in GF(p") of the trinomial
d + etJ - tk over GF{p).

PROOF. Modulo K', using (K3), we have bj — b\, bj+i — bo. Now the
conditions (K2) imply that, modulo K', bo = b\ — 1 so bo,b\ € K'. Hence
K/K' is cyclic of order /. We use the Reidemeister-Schreier algorithm to give
a presentation for K' on the Schreier generators

n = a1'1 boa1'1, si = a ' - ' M 1 " ' (1 < / < / ) .

The following presentation is obtained:

(2.2) K' = (rhSi\rf = sf = [rhsi+h] = [ri+h+l,Si] = \,vt = rf

where h = (j - l)/2 and if k = 2m say, vt = ri+m, wt = Sj+m while if
k = 2m + 1 then v, = Si+m, wt = ri+m+i where the subscripts are reduced
modulo /. A similar argument to that used in [4, Theorem 3.3] shows that
K' is abelian. Finally, we obtain the order of K' where k is even, the case
for k odd being similar. The relation matrix for K' has the form [^] where
/ is the 2/ x 2/ identity matrix and M is a 2/ x 2/ circulant matrix formed
as follows. Let the odd columns of M be indexed by the r, and the even
columns indexed by the s,-. The first row of M contains the integers d, e,
— 1 in positions 1, j , k — 1 respectively and zero elsewhere. Now the rank
of M is 2/ — v which can be proved by taking the product of M and the
Vandermonde matrix with rows \,$,...,P2l~l, fi 6 GF(p") \ {0}, (see [9,
page 211]). Hence \K'\=pv.

The fact that (2.2) defines an abelian group allows us to replace most of
the commutators in presentation (2.1) by two relations.

THEOREM 2.2. Let a be a primitive element ofGF(p") which is a zero of
the irreducible polynomial m{t) over GF{p). There exists some trinomial f(t)
over GF(p)

f(t) = d + etj - tk

satisfying (Kl), (K2) and (K3) with f(a) = 0. Then PSL(2,pn) has presen-
tation

(2.3) {w,x,y, z\w3 = (wx)2 = (wz)2 = {wyzf = x" = yp = zl

= [x,sj] = \y,sj+l] = smw = s""^ = sfw = J " W = 1)

where Si is defined as in (2.1).

PROOF. Since a is primitive in GF{pn) there is a positive integer k for
which 1 + a = a* so f(t) = 1 + t — tk is an appropriate trinomial. Note that
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there may be other such trinomials / and we need only assume the conditions
on / as in the statement of the theorem. Since f{a) = 0 we have noted that
sf(t) _ stf(t) _ j a r e consequences of the relations of (2.1). We adjoin these
relations. Now z = a, x = bo, y — b\ satisfy the relations of K so the proof
of Theorem 2.1 shows that all the commutator relations [x,Sj] = \y,Sj] = 1,
1 < i < n - 1, are redundant except the two relations [x,Sj] = [y,Sj+\] = 1
and this completes the proof.

Notice that the presentation (2.3) has a fixed number of relations in con-
trast to those previously known for PSL{2,pn) where the number of relations
increases with n, see for example [1] and [14]. With some additional condi-
tions a further reduction in the number of relations is possible.

COROLLARY 2.3. If the trinomial d+etJ-tk has precisely n zeros in GF(p")
then the relations sm^ = s""^ = 1 are redundant in (2.3). Moreover, if
p" = - 1 (mod 4) the relation (wyz)3 — 1 is also redundant.

PROOF. Let G be the group presented by (2.3) with sm(l) = stm{t) = 1
omitted. Let L = (s^'Ks""^), N = LG and H = (x,y, z). By Theorem 2.2,
G/N s PSL{2,p"). Clearly L < H n N but HN/N, being isomorphic to the
canonical image of the upper triangular matrices in PSL(2,pn), has order
p"(p" - l)/2. Now, using Theorem 2.1,

\H\ < \K\ = ({pn - l)/2)\K'\ =pn{pn -

Therefore \H\ < \HN/N\ and so Hn N = 1. Hence L = 1 as required. The
proof that the relation (wyz)3 = 1 is redundant when pn = - 1 (mod 4) is
given in [16].

The case where pn = -1 (mod 4) is particularly amenable and a consider-
able shortening can be achieved beyond that given in Corollary 2.3. We give
a deficiency - 4 presentation in this case.

THEOREM 2.4. Suppose p" = - 1 (mod 4), a is a primitive element of
GF(p") and a zero of the irreducible polynomial m{t). Let k be such that
1 + a = ak. Thus PSL(2,p") may be presented by
(2.4)
{w,x, z\w3 = {wx)2 = (wz)2 = sm{t) = [x, zqxz-q] = 1, zl = xp, zrxz~r = u)

where l = {pn- l)/2, q = {pn + l)/4, r = [k/2] and u = xz^-^kqx-lz<^-^k+lq.
In (2.4) j m ( / ) is to be interpreted as a word in x,y as above with y replaced by

PROOF. First note that 2q — I + 1. As a is primitive in GF(p"), a1 = - 1
and so a2q = -a. Now (2.3) defines PSL(2,pn) and working with matrices
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modulo {±7} we see that

(2.5) z«xz-i=y-1

and we add this relation to (2.3). Use (2.5) to eliminate y. The denning
relations of (2.3) become

(w3 = (wx)2 = (wz)2 = [x, zqxz~q] = z' = x" = sm{t) = 1,

{ sk = xz«x-lz-«,

(2.7) stm(t) = [z"xz-q,zxz-x] = l,sk+i = zqx-lzx-qxz-1.

The main part of the proof consists in proving that the relations (2.7) are im-
plied by (2.6). First notice that zqs2iz-q = z«+ixz~^+i'> = zi(zqxz-q)z~i =
s ^ and similarly zqS2i+\z~q - j ^ . | 2 . Thus

(2.8) z*Siz-*=sr+\.

(i) s""^ = l is redundant. From (2.8) using the fact that the s,'s commute
(see the proof of Theorem 2.2) we obtain

zqsm(t)z-q _ s~tm{t)^

Since sm^ = 1 the proof of (i) is complete.

(ii) [zqxz~q,zxz~l] = 1 is redundant. Using z2q~x = 1 we have

[zqxz~q, zxz~xY - [x, zx-qxzq-1] - [x, zqxz~q] = 1

so proving (ii).

(iii) The relation sk+\ = zqx~lzl~qxz~1 is redundant. From (2.8)

sk+l = zqs^lz~q = zqzqxz-qx~lz-q

= zqx~1zqxz~2q = zqx~lzl~qxz'1

as required.
Finally, we can combine the relations zl - xp = 1 into the single relation

zl = xp. For xp commutes with z and so raising zrxz~r = u to the power p
gives xp — 1.

REMARK. In the case where GF(pn) has an element a satisfying a trinomial
m{t) (not necessarily irreducible) with properties (Kl), (K2) and (K3) such
that m{t) has exactly n zeros in GF(pn) then the methods of Theorem 2.2
and Corollary 2.3 show that the last relation in the presentation given in the
statement of Theorem 2.4 may be omitted.

EXAMPLE 2.5. The trinomial t3 — t — 2 is irreducible over GF(3) and is
satisfied by a primitive element a of GF(33). Now 1 + a - a9 and so from
Theorem 2.4 we have the following presentation of PSL(2,33):

(w,x,z\w3 — (wx)2 = (wz)2 = [x,z7xz~7] — l ,z1 3 = x3,

Z^- 'Z- 'JCZ-7*-2 = 1, z4jtz~4 = xz-^-'z7).
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The trinomial t9 - 1 - 1 has exactly three zeros in GF(33) and by the preceding
remark either of the last two relations may be omitted. Thus we have a
deficiency -3 presentation of PSL(2,33).

Although the results of this section show that PSL(2,pn) may in general
be presented with three generators and a small number of relations we are
able to show that for small values of p and n, the groups PSL(2,p") are
efficient, that is they have deficiency -1 presentations. An efficient presenta-
tion of PSL(2,32) = A6 is given in [6]. Efficient presentations of PSL(2,33),
PSL(2,52) and PSL(2,I2) are given in [8], see also [7].

We have used various computational techniques which are similar to those
described in [8, Section 5] to obtain efficient presentations of PSL(2,pn) for
other values of pn. We have obtained efficient presentations for PSL(2,34),
PSL(2,53), PSL(2,ll2), PSL(2,132) and PSL(2,\92). We list these to-
gether with two matrices which generate the corresponding group SL and
whose images in PSL satisfy the given presentation.

(i)

PSL(2,34) = (a,b\a2 = b3

= (ab)2(ab-l)4ab(ab-l)\ab)5(ab-l)3ab(ab-1)4 = 1),

/ 0 - 1 \ fa46 a73\ ,

\\ o)^a' U75 «3V '
where the minimum polynomial of a is 1 + 2t3 — t4.

PSL(2,34) = (a,b\a2 = b3

= abab-\abfab-\ab)\ab-{)4{{abfab-1)2 - 1),

(0 -\\ ( a a \ ,

[i o)^a> U 3 3 *2S)~*b'
where the minimum polynomial of a is 1 + 2f3 - t4.

(ii)

PSL(2,5i) = ( a,b\a2 = b3 = (ab)4{ab-l)14(ab)4(ab-1)-7 = 1),

/0 - 1 \ (a4 a 3 2 \ ,

[i o ) ^ a ' U35 *l06)~*b'
where the minimum polynomial of a is 3 + 4t2 - t3.

PSL(2,53) = (a,b\a2 = b3 = (ab)3(ab-l)io(ab)3(ab-1)-21 = 1),

0 - 1 \ / a2 all

where the minimum polynomial of a is 3 + 4t2 - t3.
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(iii)

PSL(2, II2) = (a,b\b3 = a11,

(ba4ba7)2 = ba-2b-la3ba2b-la3ba-2b-la-3 = 1),

Z 1 <*\ /0 -

where the minimum polynomial of a is 2 — t2.
(iv)

PSL(2,132) = (a,%2 = b3 = {{abftab-^fWiab-^ab = 1),
0 - 1 \ /'a5 a41

where the minimum polynomial of a is 2 + t + t2.
(v)

PSL{2,192) = (a,*|a2 = b3 = (a6)2(a*-1)5(afe)9(a6-1)9(aft)9(aft-1)5 = 1),
/ 0 - 1 \ / a5 a141\ ,
[l 0 ) ^ a ' U 1 7 2 <*104J '

where the minimum polynomial of a is 2 + t + t2.

3 . P r e s e n t a t i o n s o f S L ( 2 , 2 n ) , n>2

Similar methods to those used in Section 2 work for p = 2. However, it is
possible in this case to obtain neater presentations. With notation analogous
to that in Section 2 a presentation for SL(2,2") is

(3.1) (w,x,z\w3 = (wx)2 = (wz)2 = zl = x2 = sm{l)

= [X,ZiXZ~i]= 1,1 < / < / ! - 1)

where / = 2" - 1 and m(t) is an irreducible polynomial over GF{2) satis-
fied by a primitive element a of GF(2"), see for example [14]. Matrices
corresponding to the generators w, x and z may be taken to be, respectively,

/ o n / i n A /a('+')/2 av-w2\
[l l)' [0 i j and ( 0 a('-»/2J-

In an analogous way to the definition of the groups K in Section 2 we define
the groups K*

K* = (a,b\a' = b2 = \,akba~k = baJba~J)

w h e r e

( K * l ) I = 2"-I,
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THEOREM 3.1. K* is a metabelian group and K*' is elementary abelian of
order 2" where v is the number of distinct zeros in GF{2") of the trinomial
1 + tJ + tk over GF(2).

PROOF. The proof is essentially the same as that of Theorem 2.1 except
that in this case the derived group of K* is generated by the Schreier gen-
erators r, = a'~lbal~', i = 1,2,...,/, and a presentation for K*' on these
generators is:

{ri,r2,...,n\rf = \,ri+k ^nri+j,i= 1,2,. . . , /}

where the subscripts are reduced modulo /.
Notice that since K*' is abelian any two conjugates of b by powers of a

commute. We now add a relation to (3.1) so that z = a,x — b satisfy the
relations of K*. This enables us to remove the n — 1 commutator relations
of (3.1).

THEOREM 3.2. Let I - 2" - 1 and let a be a primitive element ofGF(2n)
which is a zero of the irreducible polynomial m{t) over GF{2). Then there
exists some trinomial

f{t) = 1 + V' + tk

with (j, I) = 1 and / ( a ) = 0. Then SL(2,2") has a presentation

(3.2) (w,x, z\w3 = (wx)2 = (wz)2 = zl = x2 = sm{t) = sm = 1).

PROOF. Since a is primitive in GF{2") there exists a positive integer k for
which 1 + a = ak so f{t) = 1 + t + tk is an appropriate trinomial. Add the
redundant relation s^ = 1 to (3.1) and use Theorem 3.1 to eliminate the
n - 1 commutator relations.

Although the proof of the previous theorem exhibits the existence of a
particular trinomial, the generality in the statement of the theorem makes it
more likely that a trinomial can be found with precisely n zeros in GF(2").
In that case we have

COROLLARY 3.3. If the trinomial f{t) has precisely n zeros in GF(2n) then
the relation sm^ = 1 in (3.2) is redundant.

The presentation for SL(2,2") obtained from Corollary 3.3 corresponds
to the presentation for the group 6{n,k) of [7] if we take ; = 1, a = x,
b — x~lz, c = wx.
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THEOREM 3.4. The group SL(2,2"), n > 3, has a presentation on three
generators and five relations given by

(3.3) {w,x, z\w* = (wx)2, (wz)2 = zl = x2,sm(t) = sm = 1).

Moreover, if f(t) has exactly n zeros in GF(2"), the relation sm(() = 1 is
redundant yielding a deficiency - 1 presentation ofSL(2,2").

PROOF. Let G be the group given by (3.3). First note that x2 is central
since x2 — z1 shows [x, z] - 1 and x2 = (wz)2 shows [x,wz] — 1. From
w* — (wx)2 we obtain w~lxw = wx~x. So

x2 = w~lx2w — wx~lwx~l = (wx)2x~4 = w*x~4

showing that x6 = w\ Now x2 e Z(G) n G' but G/(x2) S SL(2,2n) by
Theorem 3.2. Thus x2 € M(SL(2,2")) which is trivial since n > 3. This
shows that x2 = w3 = 1 and so G = SL(2,2"). If f(t) has exactly n zeros in
GF(2"), 5m('> = 1 is redundant by Corollary 3.3.

CONJECTURE 3.5. We conjecture that a trinomial

tk1 + t>: + tk

where (j, 2" - 1) = 1 having exactly n zeros in GF(2n) always exists.

EXAMPLE 3.6. The trinomial 1 + t2 + tl2i is irreducible over GF(2) (see
[19] for a complete list of irreducible trinomials over GF(2) of degree less
than 1000). From Theorem 3.4 a deficiency - 1 presentation of SL(2,2i2i)
is

(w,x, z\w3 = (wx)2, (wz)2 - zl = x2, zmxz~m - xz2xz~2)

where / = 2123 - 1.

EXAMPLE 3.7. The trinomial 1 +12 +19 is the product of irreducible poly-
nomials as follows:

1 + t2 + t9 = (1 + t3 + t4)(l + t2 + t3 + t4 + t5).

Hence from Theorem 3.4

(3.4) (w,x, z\w3 = (wx)2,(wz)2 = zl = x2,z9xz~9 — xz2xz~2)

is SL(2,24) if / = 24 - 1 and SL(2,25) if / = 25 - 1.
Note that since the Schur multiplier of SL(2,2"), n > 3, is trivial there is a

possibility of a deficiency zero presentation of SL(2,2"). Indeed such presen-
tations have been obtained for 5L(2,23), SL(2,24), SL(2,25) and SX(2,26)
(see [5], [8] and [11]). Since ST(2,22) s PSL(2,5) s A5 it cannot have a
deficiency zero presentation but efficient presentations of this group are well
known.
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4. Direct products

If we take / = (24-1 )(25 -1) in presentation (3.4) of Example 3.7 we obtain
a group clearly having SL{2,24) and SL(2,25) as homomorphic images and
coset enumeration shows this group is SL{2,24) x SL(2,25). It is interesting
to ask what happens in the general case if we relax the conditions on the
polynomial m{t).

Let m(t) be any polynomial of degree n and period / over GF(2). Let
G = G{m{t)) be the group with presentation

(w,x, z\w3 = (wx)2 = (wz)2 = zl = x2 = sm{t] = 1, C)

where C denotes the commutator relations [x,z'xz~'] = 1, 1 < / < n - 1.
Theorem 3.2 shows that if m{t) is irreducible and satisfied by a primitive
element a of GF(2n) then the relations C may be replaced by a single relation
coming from a trinomial satisfied by a. Notice that in this case, all the zeros
of m(t) satisfy the same trinomial. However, if the conditions on m{t) are
relaxed, a trinomial satisfied by all the zeros of m(t) may not exist. For
example if

m{t) = 1 + t +1 2 +t3 +14 +15 +16 = (1 +1 + r3)(l +1 2 +13)

there can be no trinomial / ( / ) satisfied by all the zeros of m(t).
The method of replacing C by a single trinomial relation clearly fails for

such examples. In this case, coset enumeration shows that G(Y^=ot') =
SL(2,23)*SL(2,23).

On the other hand, if m{t) is reducible

m(t) = pi(t)p2(t) •••Pr(t)

with Pi(t) irreducible of degree «,, n, > 2, and period /, = 2"< - 1, (/,,//) = 1
for i ^ j , then using the Chinese Remainder Theorem a trinomial f(t) can
be found which is satisfied by the zeros of m(t). In fact we may choose the
trinomial to be of the form \ + t + tk for some k and this allows C to be
replaced by a single relation. Notice that (/,, /,) = 1 if and only if («,, nj) - 1.
When m(t) itself is a trinomial satisfying these types of conditions we have
the following theorem.

THEOREM 4.1. Let pi{t), 1 < i < r, be irreducible polynomials over GF(2)
of degree n,. Suppose

(i) the period ofpi{t) is 2"' - 1, 1 < / < r,
(ii) the nfs are pairwise coprime,
(iii) m(t) = Il/=i Pi(t) = 1 + t}' + tn where 0 < j < n,
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(iv) {j,l) = 1 where I = Y[r
i=l{2n''- 1).

The group presented by

(4.1) (w,x, z\w3 = (wx)2 = (wz)2 = zl = x2 = sm{t) = 1)

is SL(2,2"') x SL(2,2")x-x SL(2,21").
Moreover, if «, > 3 for each i, then this group may be presented by the

deficiency - 1 presentation

(4.2) {w,x,z\w3 = (wx)2,(wz)2 = z1 =x2,sm^ = 1).

PROOF. The proof consists of three steps.
(a) If m(t) satisfies (i)-(iv) then G{m{t)) s Xj=, 5L(2,2"').
(b) lfm(t) satisfies (i)-(iv) then C can be replaced by the trinomial relation

sm(t) = i s o is redundant.
(c) The six relations in (4.1) can be replaced by the four relations in (4.2)

when «, > 3, 1 < / < r.
The proof of (c) is identical to that given in Theorem 3.4 while the ar-

gument required for (b) is essentially the same as in Sections 2 and 3. The
proof of (a) is rather technical and we merely indicate the method. The ap-
proach is to enumerate the cosets of H = (x, z) in G{m{t)) which generalizes
the technique of [16], see also Theorem 3.21 of [17]. This technique shows
that H has at most {];=! (2"' + 1) cosets in G(m(t)). Also H has order at most
12". Finally, the proof is complete on showing that the following generators
of the direct product of the SL's satisfy the relations of G:

(xi,x2,...,xr) where * / = ( Q

{wuw2,...,wr) where w,:= ( {

i ,z2 , . . . , z r ) where z

with ti = 2"1 - 1, a, primitive in GF{2n') and a zero of pi{t).
An analogous argument in the case when p is odd gives less satisfactory

results. For example one obtains a direct product of SUs factored by the
central subgroup ( ( - / , - / , . . . , - / ) ) .

We have obtained efficient presentations for a small number of direct prod-
ucts, for example, direct products involving fields of the same characteristic:

SL(2,22) x SL(2,23)

= (a,b\a2 = b3 = {ab)2{ab-l)\ab)\ab~l)\ab)\ab-lf = 1);

SL(2,22)xSL(2,23)
= (a,b\a2 = b3 = {abab-l{abfab-{)2{abf = 1);
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PSL(2,5) x PSL(2,52)
= (a,b\a2 = b3 = (ababab-1)12

= (ab)2(ab-l)2(ab)3(ab-l)2(ab)2{ab-l)A{ab)4(ab-l)2(ab)\ab~1)4 = 1);

Some direct products involving fields of different characteristics:

5L(2,23)xP5L(2,29)
= (a,b\a2 = b3 = {ab(ab-l)2)2abab-l{ab)2(ab-l)\ab)2ab-1 = 1);

SL{2,22) x PSL(2,32)
= {a,b\a2 = b5 = {abab2ab~x)3 = l,(ab2)5 = (abab~lab2)3).

Notice that direct products of the form

PSL(2,px) x PSL(2,p2) x • • • x PSL(2,pr)

where the /?, are distinct primes are efficient since this direct product is
PSL{2,lm) where m = p\p2 • • Pr and (m,6) = 1 (see [5], [13]).
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