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Sharp Threshold of the Gross–Pitaevskii
Equation with Trapped Dipolar Quantum
Gases
Li Ma and Jing Wang

Abstract. In this paper, we consider the Gross–Pitaevskii equation for the trapped dipolar quantum
gases. We obtain the sharp criterion for the global existence and finite time blow-up in the unstable
regime by constructing a variational problem and the so-called invariant manifold of the evolution
flow.

1 Introduction

In this paper, we consider the time-dependent Gross–Pitaevskii equation in R3:

(1.1) i∂t u +
1

2
∆u = Vu + λ1|u|2u + λ2(K ∗ |u|2)u

with the regular Cauchy data

(1.2) u(0, x) = u0(x), x ∈ R3,

where λ1, λ2 are real constants,

V (x) =
1

2
|x|2,(1.3)

K(x) =
x2

1 + x2
2 − 2x2

3

|x|5
, x ∈ R3,(1.4)

and

K ∗ |u|2(x) =

∫
R3

K(x − y)|u(y)|2 dy.

The evolution equation of type (1.1) receives a lot of attention because the suc-
cess of atomic Bose–Einstein condensation (BEC) has stimulated great interest in the
properties of trapped quantum gases. The first variant of equation (1.1) was intro-
duced by Yi and You in [8] to describe particles which interact via short-range re-
pulsive forces and long-range (partly attractive) dipolar forces. Physically, according
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to [8], the non-local term K ∗ |u|2 in (1.1) appears when an electric field is intro-
duced along the positive z-axis. Recent developments in the manipulation of such
ultra-cold atoms have paved the way towards Bose–Einstein condensation in atomic
gases where dipole-dipole interactions between the particles are important. See, for
example, [6].

A very important problem for equation (1.1) with Cauchy data is to find the
threshold conditions for the initial data. That is, under which conditions on the
initial data the solution is global or otherwise blowing up. R. Carles, P. Markowich,
and C. Sparber have established in [2] the local wellposedness of the Cauchy prob-
lem for equation (1.1). Moreover, they have proved that the solution is global if
λ1 ≥ 4π

3 λ2 ≥ 0 (Corollary 2.2 in Section 2). However, when λ1 <
4π
3 λ2 (the so-

called unstable regime), there is no such result, though global existence of the so-
lution for small data can be obtained in this case. The purpose of our paper is to
derive sharp criteria for global existence and blow-up of the solutions of (1.1) in the
unstable regime. All of our results are illustrated in Theorems 4.1 and 4.2.

The idea is to construct a constrained variational problem and a so-called invari-
ant set, which was proposed by H. Berestycki and Th. Cazenave [1] and M. I. Wein-
stein [5] for the nonlinear Schrodinger equations. We shall use the method that was
developed by J. Zhang [9] and L. Ma and L. Zhao [4]. For a more general discussion
of this method, we refer the readers to [4]. A different consideration of (1.1) has been
carried out in our paper [3].

Our paper is organized as follows. In the second section, we give some necessary
preliminaries. In the third section, we solve a variational problem. In the last section,
we prove the sharp threshold for blowing up and global existence of solutions to (1.1).

2 Preliminaries

The following two important qualities are, at least formally, conserved by the time
evolution equation (1.1):

Mass: M(u) = ‖u‖2
L2 = M(u0),(2.1)

Energy: E(u) =
1

2
‖∇u‖2

L2 +
1

2

∫
R3

|x|2 |u|2 +
λ1

2
‖u‖4

L4 +
λ2

2

∫
R3

K ∗ |u|2 |u|2

= E(u0).

(2.2)

The mass and energy conservations lead to the introduction of a natural energy
space associated with equation(1.1) in the linear case λ1 = λ2 = 0:

(2.3) Σ := {u ∈ H1(R3) : ‖xu‖2
L2 <∞}.

It is obvious that Σ is a Hilbert space with the inner product

〈u, v〉Σ :=

∫
R3

uv +

∫
R3

∇u∇v +

∫
R3

|x|2uv

for u, v ∈ Σ.
The following results have been proved in [2] and we just quote them.
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Proposition 2.1 ([2]) There exists a T∗ ∈ R+ ∪ {∞} such that (1.1) has a unique
maximal solution in{

u ∈ C
(

[0,T∗); Σ
)

: u,∇u, xu ∈ C
(

[0,T∗); L2(R3)
)
∩ L

8
3
loc

(
[0,T∗); L4(R3)

)}
such that u(0) = u0. The solution u is maximal in the sense that if T∗ <∞, then

‖∇u(t)‖L2 →∞ (t → T∗).

Moreover, the quantities defined as (2.1) and (2.2) are conserved for 0 ≤ t < T∗.

As an easy consequence of Proposition 2.1, we have the following corollary.

Corollary 2.2 ([2]) Under the same assumptions as in Proposition 2.1 and in addition
the assumption that λ1 ≥ 4π

3 ≥ 0, we have that ‖∇u(t)‖L2 is bounded. Thus the
solution u is global in time.

To understand the behavior of the solution at large time, we need this proposition.

Proposition 2.3 ([2]) Let u0 ∈ Σ and u be the solution of the Cauchy problem of the
equation (1.1) in Proposition 2.1. Put y(t) =

∫
R3 |x|2 |u|2. Then one has

(2.4) ÿ(t) = 2

∫
R3

|∇u|2 + 3λ1

∫
R3

|u|4 + 3λ2

∫
R3

K ∗ |u|2 |u|2 − 2

∫
R3

|x|2 |u|2.

The following well-known compactness lemma plays an important role in our
proof.

Lemma 2.4 ([2]) The energy space Σ is compact in Lp(R3) for any 2 ≤ p < 6.

We denote the Fourier transform of f by

(2.5) f̂ (ξ) =

∫
R3

e−ixξ f (x) dx.

Then the famous Plancherel formula gives us that

(2.6)

∫
R3

| f |2 =
1

(2π)3

∫
R3

| f̂ |2.

The next lemma is also due to R. Carles, P. Markowich, and C. Sparber [2].

Lemma 2.5 The Fourier transform of K is given by

(2.7) K̂(ξ) =
4π

3

(
3
ξ2

3

|ξ|2
− 1
)
.

Remark 2.6 We point out that the formula in Lemma 2.5 can also be obtained
directly from [7, Theorem 5, p. 73]. Moreover, K̂ is a Lp(R3)→ Lp(R3) (1 < p <∞)
multiplier by the Calderon–Zygmund theory (see also [2]).

We shall use c to denote various uniform constants.
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3 The Variational Problem

From now on, we assume σ > 0, λ1 <
4π
3 λ2.

We define the following two functionals on the space Σ:

S(u) =
σ

2

∫
R3

|u|2 +
1

4

∫
R3

|∇u|2 +
1

4

∫
R3

|x|2 |u|2 +
λ1

4

∫
R3

|u|4

+
λ2

4

∫
R3

K ∗ |u|2 |u|2

=
σ

2
M(u) +

1

2
E(u),

(3.1)

R(u) =
1

2

∫
R3

|∇u|2 +
1

2

∫
R3

|x|2 |u|2 +
3

4
λ1

∫
R3

|u|4

+
3

4
λ2

∫
R3

K ∗ |u|2 |u|2

= E(u) +
λ1

4

∫
R3

|u|4 +
λ2

4

∫
R3

K ∗ |u|2 |u|2.

(3.2)

We now consider the following constrained variational problem:

(3.3) m = inf{S(u) : u ∈ M},

where M is defined as

M =
{

u ∈ Σ \ {0} : R(u) = 0
}
.

At first, we shall prove that M is non-empty, which is asserted by Lemma 3.1 below.
Though some arguments of our proof is contained in [2], we give the details for
completeness.

Lemma 3.1 M is non-empty. That is, there exists u ∈ Σ \ {0} satisfying R(u) = 0.

Proof Let uε(x) = ε
α
2 v(x1, x2)w(εx3), where v and w are two Schwartz functions for

some small constant ε to be determined. By direct computation, we get∫
R3

|∇uε|2 = εα−1

∫
R3

|∇v(x1, x2)|2 |w(x3)|2

+ εα+1

∫
R3

|v(x1, x2)|2 |∇w(x3)|2,

(3.4)

∫
R3

|x|2 |uε|2 = εα−3

∫
R3

x2
3|v(x1, x2)|2 |w(x3)|2

+ εα−1

∫
R3

(x2
1 + x2

2)|v(x1, x2)|2 |w(x3)|2.

(3.5)
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If we define V and W as the Fourier transform of |v|2 and |w|2 respectively, we
obtain by the Plancherel formula (2.6):∫

R3

|uε|4 = ε2α−1 1

(2π)3

∫
R3

|V |2 |W |2,(3.6) ∫
R3

K ∗ |uε|2 |uε|2 = ε2α−1 1

(2π)3

∫
R3

3
ε2ξ2

3

ξ2
1 + ξ2

2 + ε2ξ2
3

|V |2 |W |2

− 4π

3
ε2α−1 1

(2π)3

∫
R3

|V |2 |W |2

= o(ε2α−1)− 4π

3
ε2α−1,

(3.7)

where in the last equality we have used the Lebesgue Dominated Convergence theo-
rem and Lemma 2.5.

Therefore we have

R(uε) ≈
1

2
εα−1 +

1

2
εα−3 +

3

4

(
λ1 −

4π

3
λ2

)
ε2α−1 + o(ε2α−1).

Hence we get R(uε) < 0 provided we choose ε small and α < −2 (so the leading
order term is the third one).

For such uε, we define uµε = µuε. Then we obtain

R(uµε ) ≈ µ2 +
(
λ1 −

4π

3
λ2

)
µ4.

Hence for µ < 1 small, we have R(uµε ) > 0. It is obvious that R(µuε) is continuous
with respect to the variable µ. Then for some µ0 ∈ (0, 1), R(uµ0

ε ) = 0. This implies
that M is non-empty.

After proving Lemma 3.1, we turn to prove some positivity property of the func-
tional S. More precisely, we have the following.

Lemma 3.2 S(u) is uniformly bounded from below; that is, for any u ∈ M, S(u) ≥
c > 0 for some uniform constant c > 0.

Proof For u ∈ M, we have R(u) = 0 and then

(3.8)

∫
R3

|∇u|2 +

∫
R3

|x|2 |u|2 = −3

2
λ1

∫
R3

|u|4 − 3

2
λ2

∫
R3

K ∗ |u|2 |u|2.

By the Holder inequality, we have

(3.9)

∣∣∣∣∫
R3

K ∗ |u|2 |u|2
∣∣∣∣ ≤ ∥∥K ∗ |u|2

∥∥
L2(R3)

∥∥ |u|2∥∥
L2(R3)

.

Remark 2.6 implies

(3.10)
∥∥K ∗ |u|2

∥∥
L2(R3)

≤
∥∥ |u|2∥∥

L2(R3)
= ‖u‖2

L4(R3).
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Combining the inequalities (3.8), (3.9) and (3.10), we get

(3.11)

∫
R3

|∇u|2 +

∫
R3

|x|2 |u|2 ≤ C

∫
R3

|u|4,

which, via the Gagliardo–Nirenberg inequality, leads to

(3.12)

∫
R3

|∇u|2 +

∫
R3

|x|2 |u|2 ≤ C‖u‖L2 ‖∇u‖3
L2 .

Recall that by the uncertainty principle,

(3.13)

∫
R3

|u|2 ≤ C

(∫
R3

|x|2 |u|2
) 1

2
(∫

R3

|∇u|2
) 1

2

.

We then have by the Hölder inequality that

(3.14)

∫
R3

|∇u|2 +

∫
R3

|x|2 |u|2 ≤ C

(∫
R3

|∇u|2 +

∫
R3

|x|2 |u|2
) 2

,

which insures that

(3.15)

∫
R3

|∇u|2 +

∫
R3

|x|2 |u|2 ≥ c > 0

for some constant c > 0.
When R(u) = 0, S(u) is reduced to

(3.16) S(u) =
σ

2

∫
R3

|u|2 +
1

12

∫
R3

|∇u|2 +
1

12

∫
R3

|x|2 |u|2.

Hence

(3.17) S(u) ≥ c > 0

for some uniform constant c > 0.

Lemma 3.2 shows that m > 0 and the following lemma will show that m can be
attained for some u ∈ M, that is, m = min{S(u) : u ∈ M}.

Lemma 3.3 There exists at least one u ∈ M for which m = S(u).

Proof We firstly claim that

(3.18) m = inf
{

S̃(u) : u ∈ Σ \ {0},R(u) ≤ 0
}
,

where

(3.19) S̃(u) :=
σ

2

∫
R3

|u|2 +
1

12

∫
R3

|∇u|2 +
1

12

∫
R3

|x|2 |u|2.
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In fact, if we denote the right hand side of (3.18) by m̃, then we have that m ≤ m̃.
On the other hand, for u ∈ Σ with R(u) < 0, we let uµ = µu. Then

R(uµ) = µ2 1

2

∫
R3

|∇u|2 + µ2 1

2

∫
R3

|x|2 |u|2 + µ4 3

4
λ1

∫
R3

|u|4

+ µ4 3

4
λ2

∫
R3

K ∗ |u|2 |u|2,

(3.20)

which can be written as

(3.21) R(uµ) ≈ µ2 − µ4.

Then R(uµ) takes values from positive to negative as µ varies from 0 to 1. Hence for
some 0 < µ0 < 1,

R(uµ0 ) = 0.

From the definition of m, we have

m ≤ S(uµ0 ) = S̃(uµ0 ) < S̃(u).

We then deduce that m̃ ≤ m.
Now we choose un satisfying

R(un) ≤ 0, S̃(un)→ m (n→∞).

From (3.19), we know that un is bounded in Σ. Then the compactness lemma
(Lemma 2.4) implies that up to a subsequence,

(3.22) un → u

in Lp(R3) for 2 ≤ p < 6. Hence we have∫
R3

|un|4 →
∫

R3

|u|4,(3.23) ∫
R3

K ∗ |un|2 |un|2 →
∫

R3

K ∗ |u|2 |u|2.(3.24)

By the lower semi-continuity of the Σ norm, we have∫
R3

|∇u|2 ≤ lim inf
n→∞

∫
R3

|∇un|2,(3.25) ∫
R3

|x|2 |u|2 ≤ lim inf
n→∞

∫
R3

|x|2 |un|2.(3.26)

From (3.23), (3.24), (3.25), (3.26), we deduce that

R(u) ≤ 0
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and

(3.27) S̃(u) ≤ lim inf
n→∞

S̃(un) = m.

We claim that u 6= 0. Assume we have proved this claim. By considering (3.18), we
get that

(3.28) S̃(u) = m;

moreover,

(3.29) R(u) = 0,

since otherwise a similar argument as before shows there exists 0 < µ0 < 1 such that
R(uµ0 ) = 0, m ≤ S(uµ0 ) = S̃(uµ0 ) < S̃(u) = m, which leads to a contradiction. Thus
u is a minimizer of the variational problem 3.3.

We now prove the claim. If not, we then have, by (3.22), un → 0 in Lp(R3), 2 ≤
p < 6. Then (3.11) implies

(3.30)

∫
R3

|∇un|2 +

∫
R3

|x|2 |un|2 → 0,

which contradicts (3.15). Thus the proof is complete.

4 Sharp Threshold Result

In this section, we shall prove the sharp threshold result for the equation (1.1).
We now introduce two sets

K+ = {u ∈ Σ : S(u) < m,R(u) > 0},(4.1)

K− = {u ∈ Σ : S(u) < m,R(u) < 0}.(4.2)

It is not hard to see, by considering S(µu) and R(µu) (for fixed u ∈ Σ) as smooth
functions of the variable µ, that the set {u ∈ Σ : S(u) < m} ( and K−) is non-empty.

Theorem 4.1 K+ and K− are two invariant sets of the flow generated by the equa-
tion (1.1). More precisely, for any u0 ∈ K+, if u is the solution to (1.1) with the initial
data u0, then u(t) ∈ K+ for any t ∈ I, where I is the maximal existence time interval of
the solution u. So is K−.

Proof By Proposition 2.1, we have

(4.3) S
(

u(t)
)

= S(u0).

Thus from S(u0) < m, it follows that

(4.4) S
(

u(t)
)
< m.
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To check u(t) ∈ K+, we need to show that

(4.5) R
(

u(t)
)
> 0.

If this is not true, then by the continuity of u and the fact that R
(

u(0)
)

= R(u0) > 0,
we have for some t1

(4.6) R
(

u(t1)
)

= 0.

It follows that u(t1) ∈ M. At the same time, we have

(4.7) S
(

u(t1)
)
< m.

This is impossible from the definition of m. Similarly we can prove that K− is invari-
ant under the flow generated by the equation (1.1).

With the help of Theorem 4.1, we obtain the following sharp global existence and
blow-up criterion for (1.1).

Theorem 4.2 Assume that λ1 <
4π
3 λ2. If u(t) ∈ Σ is the maximal solution to (1.1)

with the initial data u0 ∈ Σ satisfying S(u0) < m, then we have that
(i) u is global for the initial data u0 ∈ K+;

(ii) u blows up at finite time for the initial data u0 ∈ K−.

Proof (i) If u0 ∈ K+, then by Theorem 4.1, we conclude that u(t) ∈ K+. That is,
R
(

u(t)
)
> 0, which implies that

(4.8)
λ2

4

∫
R3

K ∗ |u|2 |u|2 > −1

6

∫
R3

|∇u|2 − 1

6

∫
R3

|x|2 |u|2 − 1

4
λ1

∫
R3

|u|4.

By Theorem 4.1, we have

(4.9) S
(

u(t)
)
< m.

From (4.8) and (4.9), we conclude that

(4.10)
σ

2

∫
|u|2 +

1

12

∫
R3

|∇u|2 +
1

12

∫
R3

|x|2 |u|2 < m.

This, by Proposition 2.1, implies the global result of the solution flow u(t).
(ii) If u0 ∈ K−, then by Theorem 4.1, we conclude that u(t) ∈ K−, that is,

R
(

u(t)
)
< 0. Then for any fixed t , there exists 0 < µ < 1 such that

(4.11) R
(
µu(t)

)
= 0,

which implies via the definition of m that

(4.12) S(µu) ≥ m.
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We compute by the inequality (4.11) that

(4.13) S(u)− S(µu) =
1

2
R(u) +

σ

2
(1− µ2)

∫
R3

|u|2.

By the viral identity (Proposition 2.3), we have

(4.14)
d2

dt2

∫
R3

|x|2 |u|2 = 4R(u)− 4

∫
R3

|x|2 |u|2.

Then we have that

(4.15)
d2

dt2

∫
R3

|x|2 |u|2 < 4R(u).

From (4.13), (4.15) and (4.12), we conclude

(4.16)
d2

dt2

∫
R3

|x|2 |u|2 < 8
(

S(u)−m
)

= 8
(

S(u0)−m
)
< 0.

This implies the blow-up of the solution flow u(t) at some finite time. This completes
the proof of Theorem 4.2.
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