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Introduction. The concept of reduction and integral closure of ideals relative to
Artinian modules were introduced in [7]; and we summarize some of the main aspects
now.

Let A be a commutative ring (with non-zero identity) and let a, b be ideals of A.
Suppose that M is an Artinian module over A. We say that a is a reduction of b relative to
M if a c b and there is a positive integer s such that

An element x of A is said to be integrally dependent on a relative to M if there exists
n eN (where N denotes the set of positive integers) such that

It is shown that this is the case if and only if a is a reduction of a + Ax relative to M;
moreover

a = {x e A :x is integrally dependent on a relative to M}

is an ideal of A called the integral closure of a relative to M and is the unique maximal
member of

<# = {fj: b is an ideal of A which has a as a reduction relative toM}.

In [3] the concept of the relevant component of an ideal / (denoted by /*) of a
Noetherian ring R was introduced; moreover the arguments in [3], [5] prove that /* is an
interesting and useful ideal.

Now, an interesting question arises: whether there are, in the Artinian situation,
some companion results to those discussed for instance in [3].

The purpose of this paper is to show that the Artinian property of the ,4-module M
enables us to define and develop a satisfactory concept of the relevant component of an
ideal relative to M; and the author hopes that this note presents topics for further
research.

1. Notation and preliminary results. Throughout the paper M is an Artinian
module over the commutative ring A (with non-zero identity) and a is an ideal of A. We
use N to denote the set of positive integers and Z to denote the set of integers.

DEFINITION AND REMARK 1.1. The relevant component of the ideal a of A relative to
M is denoted by a* and defined as follows:

It follows from the minimal condition that, for large enough k, a* = annA(ak(0:Mak+l)),
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also we note that a c o ' and

a* = (0:Aak(0:Mak+i)) = ((0:Mak):A(0:Mak+l)). (1)

In what follows we shall show that, in fact, when a is a co-regular ideal (for definition
of a co-regular ideal, see 1.6 below)

(0:Ma*k) = (0:Mak) for all large enough k.

Thus, a is a very special kind of reduction of a* relative to M, since we have, for all large
enough k,

(0:Mak) = (0:Ma*k) c (O^aa**"1) s (0:„a2a*k~2) £ . . . c (0:„<**).

Hence, for all large enough k,

(0:Ma*k) = (0:Maa*k-1) = ...= (0:Ma*~ V ) = (0:Mak).

For the main result, we need a few preliminary lemmas which will be given below.

LEMMA 1.2. Suppose x e A is such that xM = M. Then there exists r eN such that, for
all n^r,

x(0:Ma")3(0:Ma"-r).

Proof. By the Artin-Rees lemma for Artinian modules [1, Proposition 3], there is
r e M such that, for all n s= r,

(0 :Mx) + (0 :„ a") = (((0 :Mx) + (0:Mar)): a - ' ) 3 ((0 :Mx): a"-) . (2)

On the other hand, we have, for all n e f̂ J,

(0:Mx) + (0:Man) = (x(0:Ma"):Ax). (3)

So it follows from (2) and (3) that, for all n s= r,

(x(0:Ma"):Ax)3((0:Mx):a"-r). (4)

Now, let y e (0:Ma"~r), where rcs=r. Then, since xM = M, there is meM such
that y=xm. Hence m e ((0:Mx):an~r). Thus m e (x(0:Ma"):Ax) by (4). Therefore
y = xm ex(0:Ma"). The proof is now complete.

For the main result (Theorem 2.2), we need the concept of a superficial element
relative to a module, which we introduced and developed in [8, Chapter III, §7].
However, for readers' convenience, we recall the main points of the theory.

Let N be an ,4-module and b a proper ideal of A. Then x ebs (s e N) is called a
superficial element of order s for b relative to N if there is c e M such that for all n > c

For the next two propositions, suppose that a = (a , , . . . ,ak) is a finitely generated
ideal of A and M an Artinian A -module and T an indeterminate. Let R =
A[ai T,. . . , akT] be the (small) Rees ring of A with respect to o and graded in the usual
way by Z. Set G = 0 Gn, where, for nel,

ro if «>o,
" l ( 0 - + 1 ) / ( 0 a - " ) if n^0.
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Let xi,...,xk be indeterminates over A and let i?' = © / ! | , denote the ring
neZ

A[xx,. . . ,xk] graded in the usual way, so that R'n = 0 for n < 0. Now turn G into a graded
R'-module using the ideas of Kirby in [1, p. 54]:if n is an integer with n<0,
me(0:Mcrn + 1)and l=s= i«ifc, put

x,(m + (0:Mo-")) = a,m + (0 :Ma—') e CB+I.

Next there exists a surjective ring homomorphism cp:R'—*R such that xt (lmi^k)
is mapped into atT and Ker (p c AnnR. G. Thus G has a structure as an jR-module. Now
we easily deduce the following proposition. (For a proof, see [8, p. 82, 7.3].)

PROPOSITION 1.3. Let the notation and assumptions be the same as above. Then x e a?
(s eN) is a superficial element of order s for a relative to M if and only if there is c' e N
such that, for all n>c'

The next proposition shows that whenever M is an Artinian ^4-module, superficial
elements do exist.

PROPOSITION 1.4 [8, p. 83, 7.4]. Let M be an Artinian A-module and a a proper ideal
of A. Then there exists an element x of A such that x is a superficial element of order s for a
relative to M.

Proof. By [1, Lemma 3], we can (and do) assume that a is finitely generated. Suppose

the notation is as in Proposition 1.3 and, further, fa denotes the ideal E RifltT) of R.

Then, by [9, Lemma 2.2], G is an Artinian ft-module and hence graded Artinian (that is,
satisfies the minimal condition for homogeneous submodules). By [6, Proposition 2.4], G
has a reduced graded-secondary representation,

G = Ni + . . . + N r . + Nr.+l + . . . + N , ,

where each N, is a graded secondary homogeneous submodule of G and V(0: /V,) is a
homogeneous prime ideal q,, say, of R ( 1 « i « ( ) . Further suppose that the Nt are
numbered so that

b £ q , for i = l,...,r',

b c q , for / = r' + 1,. . . ,t.

Then, by the same argument as in [6, Theorem 3.1], we find csN and fseRs

homogeneous of degree s (j e N), such that fs $ U 9/ and ^.G_m_s = G_m for all m> c.
1 = 1

Suppose that fs=xTs for some x e a". Then

{xT)G-m_s = G_m for all m>c,

and the result follows from Proposition 1.3.

LEMMA 1.5. Let M be an Artinian A-module and a an ideal of A. Then the following
are equivalent:

(i) M = aM,
(ii) M = xM for some x e a.
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Proof. We adapt the proof of [2, 2.8]. Let M = TV, + . . . + Nr be a reduced secondary
representation with V(0: Nt) = p,-, 1 =£ i =£ r.

(i)=>(ii). Suppose a c p , for some 1 =£/«/•. Then, by [1, Lemma 3], there is a
finitely generated ideal fa such that facet and (0:Mb") = (0:Ma") for all n e N. Now for
each x eb there is tx e N such that x'*Nj = 0. Thus, since fa is finitely generated, there is
t e N such that b% = 0, and so N,: c (0 :M fa') = (0 :M a'). Hence a'N, = 0. So

M = a'M = 2 a'Nj c £

r

a contradiction. Thus a dp, for 1 =£i *sr, and s o a i U p,.
\ r ' '=1

Let x e a\ U P/- Then, by [2, 2.6], the endomorphism of Af given by multiplication
\ / — I

by x is surjective, i.e. M = xM. Since (ii) => (i) is obvious, the proof of the lemma is now
complete.

REMARK. The referee kindly pointed out to me that this lemma (with essentially the
same proof) appears as Proposition 3.4 in a paper of Ooishi [5]; and he attributes the
result to Matlis.

DEFINITION 1.6. The ideal o of A is called co-regular if aM = M. By Lemma 1.5, this
is the case if and only if xM = M for some x e a. The element x then is called a co-regular
element.

2. Main result. Throughout this section a is a co-regular ideal of A.
For the main result we need another lemma which is given below.

LEMMA 2.1. Let M be an Artinian A-module and a a proper ideal of A. Then there
exists a superficial element of order s for a relative to M which is co-regular as well.

Proof. With the same notation as in Propositions 1.3 and 1.4, we note that

= S R(ajT)c%, (1 =s/ =sr), where $ , = © (p',)n are primes and are such that
l Z

- {
0 if
(p,nan)Tn if

(with the convention that a" = A for n =£ 0). Now, by the arguments used in Propositions
1.3 and 1.4 and the identity above,

b£q, 1 « /« / • ' ,

fa <£ % l^i^r.

So, by [9, Lemma 2.1], there is h0 e Z such that, for all h s* h0, Rh £ (\J %\ U ( U q,J.

U %i U U P, for some x e (?. Then,

by Propositions 1.3 and 1.4 and (5), x is a superficial element of order s relative to M,
which is a co-regular element as well.
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THEOREM 2.2. Let M be an Artinian A-module and a a co-regular ideal of A. Then
(O:Mct**) = (0:Mak), for all large k. Further, a* is the largest ideal with this property.

Proof. By Lemma 2.1, there exists a positive integer 5 and an element x e cr* such
that x is a superficial element of A of order s relative to M which is a co-regular element.
Thus there is c e N such that, for all large enough n,

(0:Man) = x(0:Ma"+*) + (0:Mac). (6)

Now it follows from Lemma 1.2 and (6) that for all large enough n, say n 3= t,

x(0:Man+s) = (0:Ma"). (7)

Let m = t + s. Then, by (7), we have, for all j 5= 0,

(0 :M am+i) = JC(O :M am+i+s) Zas(0:M am+i+s)

Thus a(0 :M a'+1) = (0 :M a') for all / 5= m. Therefore

ai(0:Ma'+i) = (0:Ma') for all l&m, »>1. (8)

Now it follows from the definition of a* that, for large n,

(0:Ma2)2(0:Afa*2) = ((0:Ma*):a*)2(a"(0:Ma"+1):/ ta*)

2a"((0:Man + 1) : / ,a*)

= an((0:Ma*):Aa"+l)

Then, we deduce from this (by induction) and (8) that, for large k, (0:Mak)^
(0:Ma*k)3a

kn(0:Makn+k) = (0:Mak). Therefore (0:Mak) = (0:Ma*k) for all large A:.
For the last part, suppose that b is a proper ideal of A such that (0:Mb*) = (0:Mak)

for all large k, say, k > t. Let / 5= It - 1. Then

(0:M(a + b)') = (<>:M £ aW"') = H

= ( n ((0:M b'"'): a')) n (p| ((0:„a'): b'"')).
\i=O / \i=l I

Now by our assumption if 0^i^t-l, then (0:Mb'~') = (0:Ma'~') and for f =£/=£/,
(0:Ma') = (0:Mb'). Thus

(0 :M (a + b)') = ( n ((0:„ a'"'): a')) n (f | ((0 :M if): b'"'))
\i=0 / \i=r /
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Therefore, if x e b and k is large enough, then

(0 :M (a + b)') c (o :M £ x'-'af) c (0 :M a').
\ /=o '

So (0:M £ *'~'a') = (0:Ma') and hence jc(O:Ma') c (0:Ma'~'). Now the result follows from
l = O

identity (1).

COROLLARY 2.3. Lef a, a* be the same as in 2.2 and b an ideal of A such that
acb^a*. Then fa* = a* and in particular, a** = a*.

Proof. Since a s fa c a*, we have,

(0:Ma**)2(0:Mb*)2(0:Ma*) for all *s*0.

Hence, it follows from this and Theorem 2.2 that

(0:Mbk) = (0:Mak) for all large A:. (9)

Now, using (1) and (9), we deduce that fa* = a*. Also

(0 :„ bk) = (0 :M a*k) for all large k.

Using identity (1) again, we see at once that a** = fa*(=a*).
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