A NOTE ON REDUCTIONS OF IDEALS RELATIVE TO AN ARTINIAN MODULE

by A.-J. TAHERIZADEH

(Received 3 December, 1991; revised 26 March, 1992)

Introduction. The concept of reduction and integral closure of ideals relative to Artinian modules were introduced in [7]; and we summarize some of the main aspects now.

Let A be a commutative ring (with non-zero identity) and let α , b be ideals of A. Suppose that M is an Artinian module over A. We say that α is a reduction of b relative to M if $\alpha \subseteq b$ and there is a positive integer s such that

$$(0:_{\mathcal{M}}\mathfrak{ab}^s)=(0:_{\mathcal{M}}\mathfrak{b}^{s+1}).$$

An element x of A is said to be integrally dependent on α relative to M if there exists $n \in \mathbb{N}$ (where \mathbb{N} denotes the set of positive integers) such that

$$\left(0:_{M}\sum_{i=1}^{n}x^{n-i}\alpha^{i}\right)\subseteq\left(0:_{M}x^{n}\right).$$

It is shown that this is the case if and only if α is a reduction of $\alpha + Ax$ relative to M; moreover

$$\bar{\alpha} = \{x \in A : x \text{ is integrally dependent on } \alpha \text{ relative to } M\}$$

is an ideal of A called the *integral closure* of α relative to M and is the unique maximal member of

 $\mathscr{C} = \{ \mathfrak{b} : \mathfrak{b} \text{ is an ideal of } A \text{ which has } \mathfrak{a} \text{ as a reduction relative to } M \}.$

In [3] the concept of the relevant component of an ideal I (denoted by I^*) of a Noetherian ring R was introduced; moreover the arguments in [3], [5] prove that I^* is an interesting and useful ideal.

Now, an interesting question arises: whether there are, in the Artinian situation, some companion results to those discussed for instance in [3].

The purpose of this paper is to show that the Artinian property of the A-module M enables us to define and develop a satisfactory concept of the relevant component of an ideal relative to M; and the author hopes that this note presents topics for further research.

1. Notation and preliminary results. Throughout the paper M is an Artinian module over the commutative ring A (with non-zero identity) and α is an ideal of A. We use $\mathbb N$ to denote the set of positive integers and $\mathbb Z$ to denote the set of integers.

DEFINITION AND REMARK 1.1. The relevant component of the ideal α of A relative to M is denoted by α^* and defined as follows:

$$\alpha^* = \operatorname{ann}_A \left(\bigcap_{i \ge 0} \alpha^i (0:_M \alpha^{i+1}) \right).$$

It follows from the minimal condition that, for large enough k, $\alpha^* = \operatorname{ann}_A(\alpha^k(0:_M \alpha^{k+1}))$,

Glasgow Math. J. 35 (1993) 219-224.

also we note that $a \subseteq a^*$ and

$$\alpha^* = (0:_A \alpha^k(0:_M \alpha^{k+1})) = ((0:_M \alpha^k):_A (0:_M \alpha^{k+1})). \tag{1}$$

In what follows we shall show that, in fact, when α is a co-regular ideal (for definition of a co-regular ideal, see 1.6 below)

$$(0:_M \alpha^{*k}) = (0:_M \alpha^k)$$
 for all large enough k.

Thus, α is a very special kind of reduction of α^* relative to M, since we have, for all large enough k,

$$(0:_{\mathcal{M}}\alpha^k) = (0:_{\mathcal{M}}\alpha^{*k}) \subseteq (0:_{\mathcal{M}}\alpha\alpha^{*k-1}) \subseteq (0:_{\mathcal{M}}\alpha^2\alpha^{*k-2}) \subseteq \ldots \subseteq (0:_{\mathcal{M}}\alpha^k).$$

Hence, for all large enough k,

$$(0:_{M}\alpha^{*k}) = (0:_{M}\alpha\alpha^{*k-1}) = \dots = (0:_{M}\alpha^{k-1}\alpha^{*}) = (0:_{M}\alpha^{k}).$$

For the main result, we need a few preliminary lemmas which will be given below.

Lemma 1.2. Suppose $x \in A$ is such that xM = M. Then there exists $r \in \mathbb{N}$ such that, for all $n \ge r$,

$$x(0:_M \mathfrak{a}^n) \supseteq (0:_M \mathfrak{a}^{n-r}).$$

Proof. By the Artin-Rees lemma for Artinian modules [1, Proposition 3], there is $r \in \mathbb{N}$ such that, for all $n \ge r$,

$$(0:_{M}x) + (0:_{M}\alpha^{n}) = (((0:_{M}x) + (0:_{M}\alpha^{r})):\alpha^{n-r}) \supseteq ((0:_{M}x):\alpha^{n-r}).$$
 (2)

On the other hand, we have, for all $n \in \mathbb{N}$,

$$(0:_{M}x) + (0:_{M}\alpha^{n}) = (x(0:_{M}\alpha^{n}):Ax).$$
(3)

So it follows from (2) and (3) that, for all $n \ge r$,

$$(x(0:_{M}\alpha^{n}):Ax) \supseteq ((0:_{M}x):\alpha^{n-r}).$$
 (4)

Now, let $y \in (0:_M \alpha^{n-r})$, where $n \ge r$. Then, since xM = M, there is $m \in M$ such that y = xm. Hence $m \in ((0:_M x): \alpha^{n-r})$. Thus $m \in (x(0:_M \alpha^n): Ax)$ by (4). Therefore $y = xm \in x(0:_M \alpha^n)$. The proof is now complete.

For the main result (Theorem 2.2), we need the concept of a superficial element relative to a module, which we introduced and developed in [8, Chapter III, §7]. However, for readers' convenience, we recall the main points of the theory.

Let N be an A-module and $\mathfrak b$ a proper ideal of A. Then $x \in \mathfrak b^s$ $(s \in \mathbb N)$ is called a superficial element of order s for $\mathfrak b$ relative to N if there is $c \in \mathbb N$ such that for all n > c

$$(0:_{N}\mathfrak{b}^{n})=x(0:_{N}\mathfrak{b}^{n+s})+(0:_{N}\mathfrak{b}^{c}).$$

For the next two propositions, suppose that $\alpha = (a_1, \ldots, a_k)$ is a finitely generated ideal of A and M an Artinian A-module and T an indeterminate. Let $R = A[a_1T, \ldots, a_kT]$ be the (small) Rees ring of A with respect to α and graded in the usual way by \mathbb{Z} . Set $G = \bigoplus_{n \in \mathbb{Z}} G_n$, where, for $n \in \mathbb{Z}$,

$$G_n = \begin{cases} 0 & \text{if } n > 0, \\ (0:_M \alpha^{-n+1})/(0:_M \alpha^{-n}) & \text{if } n \leq 0. \end{cases}$$

Let x_1, \ldots, x_k be indeterminates over A and let $R' = \bigoplus_{n \in \mathbb{Z}} R'_n$ denote the ring $A[x_1, \ldots, x_k]$ graded in the usual way, so that $R'_n = 0$ for n < 0. Now turn G into a graded R'-module using the ideas of Kirby in [1, p. 54]: if n is an integer with n < 0, $m \in (0:_M \alpha^{-n+1})$ and $1 \le i \le k$, put

$$x_i(m + (0:_M \alpha^{-n})) = a_i m + (0:_M \alpha^{-n-1}) \in G_{n+1}.$$

Next there exists a surjective ring homomorphism $\varphi: R' \to R$ such that x_i $(1 \le i \le k)$ is mapped into $a_i T$ and Ker $\varphi \subseteq \operatorname{Ann}_{R'} G$. Thus G has a structure as an R-module. Now we easily deduce the following proposition. (For a proof, see [8, p. 82, 7.3].)

PROPOSITION 1.3. Let the notation and assumptions be the same as above. Then $x \in \alpha^s$ $(s \in \mathbb{N})$ is a superficial element of order s for α relative to M if and only if there is $c' \in \mathbb{N}$ such that, for all n > c'

$$(xT^s)G_{-n-s}=G_{-n}.$$

The next proposition shows that whenever M is an Artinian A-module, superficial elements do exist.

PROPOSITION 1.4 [8, p. 83, 7.4]. Let M be an Artinian A-module and α a proper ideal of A. Then there exists an element x of A such that x is a superficial element of order s for α relative to M.

Proof. By [1, Lemma 3], we can (and do) assume that α is finitely generated. Suppose the notation is as in Proposition 1.3 and, further, b denotes the ideal $\sum_{i=1}^{k} R(a_i T)$ of R.

Then, by [9, Lemma 2.2], G is an Artinian R-module and hence graded Artinian (that is, satisfies the minimal condition for homogeneous submodules). By [6, Proposition 2.4], G has a reduced graded-secondary representation,

$$G = N_1 + \ldots + N_{r'} + N_{r'+1} + \ldots + N_t$$

where each N_i is a graded secondary homogeneous submodule of G and $\sqrt{(0:N_i)}$ is a homogeneous prime ideal q_i , say, of R $(1 \le i \le t)$. Further suppose that the N_i are numbered so that

$$\mathfrak{b} \not= \mathfrak{q}_i$$
 for $i = 1, \dots, r'$,
 $\mathfrak{b} \subseteq \mathfrak{q}_i$ for $i = r' + 1, \dots, t$.

Then, by the same argument as in [6, Theorem 3.1], we find $c \in \mathbb{N}$ and $f_s \in R_s$ homogeneous of degree s ($s \in \mathbb{N}$), such that $f_s \notin \bigcup_{i=1}^{r'} q_i$ and $f_s G_{-m-s} = G_{-m}$ for all m > c.

Suppose that $f_s = xT^s$ for some $x \in \alpha^s$. Then

$$(xT^s)G_{-m-s} = G_{-m} \quad \text{for all } m > c,$$

and the result follows from Proposition 1.3.

LEMMA 1.5. Let M be an Artinian A-module and α an ideal of A. Then the following are equivalent:

- (i) $M = \alpha M$,
- (ii) M = xM for some $x \in a$.

Proof. We adapt the proof of [2, 2.8]. Let $M = N_1 + ... + N_r$ be a reduced secondary representation with $\sqrt{(0:N_i)} = \mathfrak{p}_i$, $1 \le i \le r$.

(i) \Rightarrow (ii). Suppose $\alpha \subseteq \mathfrak{p}_i$ for some $1 \le i \le r$. Then, by [1, Lemma 3], there is a finitely generated ideal \mathfrak{b} such that $\mathfrak{b} \subseteq \alpha$ and $(0:_M \mathfrak{b}^n) = (0:_M \alpha^n)$ for all $n \in \mathbb{N}$. Now for each $x \in \mathfrak{b}$ there is $t_x \in \mathbb{N}$ such that $x'^x N_i = 0$. Thus, since \mathfrak{b} is finitely generated, there is $t \in \mathbb{N}$ such that $\mathfrak{b}' N_i = 0$, and so $N_i \subseteq (0:_M \mathfrak{b}') = (0:_M \alpha')$. Hence $\alpha' N_i = 0$. So

$$M = \alpha' M = \sum_{i \neq j} \alpha' N_j \subseteq \sum_{i \neq j} N_j \neq M$$

a contradiction. Thus $\alpha \notin \mathfrak{p}_i$ for $1 \le i \le r$, and so $\alpha \notin \bigcup_{i=1}^r \mathfrak{p}_i$.

Let $x \in \alpha \setminus \bigcup_{i=1}^r \mathfrak{p}_i$. Then, by [2, 2.6], the endomorphism of M given by multiplication by x is surjective, i.e. M = xM. Since (ii) \Rightarrow (i) is obvious, the proof of the lemma is now complete.

REMARK. The referee kindly pointed out to me that this lemma (with essentially the same proof) appears as Proposition 3.4 in a paper of Ooishi [5]; and he attributes the result to Matlis.

DEFINITION 1.6. The ideal α of A is called *co-regular* if $\alpha M = M$. By Lemma 1.5, this is the case if and only if xM = M for some $x \in \alpha$. The element x then is called a *co-regular element*.

2. Main result. Throughout this section α is a co-regular ideal of A. For the main result we need another lemma which is given below.

Lemma 2.1. Let M be an Artinian A-module and α a proper ideal of A. Then there exists a superficial element of order s for α relative to M which is co-regular as well.

Proof. With the same notation as in Propositions 1.3 and 1.4, we note that $\alpha \subseteq \mathfrak{p}_l \Leftrightarrow \mathfrak{b} = \sum_{j=1}^k R(a_j T) \subseteq \mathfrak{P}_l \ (1 \le l \le r)$, where $\mathfrak{P}_l = \bigoplus_{n \in \mathbb{Z}} (\mathfrak{p}'_l)_n$ are primes and are such that

$$(\mathfrak{p}'_l)_n = \begin{cases} 0 & \text{if } n < 0, \\ (\mathfrak{p}_l \cap \mathfrak{a}^n) T^n & \text{if } n \ge 0 \end{cases}$$

(with the convention that $a^n = A$ for $n \le 0$). Now, by the arguments used in Propositions 1.3 and 1.4 and the identity above,

$$b \notin \mathfrak{q}_i \qquad 1 \leq i \leq r', \\
b \notin \mathfrak{P}_i \qquad 1 \leq i \leq r.$$

So, by [9, Lemma 2.1], there is $h_0 \in \mathbb{Z}$ such that, for all $h \ge h_0$, $R_h \notin \left(\bigcup_{i=1}^r \mathfrak{P}_i\right) \cup \left(\bigcup_{i=1}^r \mathfrak{q}_i\right)$. Let $s \in \mathbb{N}$ be such that $s \ge h_0$ and $xT^s = f_s \in R_s \setminus \left(\bigcup_{i=1}^r \mathfrak{P}_i\right) \cup \left(\bigcup_{i=1}^r \mathfrak{q}_i\right)$ for some $x \in \alpha^s$. Then,

by Propositions 1.3 and 1.4 and (5), x is a superficial element of order s relative to M, which is a co-regular element as well.

THEOREM 2.2. Let M be an Artinian A-module and α a co-regular ideal of A. Then $(0:_M \alpha^{*k}) = (0:_M \alpha^k)$, for all large k. Further, α^* is the largest ideal with this property.

Proof. By Lemma 2.1, there exists a positive integer s and an element $x \in \alpha^s$ such that x is a superficial element of A of order s relative to M which is a co-regular element. Thus there is $c \in \mathbb{N}$ such that, for all large enough n,

$$(0:_{M}\alpha^{n}) = x(0:_{M}\alpha^{n+s}) + (0:_{M}\alpha^{c}).$$
(6)

Now it follows from Lemma 1.2 and (6) that for all large enough n, say $n \ge t$,

$$x(0:_{M}\alpha^{n+s}) = (0:_{M}\alpha^{n}). \tag{7}$$

Let m = t + s. Then, by (7), we have, for all $j \ge 0$,

$$(0:_{M}\alpha^{m+j}) = x(0:_{M}\alpha^{m+j+s}) \subseteq \alpha^{s}(0:_{M}\alpha^{m+j+s})$$

$$\subseteq \alpha^{s-1}(0:_{M}\alpha^{m+j+s-1})$$

$$\subseteq \dots \subseteq \alpha(0:_{M}\alpha^{m+j+1})$$

$$\subseteq (0:_{M}\alpha^{m+j}).$$

Thus $\alpha(0:_M \alpha^{l+1}) = (0:_M \alpha^l)$ for all $l \ge m$. Therefore

$$\alpha^{i}(0:_{M}\alpha^{l+i}) = (0:_{M}\alpha^{l}) \quad \text{for all} \quad l \ge m, \qquad i \ge 1.$$
 (8)

Now it follows from the definition of a^* that, for large n,

$$(0:_{M}\alpha^{2}) \supseteq (0:_{M}\alpha^{*2}) = ((0:_{M}\alpha^{*}):\alpha^{*}) \supseteq (\alpha^{n}(0:_{M}\alpha^{n+1}):_{A}\alpha^{*})$$

$$\supseteq \alpha^{n}((0:_{M}\alpha^{n+1}):_{A}\alpha^{*})$$

$$= \alpha^{n}((0:_{M}\alpha^{*}):_{A}\alpha^{n+1})$$

$$\supseteq \alpha^{n}(\alpha^{n}(0:_{M}\alpha^{n+1}):_{A}\alpha^{n+1})$$

$$\supseteq \alpha^{2n}((0:_{M}\alpha^{n+1}):_{A}\alpha^{n+1})$$

$$\supseteq \alpha^{2n}(0:_{M}\alpha^{2n+2}).$$

Then, we deduce from this (by induction) and (8) that, for large k, $(0:_M \alpha^k) \supseteq (0:_M \alpha^{*k}) \supseteq \alpha^{kn}(0:_M \alpha^{kn+k}) = (0:_M \alpha^k)$. Therefore $(0:_M \alpha^k) = (0:_M \alpha^{*k})$ for all large k.

For the last part, suppose that b is a proper ideal of A such that $(0:_M b^k) = (0:_M a^k)$ for all large k, say, $k \ge t$. Let $l \ge 2t - 1$. Then

$$(0:_{M}(\alpha + b)^{l}) = \left(0:_{M} \sum_{i=0}^{l} \alpha^{i} b^{l-i}\right) = \bigcap_{i=0}^{l} (0:_{M} \alpha^{i} b^{l-i})$$
$$= \left(\bigcap_{i=0}^{l-1} ((0:_{M} b^{l-i}): \alpha^{i})\right) \cap \left(\bigcap_{i=l}^{l} ((0:_{M} \alpha^{i}): b^{l-i})\right).$$

Now by our assumption if $0 \le i \le t-1$, then $(0:_M \mathfrak{b}^{l-i}) = (0:_M \mathfrak{a}^{l-i})$ and for $t \le i \le l$, $(0:_M \mathfrak{a}^i) = (0:_M \mathfrak{b}^i)$. Thus

$$(0:_{M}(\alpha+\mathfrak{b})^{l}) = \left(\bigcap_{i=0}^{l-1} ((0:_{M}\alpha^{l-i}):\alpha^{i})\right) \cap \left(\bigcap_{i=l}^{l} ((0:_{M}\mathfrak{b}^{i}):\mathfrak{b}^{l-i})\right)$$
$$= (0:_{M}\alpha^{l}) \cap (0:_{M}\mathfrak{b}^{l}) = (0:_{M}\alpha^{l}) = (0:_{M}\mathfrak{b}^{l}).$$

Therefore, if $x \in b$ and k is large enough, then

$$(0:_{M}(\alpha+b)^{l}) \subseteq \left(0:_{M} \sum_{i=0}^{l} x^{l-i} \alpha^{i}\right) \subseteq (0:_{M} \alpha^{l}).$$

So $(0:_M \sum_{i=0}^l x^{l-i} \alpha^i) = (0:_M \alpha^l)$ and hence $x(0:_M \alpha^l) \subseteq (0:_M \alpha^{l-1})$. Now the result follows from identity (1).

COROLLARY 2.3. Let α , α^* be the same as in 2.2 and b an ideal of A such that $\alpha \subseteq b \subseteq \alpha^*$. Then $b^* = \alpha^*$ and in particular, $\alpha^{**} = \alpha^*$.

Proof. Since $a \subseteq b \subseteq a^*$, we have,

$$(0:_M \alpha^{*k}) \supseteq (0:_M \mathfrak{b}^k) \supseteq (0:_M \alpha^k)$$
 for all $k \ge 0$.

Hence, it follows from this and Theorem 2.2 that

$$(0:_{M} \mathfrak{b}^{k}) = (0:_{M} \mathfrak{a}^{k}) \quad \text{for all large } k. \tag{9}$$

Now, using (1) and (9), we deduce that $b^* = a^*$. Also

$$(0:_M \mathfrak{b}^k) = (0:_M \mathfrak{a}^{*k})$$
 for all large k.

Using identity (1) again, we see at once that $\alpha^{**} = b^*(=\alpha^*)$.

ACKNOWLEDGMENT. I should like to thank the referee for his useful suggestions, and the Arak Teacher Training University for their financial support.

REFERENCES

- 1. D. Kirby, Artinian modules and Hilbert polynomials, Quart. J. Math. Oxford Ser. (2) 24 (1973), 47-57.
- 2. I. G. Macdonald, Secondary representation of modules over a commutative ring, *Sympos. Math.* 11 (1973), 23-43.
- 3. A. Mirbagheri and L. J. Ratliff Jr, On the relevant transform and the relevant component of an ideal, J. Algebra 111 (1987), 507-519.
 - 4. A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J. 6 (1976). 573-587.
- 5. L. J. Ratliff Jr and David E. Rush, Two notes on reduction of ideals, *Indiana Univ. Math.* J. 27 (1978), 929-934.
- 6. R. Y. Sharp, Asymptotic behaviour of certain sets of attached prime ideals, J. London Math. Soc. (2) 34 (1986), 212-218.
- 7. R. Y. Sharp and A.-J. Taherizadeh, Reductions and integral closures of ideals relative to an Artinian module, J. London Math. Soc. (2) 37 (1988), 203-218.
- **8.** A.-J. Taherizadeh, Behaviour of ideals relative to Artinian modules over commutative rings (Ph.D. thesis, University of Sheffield, 1987).
- 9. A.-J. Taherizadeh, On Asymptotic values of certain sets of attached prime ideals, *Glasgow Math. J.* 30 (1988), 293-300.

DEPARTMENT OF MATHEMATICS TEACHER TRAINING UNIVERSITY 49 MOFATEH AVE TEHRAN, IRAN Current Address:
Department of Mathematics
Arak Teacher Training University
Beheshti Ave
Arak, Iran