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F -THRESHOLDS OF GRADED RINGS

ALESSANDRO DE STEFANI and LUIS NÚÑEZ-BETANCOURT

Abstract. The a-invariant, the F -pure threshold, and the diagonal F -

threshold are three important invariants of a graded K-algebra. Hirose,

Watanabe, and Yoshida have conjectured relations among these invariants

for strongly F -regular rings. In this article, we prove that these relations

hold only assuming that the algebra is F -pure. In addition, we present an

interpretation of the a-invariant for F -pure Gorenstein graded K-algebras in

terms of regular sequences that preserve F -purity. This result is in the spirit of

Bertini theorems for projective varieties. Moreover, we show connections with

projective dimension, Castelnuovo–Mumford regularity, and Serre’s condition

Sk. We also present analogous results and questions in characteristic zero.

§1. Introduction

Throughout this manuscript we focus on F -pure standard graded algebras

over a field K of positive characteristic p such that [K :Kp]<∞. We say

that R is F -pure if the Frobenius map F :R→R splits. This property sim-

plifies computations for cohomology groups and implies vanishing properties

of these groups [Lyu06, SW07, Ma13].

In this article, we show relations among three important classes of

invariants that give information about the singularity of R: the a-invariants,

the F -pure threshold, and the diagonal F -threshold.

We first consider the ith a-invariant of R, ai(R), which is defined as the

degree of the highest nonzero part of the ith local cohomology with support

over m (see Section 2 for details). If d= dim(R), then ad(R) is often just

called the a-invariant of R, and it is a classical invariant, introduced by

Goto and Watanabe [GW78]. For example, if R is Cohen–Macaulay, ad(R)

determines the highest shift in the resolution of R, and moreover the Hilbert
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142 A. DE STEFANI AND L. NÚÑEZ-BETANCOURT

function and the Hilbert polynomial of R coincide if and only if ad(R) is

negative.

We also consider the F -pure threshold with respect to m, fpt(R), which

was introduced by Takagi and Watanabe [TW04] (see Section 3 for details).

This invariant is related to the log-canonical threshold and roughly speaking

measures the asymptotic splitting order of m.

Finally, we consider the diagonal F -threshold, cm(R). This invariant is,

roughly speaking, the asymptotic Frobenius order of m, and it has several

connections with tight closure theory [HMTW08]. The F -threshold has also

connections with the Hilbert–Samuel multiplicity [HMTW08] and with the

Hilbert Kunz multiplicity [NBS14].

Hirose, Watanabe, and Yoshida [HWY14] made the following conjecture

that relates these invariants:

Conjecture A. [HWY14] Let R be a standard graded K-algebra with

K an F -finite field and d= dim(R). Assume that R is strongly F -regular.

Then,

(1) fpt(R) 6−ad(R) 6 cm(R).

(2) fpt(R) =−ad(R) if and only if R is Gorenstein.

This conjecture has been proved only for strongly F -regular Hibi rings

[CM12] and affine toric rings [HWY14]. In addition, fpt(R) =−ad(R) for

strongly F -regular standard graded Gorenstein rings [TW04, Example

2.4(iv)]. In this paper we settle the first part of this conjecture and one

direction of the second. Furthermore, we drop the restrictive hypotheses of

strong F -regularity. We just assume that R is F -pure, which is needed to

define fpt(R).

Theorem B. (See Theorems 4.3, 4.9, and 5.2) Let R be a standard

graded K-algebra which is F -finite and F -pure, and let d= dim(R). Then,

(1) fpt(R) 6−ai(R) for every i ∈ N.

(2) If ai(R) 6=−∞, then −ai(R) 6 cm(R).

(3) If R is Gorenstein, then fpt(R) =−ad(R).

Theorem B(2) implies that −ad(R) 6 cm(R) for standard graded F -

pure K-algebras. This inequality has been proven before for complete

intersections without assuming strongly F -regularity or F -purity [Li13,

Proposition 2.3]. In Theorem 4.9, we prove −ad(R) 6 cm(R) for all F -

finite standard graded K-algebras. In Example 5.3, we show that the
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F -THRESHOLDS OF GRADED RINGS 143

converse of Theorem B(3) does not hold in general. This does not disprove

Conjecture A(2), since the ring that we consider is not strongly F -regular.

We also prove the analogue of Conjecture A(1) in characteristic zero, and

we show one direction of Conjecture A(2). These results are obtained by

reduction to positive characteristic methods [HH99].

Theorem C. (See Theorem 6.8) Let K be a field of characteristic zero,

and let (R,m, K) be a standard graded normal and Q-Gorenstein K-algebra

such that X = SpecR is log-terminal. Let d= dim(R). Then,

(1) lct(X) 6−ad(R).

(2) If R is Gorenstein, then lct(X) =−ad(R).

Furthermore, we give a new interpretation of fpt(R) for Gorenstein stan-

dard gradedK-algebras in terms of regular sequences that preserve F -purity.

We call such a sequence an F -pure regular sequence (see Definition 5.5).

Theorem D. (See Theorem 5.8) Let (R,m, K) be a Gorenstein stan-

dard graded K-algebra which is F -finite and F -pure over an infinite field.

Let d= dim(R), and let s= fpt(R). Then, there exists a regular sequence

consisting of s linear forms `1, . . . , `s such that R/(`1, . . . , `j) is F -pure

for every j = 1, . . . , s.

Theorem 5.8 is in the spirit of Bertini type theorems and ladders on

Fano varieties [Amb99]. These theorems assert that ‘nice’ singularities

are still ‘good’ after cutting by a general hyperplane. Among these nice

singularities one encounters F -pure singularities of a projective variety

[SZ13]. Theorem 5.8 gives a number of successive hyperplane cuts in Proj(R)

that preserve F -purity. Furthermore, the hyperplane cuts remain globally

F -pure.

Finally, we give explicit bounds for the projective dimension and the

Castelnuovo–Mumford regularity of R= S/I, where S =K[x1, . . . , xn] is

a polynomial ring over a field of positive characteristic, and I ⊆ S is a

homogeneous ideal such that R is F -pure (see Theorem 7.3). In addition, we

show that if an F -pure standard graded K-algebra R= S/I satisfies Serre’s

Sk condition, for some k depending on the degrees of the generators of I,

then R is in fact Cohen–Macaulay (see Proposition 7.6).

§2. Background

Throughout this article, R denotes a commutative Noetherian ring with

identity. A positively graded ring is a ring which admits a decomposition
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144 A. DE STEFANI AND L. NÚÑEZ-BETANCOURT

R=
⊕

i>0 Ri of abelian groups, with Ri ·Rj ⊆Ri+j for all i and j. A

standard graded ring is a positively graded ring such that R0 =K is a field,

R=K[R1] and dimK(R1)<∞, that is, R is a finitely generated K-algebra,

generated in degree one. We use the notation (R,m, K) to denote a standard

graded K-algebra, where m =
⊕

i>1 Ri is the irrelevant maximal ideal.

Suppose that R is a standard graded K-algebra. A graded module is an

R-module M =
⊕

n∈Z Mn such that RiMj ⊆Mi+j . An R-homomorphism

ϕ :M →N between graded R-modules is called homogeneous of degree c if

ϕ(Mi)⊆Ni+c for all i ∈ Z. The set of all graded homomorphisms M →N of

all degrees form a graded submodule of HomR(M, N). In general, these two

modules are not the same, but they coincide when M is finitely generated

[BH93]. Throughout this article, ER(K) will denote the graded R-module⊕
i∈Z HomK(R−i, K).

Let I be a homogeneous ideal generated by the forms f1, . . . , f` ∈R.

Consider the Čech complex, Č•(f ;R):

0→R→
⊕
i

Rfi →
⊕
i,j

Rfifj → · · · →Rf1···f` → 0,

where Či(f ;R) =
⊕

16j1<···<ji6` Rfj1 ···fji and the homomorphism in every

summand is a localization map with an appropriate sign. Let M be a graded

R-module. We define the i-th local cohomology of M with support in I

by H i
I(M) :=H i(Č•(f ;R)⊗RM). The local cohomology module H i

I(M)

does not depend on the choice of generators, f1, . . . , f`, of I. Moreover,

it only depends on the radical of I. Since M is a graded R-module and

I is homogeneous, the ith local cohomology H i
I(M) is graded as well.

Furthermore, if ϕ :M →N is a homogeneous R-module homomorphism of

degree d, then the induced R-module map H i
I(M)→H i

I(N) is homogeneous

of degree d as well.

Assume that R has positive characteristic p. For e ∈ N, let F e :R→R

denote the eth iteration of the Frobenius endomorphism on R. If R is

reduced, R1/pe denotes the ring of peth roots of R and we can identify F e

with the inclusion R⊆R1/pe . When R is standard graded, we view R1/pe

as a 1/peN-graded module. In fact, if r1/p
e ∈R1/pe , then we write r ∈R

as r = rd1 + · · ·+ rdn , with rdj ∈Rdj . Then r1/p
e

= r
1/pe

d1
+ · · ·+ r

1/pe

dn
, and

each r
1/pe

dj
has degree dj/p

e. Similarly, if M is a Z-graded R-module, we have

that M1/pe is a 1/peZ-graded R-module. Here M1/pe denotes the R-module

which has the same additive structure as M , and multiplication defined by

r ·m1/pe := (rp
e
m)1/p

e
for all r ∈R and m1/pe ∈M1/pe .
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Remark 2.1. When R is reduced, for any integer e> 1 we have an

inclusion R ↪→R1/pe . As a submodule of R1/pe , R inherits a natural 1/peN
grading, which is compatible with the standard grading.

If
√
I = m and M is finitely generated, the modules H i

m(M) are Artinian.

Therefore, the following numbers are well defined.

Definition 2.2. Let M be a 1/peN-graded finitely generated R-module.

For i ∈ N, if H i
m(M) 6= 0 then the ai-invariant of M is defined as

ai(M) := max

{
α ∈ 1

pe
Z |H i

m(M)α 6= 0

}
.

If H i
m(M) = 0, we set ai(M) :=−∞.

Remark 2.3. With the grading introduced above, for a finitely gener-

ated graded R-module, M , we have that ai(M
1/pe) = ai(M)/pe for all i ∈ N.

In fact, H i
m(M1/pe)∼=H i

m(M)1/p
e

since the functor (−)1/p
e

is exact.

Definition 2.4. Let R be a Noetherian ring of positive characteristic p.

We say that R is F -finite if it is a finitely generated R-module via the action

induced by the Frobenius endomorphism F :R→R. When R is reduced,

this is equivalent to say that R1/p is a finitely generated R-module. If

(R,m, K) is a standard graded K-algebra, then R is F -finite if and only

if K is F -finite, that is, if and only if [K :Kp]<∞. R is called F -pure if

F is a pure homomorphism, that is F ⊗ 1 :R⊗RM →R⊗RM is injective

for all R-modules M . R is called F -split if F is a split monomorphism.

Remark 2.5. Let (R,m, K) be a standard graded F -pure K-algebra.

Then necessarily ai(R) 6 0 for all i ∈ Z [HR76, Proposition 2.4].

Remark 2.6. If R is an F -pure ring, F itself is injective and R must

be a reduced ring. We have that R is F -split if and only if R is a direct

summand of R1/p. If R is an F -finite ring, R is F -pure if and only R is F -

split (see [HR76, Corollary 5.3]). Since, throughout this article, we assume

that R is F -finite, we use the word F -pure to refer to both.

Definition 2.7. An F -finite reduced ring R is strongly F -regular if for

any element f ∈R \ {0}, there exists e ∈ N such that the inclusion f1/p
e
R→

R1/pe splits.

Definition 2.8. Let S =K[x1, . . . , xn] be a polynomial ring over an

F -finite field. The e-trace map, Φe : S1/pe → S, is defined by
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146 A. DE STEFANI AND L. NÚÑEZ-BETANCOURT

Φe

(
x
α1/pe

1 · · · xαn/pe

n

)
=

{
x
(α1−pe+1)/pe

1 · · · x(αn−pe+1)/pe

n α1 ≡ · · · ≡ αn ≡ pe − 1 mod pe,

0 otherwise.

We note that Φe′ ◦ Φ
1/pe

′

e = Φe′+e. Furthermore, Φe generates

HomS(S1/pe , S) as an S1/pe-module.

Definition 2.9. [Sch10] Suppose that R is an F -pure ring. Let φ :

R1/pe →R be an R-homomorphism and let J ⊆R be an ideal. We say that

J is φ-compatible if φ(J1/pe)⊆ J . An ideal J is said to be compatible if it

is φ-compatible for all R-linear maps φ :R1/pe →R and all e ∈ N.

We end this section by recalling an explicit description of HomR(R1/pe , R)

discovered by Fedder [Fed83] that we use in the following sections.

Remark 2.10. [Fed83, Corollary 1.5] Let S be a polynomial ring over

an F -finite field, and let Φe : S1/pe → S be the trace map. Let I ⊆ S be a

homogeneous ideal, and let R= S/I. We have a graded isomorphism

(IS1/pe :S1/pe I1/p
e
)

IS1/pe
∼= HomR(R1/pe , R)

given by the correspondence f1/p
e 7→ ϕf,e, where ϕf,e :R1/pe →R is defined

by ϕf,e(r
1/pe) = Φe(f1/p

er).

Thanks to the correspondence in Remark 2.10, we can make the following

observation.

Remark 2.11. Let S be a polynomial ring over an F -finite field. Let

I ⊆ S be a homogeneous ideal, and let R= S/I. Let J ⊆R be a homoge-

neous ideal, and let J̃ denote its pullback to S. We have that J is compatible

if and only if (I [p
e] : I)⊆ (J̃ [pe] : J̃) for all e> 1.

§3. Properties of F -thresholds

In this section we introduce basic definitions and properties for the

diagonal F -threshold and the F -pure threshold.

Definition 3.1. [HMTW08, DSNBP16] Suppose that (R,m, K) is

a standard graded K-algebra. If νI(p
e) = max{r ∈ N | Ir 6⊆m[pe]}, the F -

threshold of I with respect to m is defined by

cm(I) = lim
e→∞

νI(p
e)

pe
.
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When I = m, we call cm(m) the diagonal F -threshold of R, and we denote

it by cm(R).

F -thresholds were introduced for rings that are not necessarily regular by

Huneke, Mustaţǎ, Takagi and Watanabe [HMTW08]. However, the existence

of the limit in complete generality has been shown only recently [DSNBP16].

Definition 3.2. [TW04] Let (R,m, K) be either a standard graded K-

algebra or a local ring which is F -finite and F -pure, and let I ⊆R be an

ideal (homogeneous in the former case). For a real number λ> 0, we say that

(R, Iλ) is F -pure if for every e� 0, there exists an element f ∈ Ib(pe−1)λc
such that the inclusion of R-modules f1/p

e
R⊆R1/pe splits.

Remark 3.3. Note that (R, I0) = (R, R) being F -pure simply means

that R is F -pure, according to Definition 2.4.

Definition 3.4. [TW04] Let (R,m, K) be either a standard graded K-

algebra or a local ring which is F -finite and F -pure, and let I ⊆R be an

ideal (homogeneous in the former case). The F -pure threshold of I is defined

by

fpt(I) = sup{λ ∈ R>0 | (R, Iλ) is F -pure}.

When I = m, we denote the F -pure threshold by fpt(R).

Definition 3.5. [AE05] Let (R,m, K) be either a standard graded K-

algebra or a local ring which is F -finite and F -pure. We define

Ie(R) := {r ∈R | ϕ(r1/p
e
) ∈m for every ϕ ∈Hom(R1/pe , R)}.

In addition, we define the splitting prime of R as P(R) :=
⋂
e Ie(R) and the

splitting dimension of R to be sdim(R) := dim(R/P(R)).

Remark 3.6. We note that for a homogeneous element r, r 6∈ Ie(R) if

and only if there is a map ϕ ∈HomR(R1/pe , R) such that ϕ(r1/p
e
) = 1.

The following proposition gives basic properties of the splitting prime for

graded algebras. We include details of the proof in the graded case for sake

of completeness.

Proposition 3.7. [AE05] Let (R,m, K) be an F -finite F -pure standard

graded K-algebra. Then

(1) Ie(R) and P(R) are homogeneous ideals.

(2) P(R) is a prime ideal.
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148 A. DE STEFANI AND L. NÚÑEZ-BETANCOURT

(3) P(R) is the largest homogeneous compatible ideal of R, that is,

the largest homogeneous ideal that is ϕ-compatible for all ϕ ∈
HomR(R1/pe , R), and all e ∈ N.

(4) R/P(R) is strongly F -regular.

(5) P(R)m = P(Rm).

Proof. (1) Let e> 1. Since both R1/pe and R are graded, and R1/pe is a

finitely generated R-module, we have that every homomorphism R1/pe →R

is a sum of graded homomorphisms. Therefore, in the definition of Ie(R)

above, we can consider only graded homomorphisms. Let r = r0 + r1 + · · ·+
rn ∈ Ie(R), with ri of degree di. Let ϕ ∈HomR(R1/pe , R) be homogeneous

of degree k. Then

ϕ(r1/p
e
) = ϕ(r

1/pe

0 ) + · · ·+ ϕ(r1/p
e

n ) ∈m,

and each ϕ(r
1/pe

i ) now has degree di + k. Since m is homogeneous, we get

ϕ(r
1/pe

i ) ∈m for all i= 1, . . . , n, showing that ri ∈ Ie(R). Then Ie(R) is

a homogeneous ideal. We have that P(R) is homogeneous is clear from its

definition. The proofs of (2), (3) and (4) are completely analogous to the ones

in [AE05, Theorems 3.3, and 4.7] and [Sch10, Remark 4.4] for local rings.

For (5), we note that ϕ(P(R)
1/pe

m )⊆ P(R)m for every ϕ ∈Hom(R
1/pe

m , Rm)

because R is F -finite. Since Rm/(P(R)m) is strongly F -regular by (4), we

have that P(R)m = P(Rm).

Definition 3.8. Let (R,m, K) be an F -finite F -pure standard graded

K-algebra. Let J ⊆R be a homogeneous ideal. Then, we define

bJ(pe) = max{r | Jr 6⊆ Ie(R)}.

Lemma 3.9. Let (R,m, K) be a standard graded K-algebra which is F -

finite and F -pure. Let J ⊆R be a homogeneous ideal. Then, p · bJ(pe) 6
bJ(pe+1).

Proof. Let f ∈ JbJ (pe)rIe(R) be a homogeneous element. Then,

Rf1/p
e →R1/pe splits as map of R-modules. Since R is F -pure, there is

a splitting α :R1/pe+1 →R1/pe as R1/pe-modules. Then,

Rf1/p
e →R1/pe+1 α→R1/pe

splits as morphism of R-modules. Therefore, Rfp/p
e+1 →R1/pe+1

splits as

a map of R-modules. Hence, fp ∈ Jp·bJ (pe)rIe+1(R), and so, p · bJ(pe) 6
bJ(pe+1).
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F -THRESHOLDS OF GRADED RINGS 149

We now present a characterization of the F -pure threshold that may be

known to experts (see [Her12, Key lemma] for principal ideals). However,

we were not able to find it in the literature in the generality we need. We

present the proof for the sake of completeness. This characterization is a

key part for the proof of Theorem 4.3.

Proposition 3.10. Let (R,m, K) be a standard graded K-algebra which

is F -finite and F -pure. Let J ⊆R be a homogeneous ideal. Then

fpt(J) = lim
e→∞

bJ(pe)

pe
.

Proof. By the definition of bJ(pe), there exists f ∈ JbJ (pe) \ Ie(R).

Then, the map R→R1/pe , defined by 1 7→ f1/p
e

splits by Remark 3.6.

Thus, bJ(pe)/pe ∈ {λ ∈ R>0 | (R, Jλ) is F -pure}. Hence, for all e, we have

bJ(pe)/pe 6 fpt(J), and therefore {bJ(pe)/pe} is a bounded sequence.

By Lemma 3.9 we conclude that lime→∞ bJ(pe)/pe exists, and that

lime→∞ bJ(pe)/pe 6 fpt(J).

Conversely, let σ ∈ {λ ∈ R>0 | (R, Jλ) is F -pure}. For e� 0, we have that

Jb(p
e−1)σc 6⊆ Ie(R). Then, b(pe − 1)σc/pe 6 bJ(pe)/pe and thus

σ = sup

{
b(pe − 1)σc

pe

}
6 lim
e→∞

bJ(pe)

pe
.

Hence,

fpt(J) 6 lim
e→∞

bJ(pe)

pe
.

Remark 3.11. We note that analogous restatements of Proposition 3.10

for F -finite F -pure local rings is also true, and the proof is essentially the

same.

§4. F-thresholds and a-invariants

In this section, we prove the first part of our main theorem in positive

characteristic. We start with a few preparation lemmas.

Lemma 4.1. Let (S, n, K) be a standard graded F -finite regular ring. Let

I ⊆ S be an ideal such that R= S/I is an F -pure ring. Let m = nR. Then,

P(R) = m if and only if (I [p
e] : I)⊆ (n[p

e] : n) for all e> 0.
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150 A. DE STEFANI AND L. NÚÑEZ-BETANCOURT

Proof. Let Φe : S1/pe → S denote the e-trace map. If (I [p
e] : I)⊆ (n[p

e] :

n), then for every f ∈ (I [p
e] : I)rn[p

e] there exist a unit u ∈ S and an element

g ∈ n[p
e] such that f = uxp

e−1
1 · · · xp

e−1
n + g. Then, f · n⊆ n[p

e], and we get

Φe(f
1/pen1/p

e
)⊆ n. Then by Remark 2.10, we have that ϕ(m1/pe)⊆m for

every ϕ :R1/pe →R. Hence, Ie(R) = m for all e> 1 and P(R) = m as well.

Conversely, if m = P(R), then Ie(R) = m for all e> 1. This means that

for every e> 1 and every f ∈ (I [p
e] : I), we have Φe(f

1/pen1/p
e
)⊆ n by

Remark 2.10. Thus, f · n⊆ n[p
e], and hence f ∈ (n[p

e] : n).

Lemma 4.2. Let S =K[x1, . . . , xn] be a polynomial ring over an F -

finite field K. Let n = (x1, . . . , xn) denote the maximal homogeneous ideal.

Let I ⊆ S be a homogeneous ideal such that R := S/I is an F -pure ring, and

let m = nR. Then,

min

{
s ∈ N

∣∣∣∣
[

(I [p
e] : I) + n[p

e]

n[pe]

]
s

6= 0

}
= n(pe − 1)− bm(pe).

Proof. Let Φe : S1/pe → S denote the e-trace map. Let

u := min

{
s ∈ N

∣∣∣∣
[

(I [p
e] : I) + n[p

e]

n[pe]

]
s

6= 0

}

and b= bm(pe). By our definition of u, there exists f ∈ (I [p
e] : I)rn[p

e],

which is a homogeneous polynomial of degree u. Since f 6∈ n[p
e], there exists

xα ∈ Supp{f} such that xα 6∈ n[p
e]. We pick β = pe − 1− α, so xαxβ =

xp
e−1, where pe − 1 denotes the multi-index (pe − 1, pe − 1, . . . , pe − 1).

We have that the map ϕ :R1/pe →R defined by ϕ(r1/p
e
) = Φe(f1/p

er1/pe)

is a splitting of the Frobenius map on R such that ϕ((xβ)1/p
e
) = 1. Hence,

xβ /∈ Ie(R). Since |β|= (pe − 1)n− u, we have that (pe − 1)n− u6 b; that

is, u> n(pe − 1)− b.
For the other inequality, we pick a monomial g ∈ n of degree b such

that g ∈mbrIe(R). Then, there exists a map ϕ :R1/pe →R such that

ϕ(g1/p
e
) = 1. Therefore, there exists an element f ∈ (I [q] : I)rn[p

e] such that

ϕ(r1/p
e
) = Φe(f1/p

er1/pe) for all r1/p
e ∈R1/pe . By definition of Φe, we have

that xp
e−1 ∈ Supp(fg). Let h be the homogeneous part of degree (p− 1)n−

b of f . We note that h ∈ (I [p
e] : I) because I is homogeneous. In addi-

tion, h /∈ n[p
e] because xp

e−1 ∈ Supp(hg). Then we get u6 (pe − 1)n− b,
as desired.

We are now ready to prove the first part of Theorem B.
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Theorem 4.3. Let (R,m, K) be a standard graded K-algebra which is

F -finite and F -pure. Then fpt(R) 6−ai(R) for every i ∈ N.

Proof. If H i
m(R) = 0 there is nothing to prove, since ai(R) =−∞. Let

i ∈ N be such that H i
m(R) 6= 0. Let f ∈mbm(pe) \ Ie(R) be a homogeneous

element, and let γ = bm(pe)/pe. By Remark 2.1 we can view R as a 1/peN-

graded module. Then

R(−γ) �
� ·f1/pe

// R1/pe

splits, and the inclusion is homogeneous of degree zero. Applying the ith

local cohomology, we get a homogeneous split inclusion H i
m(R(−γ)) ↪→

H i
m(R1/pe) of degree zero. Let v ∈H i

m(R(−γ))ai(R) be an element in the top

graded part of H i
m(R(−γ)), which has degree ai(R) + γ. Under the inclusion

above, this maps to a nonzero element of degree ai(R) + γ in H i
m(R1/pe).

Therefore,

ai(R) +
bm(pe)

pe
6 ai(R

1/pe) =
ai(R)

pe
,

which is equivalent to

bm(pe)

pe
6

(1− pe)ai(R)

pe
.

Since this holds for all e� 1, we get

fpt(R) = lim
e→∞

bm(pe)

pe
6 lim
e→∞

−(pe − 1)ai(R)

pe
=−ai(R)

by Proposition 3.10.

Corollary 4.4. Let (R,m, K) be a standard graded K-algebra which

is F -finite and F -pure. If ai(R) = 0 for some i, then sdim(R) = 0.

Proof. If ai(R) = 0 for some i, we have that fpt(R) = 0 by Theorem 4.3.

Then, we have that be = 0 for every e ∈ N by Lemma 3.9 and Proposi-

tion 3.10. As a consequence, m⊆ Ie for every e ∈ N. Since Ie(R)⊆m holds

true because R is F -pure, we have that m = Ie(R) for every e ∈ N. Hence,

P(R) = m, and sdim(R) = 0.

We now review the definition of test ideal, which is closely related to the

theory of tight closure. We refer the reader to [HH94] for definitions and

details.
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Definition 4.5. Let R be a Noetherian ring of positive characteristic

p. The finitistic test ideal of R is defined as τ fg(R) := ∩M ann(0∗M ), where

M runs through all the finitely generated R-modules. We define the big test

ideal of R to be τ(R) = ∩M ann(0∗M ), where M runs through all R-modules.

Remark 4.6. We point out that for F -finite rings, τ(R) is the smallest

compatible ideal not contained in a minimal prime of R [Sch10, Theo-

rem 6.3]. In addition, τ fg(R) is a compatible ideal [Vas98, Theorem 3.1].

One clearly has the inclusion τ(R)⊆ τ fg(R). It is one of the most important

open problems in tight closure theory whether these two ideals are the same.

Equality is known to hold true in some cases. For instance, Lyubeznik and

Smith proved that τ fg(R) = τ(R) for finitely generated standard graded

K-algebras [LS99, Corollary 3.4].

We use Proposition 3.10 to relate the F -pure threshold of the ring with

its splitting dimension.

Theorem 4.7. Let (R,m, K) be a standard graded K-algebra which is

F -finite and F -pure, and let J ⊆R be a compatible ideal. Then, we have

fpt(R) 6 fpt(R/J).

In particular,

fpt(R) 6 fpt(R/τ) and fpt(R) 6 fpt(R/P) 6 sdim(R),

where τ = τ(R) denotes the test ideal of R, and P = P(R) is the splitting

prime of R.

Proof. Let S =K[x1, . . . , xn] be a polynomial ring such that there exists

a surjection S→R, and let n = (x1, . . . , xn), so that m = nR. Let I denote

the kernel of the surjection. Let J̃ ⊆ S be the pullback of J . We have that

(I [p
e] : I)⊆ (J̃ [pe] : J̃) for every e ∈ N by Remark 2.11. Then,

min

{
t ∈ N

∣∣∣∣
[

(J̃ [pe] : J̃) + n[p
e]

n[pe]

]
t

6= 0

}

6 min

{
t ∈ N

∣∣∣∣
[

(I [p
e] : I) + n[p

e]

n[pe]

]
t

6= 0

}
.

As a consequence, we get
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bm(pe) = max{t ∈ N |mt 6⊆ Ie(R)}

6 max{t ∈ N |mt 6⊆ Ie(R/J)}= bm(R/J)(p
e)

by Proposition 3.10. Then, fpt(R) 6 fpt(R/J). The last claim follows from

the fact that the test ideal is compatible as noted in Remark 4.6, and the

splitting prime is compatible by Proposition 3.7(3). Finally, fpt(R/P) 6
dim(R/P) [TW04, Proposition 2.6(1)].

We now focus on the diagonal F -threshold.

Remark 4.8. For any standard graded K-algebra (R,m, K), we have

that

max

{
s ∈ 1

pe
· Z
∣∣∣∣ [R1/pe/mR1/pe

]
s
6= 0

}
=
νe
pe
.

We are now ready to prove the second part of Theorem B.

Theorem 4.9. Let R be an F -finite standard graded K-algebra, and

let d= dim(R). Then, −ad(R) 6 cm(R). Furthermore, if R is F -pure, then

−ai(R) 6 cm(R) for every i such that H i
m(R) 6= 0.

Proof. We fix i ∈ N such that H i
m(R) 6= 0. Let v1, . . . , vr be a minimal

system of homogeneous generators of R1/pe as an R-module, with degrees

γ1, . . . , γr ∈ 1/peN. By Remark 2.1 we can view R as a 1/peN-graded

module. We have a degree zero surjective map
r⊕
j=0

R(−γj)
φ−→R1/pe ,

where R(−γj)→R1/pe maps 1 to vj . This induces a degree zero homomor-

phism
j⊕
i=0

H i
m(R(−γj))

ϕ−→H i
m(R1/pe).

If i= d, ϕ is surjective. We now prove that ϕ is also surjective for i 6= d,

if R is F -pure. In this case, the natural inclusion R→R1/pe induces

an inclusion H i
m(R)→H i

m(R1/pe). We have that the map θ :H i
m(R)⊗R

R1/pe →H i
m(R1/pe) induced by v ⊗ f1/pe 7→ f1/p

e
α(v) is surjective [SW07,

Lemma 2.5]. Then,

1⊗ φ :H i
m(R)⊗R

( r⊕
j=0

R(−γj)
)
→H i

m(R)⊗R R1/pe

is surjective. Thus, ϕ is surjective, because ϕ= θ ◦ (1⊗ φ).
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We have now that ϕ is surjective under the hypotheses assumed. Since

νm(pe)/pe = max{γ1, . . . , γj},

we have that

ai(R)

pe
= ai(R

1/pe) 6 max{ad(R(−γi)) | i= 0, . . . , j}= ai(R) +
νm(pe)

pe
.

Then, ai(R) 6 pead(R) + νm(pe), and so (1− pe)ai(R) 6 νm(pe). Hence,

−ai(R) = lim
e→∞

(1− pe)ai(R)

pe
6 lim
e→∞

νm(pe)

pe
= cm(R).

§5. F-thresholds of graded Gorenstein rings

Suppose that (R,m, K) is an F -finite standard graded Gorenstein K-

algebra. Let S =K[x1, . . . , xn], and let I ⊆ S be a homogeneous ideal such

that R∼= S/I as graded rings. Since HomR(R1/p, R) is a cyclic R1/p-module,

we have that for all integers e> 1 there exist homogeneous polynomials

fe ∈ S such that I [p
e] : I = feS + I [p

e] by Remark 2.10. In fact, if I [p] : I =

fS + I [p], then I [p
e] : I = f (1+p+···+p

e−1)S + I [p
e] for all e> 2.

Remark 5.1. When R= S/I is F -pure, we have (I [p
e] : I) 6⊆ n[p

e] by

Fedder’s criterion. In the notation used above, if (I [p
e] :S I) = feS + I [p

e] for

some homogeneous polynomial fe, we get that

min

{
s ∈ N

∣∣∣∣
[

(I [p
e] : I) + n[p

e]

n[pe]

]
s

6= 0

}

= min

{
s ∈ N

∣∣∣∣
[
feS + n[p

e]

n[pe]

]
s

6= 0

}
= deg(fe).

We now prove the last part of Theorem B.

Theorem 5.2. Let (R,m, K) be a Gorenstein standard graded K-

algebra which is F -finite and F -pure, and let d= dim(R). Then, fpt(R) =

−ad(R).

Proof. Let S =K[x1, . . . , xn] be a polynomial ring, and let I ⊆ S be a

homogeneous ideal such that R∼= S/I as graded rings. Let n = (x1, . . . , xn),

so that m = nR. Let a= ad(R). Consider the natural map S/I [p]→ S/I

induced by the inclusion I [p] ⊆ I. Then such a map extends to a map of
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complexes ψ• from a minimal free resolution of S/I [p] to a minimal free

resolution of S/I. Furthermore, such a map ψ• can be chosen graded of

degree zero. We have that the last homomorphism in the map of complexes,

S(p(−n− a))→ S(−n− a) is given by multiplication by a homogeneous

polynomial f (see Remark 6.6). Furthermore, I [p] : I = fS + I [p] [Vra03,

Lemma 1]. Since ψ• is homogeneous of degree zero, we have that deg(f) =

(p− 1)(n+ a).

Recall that, for all e> 2, we have that (I [p
e] :S I) = f (1+p+···+p

e−1)S +

I [p
e]. By Remark 5.1 and Lemma 4.2, we obtain that

fpt(R) = lim
e→∞

n(pe − 1)− (deg(f) · (1 + p+ · · ·+ pe−1))

pe

= lim
e→∞

n(pe − 1)

pe
− lim
e→∞

deg(f) · (1 + p+ · · ·+ pe−1)

pe

= n− deg(f)

p− 1

= n− (p− 1)(n+ a)

p− 1

= −a.

We now give an example to show that an F -finite and F -pure standard

graded K-algebra such that fpt(R) =−ad(R) is not necessarily Gorenstein.

This is not a counterexample to Conjecture A(2), since the ring we consider

is not strongly F -regular.

Example 5.3. Let S =K[x, y, z] with K a perfect field of characteristic

p > 0, and let n = (x, y, z) be its homogeneous maximal ideal.

I = (xy, xz, yz) = (x, y) ∩ (x, z) ∩ (y, z)⊆ S.

Let R= S/I, with maximal ideal m = n/I. Note that R is a one-dimensional

Cohen–Macaulay F -pure ring. In addition, P(R) = (x, y, z)R; therefore,

sdim(R) = 0 and, by Theorem 4.7, fpt(R) = 0 as well. On the other hand,

from the short exact sequence

0 // R // S

(x, y)
⊕ S

(x, z) ∩ (y, z)
// S

(x, y) + (x, z) ∩ (y, z)

∼=K // 0
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we get a long exact sequence of local cohomology modules

0 // K // H1
m(R) // H1

n (S/(x, y))⊕H1
n (S/(xy, z)) // · · ·

The maps in this sequence are homogeneous of degree zero. Thus, a1(R) > 0,

because K injects into H1
m(R). On the other hand, since R is F -pure,

we have that a1(R) 6 0; therefore, fpt(R) = a1(R) = 0. Although R is not

Gorenstein, since the canonical module ωR ∼= (x, y)/(xy, xz + yz) has two

generators.

Sannai and Watanabe [SW11, Theorem 4.2] showed that for an F -

pure standard graded Gorenstein algebra, R, with an isolated singularity,

sdim(R) = 0 is equivalent to ad(R) = 0. The previous theorem recovers

this result dropping the hypothesis of isolated singularity. This is because

sdim(R) = 0 is equivalent to fpt(R) = 0. In fact, for all F -pure rings,

Corollary 4.4 shows that ad(R) = 0 implies sdim(R) = 0.

We now aim at an interpretation of the F -pure threshold of a standard

graded Gorenstein K-algebra as the maximal length of a regular sequence

that preserves F -purity.

Proposition 5.4. Let S =K[x1, . . . , xn] be a polynomial ring over an

F -finite infinite field K. Let n = (x1, . . . , xn) denote the maximal homoge-

neous ideal. Let I ⊆ S be a homogeneous ideal such that R= S/I is an F -

pure ring, and let m = nR. Let f ∈ (I [p] : I)rn[p]. If deg(f) 6 (p− 1)(n− 1),

then there exists a linear form ` ∈ S such that:

(1) `p−1f 6∈ n[p].

(2) the class of ` in R does not belong to P(R).

(3) ` is a nonzero divisor in R.

(4) The ring S/(I + (`)) is F -pure.

Proof. Let us pick cα ∈K such that f =
∑
|α|=deg(f) cαx

α. Let

`y = y1x1 + · · ·+ ynxn ∈ S[y1, . . . , yn]

be a generic linear form. We note that

(`y)
p−1 =

∑
|θ|=p−1

gθ(y)xθ,

where gθ(y) = (p− 1)!/θ1! · · · θn!yθ ∈K[y1, . . . , yn].
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Since f 6∈ n[p], there exists xβ ∈ Supp{f} such that xβ 6∈ n[p]. Since |β|6
(p− 1)(n− 1) and xβ 6∈ n[p], there exists xγ ∈ np−1 such that xγxβ 6∈ n[p] by

Pigeonhole principle. Let

h :=
∑

β+γ=θ+α

cαgθ(y) ∈K[y1, . . . , yn].

We note that h 6= 0 because cβgθ 6= 0. In addition, h is the coefficient of

xθ+γ in (`y)
p−1 f . We note that P(R) 6= m by Lemma 4.1, and thus P(R) ∩

m 6= m. Since K is an infinite field, we can pick a point v ∈Kn such that

h(v) 6= 0 and the class of `y(v) does not belong to P(R). We set `= `y(v).

By our construction of `, xβ+γ ∈ Supp{`p−1f} and xβ+γ 6∈ n[p]. In addition,

` /∈ P(R). Since the pullback of P(R) to S contains every associated prime

of R, we have that ` is a nonzero divisor in R. To show the last claim we

note that, setting I ′ := I + (`), we have that `p−1f ∈ (I ′[p] : I ′)rn[p], and F -

purity follows by Fedder’s criterion [Fed83, Theorem 1.12].

As a consequence of these results, and of Theorem 5.2, we give an

interpretation of the F -pure threshold, and the a-invariant, in terms of the

maximal length of a regular sequence that preserves F -purity. We start by

introducing the concept of F -pure regular sequence.

Definition 5.5. Let R be an F -finite F -pure ring. We say that a regular

sequence f1, . . . , fr is F -pure if R/(f1, . . . , fi) is an F -pure ring for all

i= 1, . . . , r.

Lemma 5.6. Let (R,m, K) be a standard graded K-algebra. If f is a

regular element of degree d > 0, then d+ ai(R) 6 ai−1(R/(f)) for all i ∈ N
such that H i

m(R) 6= 0.

Proof. Suppose that H i
m(R) 6= 0. Consider the homogeneous short exact

sequence

0 // R(−d)
f

// R // R/(f) // 0.

For all j ∈ Z, this gives rise to an exact sequence of K-vector spaces

· · · // Hi−1
m (R/(f))j // Hi

m(R)j−d
// Hi

m(R)j // · · ·

Since d > 0, for j = ai(R) + d we have that H i
m(R)j = 0. Then,

H i−1
m (R/(f))ai(R)+d

// H i
m(R)ai(R)

// 0
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is a surjection. We note that H i
m(R)ai(R) 6= 0, which yields

H i−1
m (R/(f))ai(R)+d 6= 0,

and hence ai−1(R/(f)) > ai(R) + d.

Corollary 5.7. Let (R,m, K) be a standard graded K-algebra which is

F -finite and F -pure. If f1, . . . , fr is a homogeneous F -pure regular sequence

of degrees d1, . . . , dr, then
∑r

j=1 dj 6 min{−ai(R) | i ∈ N}.

Proof. We proceed by induction on r > 1. Assume that r = 1. If H i
m(R) =

0, we have that d1 6−ai(R) =∞, therefore there is nothing to prove in this

case. If H i
m(R) 6= 0, by Lemma 5.6 we have that ai(R) + d1 6 ai−1(R/(f1)).

Since R/(f1) is F -pure, it follows from Remark 2.5 that ai−1(R/(f)) 6 0,

and hence d1 6−ai(R). Thus, d1 6−ai(R) for all i ∈ N, that is, d1 6
min{−ai(R) | i ∈ N}. This concludes the proof of the base case. For r > 1, if

H i
m(R) = 0 we have that

∑r
i=1 di 6−ai(R) =∞ and, again, there is nothing

to prove in this case. Assume that H i
m(R) 6= 0. By induction, we get that∑r

j=2 dj 6−as(R/(f1)) for all s ∈ N. In particular, we have that
∑r

j=2 dj 6
−ai−1(R/(f1)). By Lemma 5.6, we have that −ai−1(R/(f1)) >−ai(R)− d1.
Combining the two inequalities, and rearranging the terms in the sum, we

obtain
∑r

j=1 di 6−ai(R). Therefore, we obtain
∑r

j=1 dj 6 min{−ai(R) | i ∈
N}.

Theorem 5.8. Let (R,m, K) be a Gorenstein standard graded K-

algebra which is F -finite and F -pure, and let d= dim(R). If f1, . . . , fr is an

F -pure regular sequence, then r 6 fpt(R). Furthermore, if K is infinite, then

there exists an F -pure regular sequence consisting of fpt(R) linear forms.

Proof. By Theorem 5.2, we have that fpt(R) =−ad(R). The first claim

follows from Corollary 5.7. For the second claim, let S =K[x1, . . . , xn] be

a polynomial ring and let I ⊆ S be a homogeneous ideal such that R∼= S/I

as graded rings. We proceed by induction on fpt(R). The case fpt(R) = 0

is trivial. We now assume fpt(R)> 0. From the proof of Theorem 5.2, we

have that (I [p] :S I) = fS + I [p] for a homogeneous polynomial f ∈ (I [p] :S
I)rn[p] of degree deg(f) 6 (p− 1)(n+ ad(R)). Since ad(R) =−fpt(R)< 0

by assumption, there exists a linear nonzero divisor `1 ∈R such that R/(`1)

is F -pure by Proposition 5.4. Note that, from the homogeneous short exact

sequence

0 // Hd−1
m (R/(`1)) // Hd

m(R)(−1)
`1 // Hd

m(R) // 0,
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it follows that ad−1(R/(`1)) = ad(R) + 1. Since R/(`1) is Gorenstein,

we have that fpt(R/(`1)) =−ad−1(R/(`1)) =−ad(R)− 1 = fpt(R)− 1. The

claim follows by induction.

§6. Results in characteristic zero

In this section we present results in characteristic zero that are analogous

to Theorem 4.3. These results are motivated by the relation between the

log-canonical and the F -pure threshold.

We first fix the notation. Let K be a field of characteristic zero,

and let (R,m, K) be a Q-Gorenstein normal standard graded K-algebra.

Consider the closed subscheme V (m) = Y ⊆X = Spec(R), and let a be the

corresponding ideal sheaf. We now use Hironaka’s resolution of singularities

[Hir64]. Suppose that f : X̃ →X is a log-resolution of the pair (X, Y ), that

is, f is a proper birational morphism with X̃ nonsingular such that the

ideal sheaf aO
X̃

=O
X̃

(−F ) is invertible, and Supp(F ) ∪ Exc(f) is a simple

normal crossing divisor. Let KX and K
X̃

denote canonical divisors of X and

X̃, respectively.

Let λ> 0 be a real number. Then there are finitely many irreducible (not

necessarily exceptional) divisors Ei on X̃ and real numbers ai so that there

exists an R-linear equivalence of R-divisors

K
X̃
∼ f∗KX +

∑
i

aiEi + λF.

Definition 6.1. Continuing with the previous notation, we say that

the pair (X, λY ) is log-canonical, or lc for short, if ai >−1 for all i. Define

lct(X) = sup{λ ∈ R>0 | the pair (X, λY ) is lc}.

We say that (X, λY ) is Kawamata log-terminal, or klt for short, if ai >−1

for all i.

Remark 6.2. If X is log-terminal, we have that

lct(X) = sup{λ ∈ R>0 | the pair (X, λY ) is klt}.

Definition 6.3. Let K be a field of positive characteristic p, and let

(R,m, K) be a standard graded K-algebra which is F -finite and F -pure. Let

I ⊆R be a homogeneous ideal. For a real number λ> 0, we say that (R, Iλ)

is strongly F -regular if for every c ∈R not in any minimal prime, there

exists e> 0 and an element f ∈ Idpeλe such that the inclusion of R-modules

(cf)1/p
e
R⊆R1/pe splits.
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Remark 6.4. Let (R,m, K) be a standard graded K-algebra which is

F -finite and strongly F -regular. Then, by [TW04, Proposition 2.2(5)], we

have

fpt(R) = sup{λ ∈ R>0 | the pair (R,mλ) is strongly F -regular}.

Definition 6.5. Let R be a reduced algebra essentially of finite type

over a field K of characteristic zero, a⊆R an ideal, and λ > 0 a real number.

The pair (R, aλ) is said to be of dense F -pure type (respectively strongly

F -regular type) if there exist a finitely generated Z-subalgebra A of K and

a reduced subalgebra RA of R essentially of finite type over A which satisfy

the following conditions:

(i) RA is flat over A, RA ⊗A K ∼=R, and aAR= a, where aA = a ∩RA ⊆
RA.

(ii) The pair (Rs, a
λ
s ) is F -pure (respectively strongly F -regular) for every

closed point s in a dense subset of Spec(A). Here, if κ(s) denotes the

residue field of s, we define Rs =RA ⊗A κ(s) and as = aARs ⊆Rs.

Remark 6.6. Let S =K[x1, . . . , xn] be a polynomial ring over a field

K, and I ⊆ S be a homogeneous ideal. Let R= S/I, and consider a minimal

graded free resolution of R over S

0 // Gn−d // Gn−d−1 // · · · · · · // S // R // 0.

If we write Gn−d =
⊕

j S(−j)βn−d,j(R), where the positive integers βn−d,j(R)

are the (n− d)th graded Betti numbers of R over S, we have that max{j |
βn−d,j(R) 6= 0}=−n− ad(R) [BH93, Section 3.6]. Therefore, when R is

Cohen–Macaulay, ad(R) can be read from the graded Betti numbers of R

over S.

Lemma 6.7. Let (R,m, K) be a Cohen–Macaulay standard graded K-

algebra of dimension d, with K a field of characteristic zero, and let A be a

finitely generated Z-subalgebra of K. Assume that R0 is a graded A-algebra

such that R0 ⊗A K ∼=R as graded rings. For a closed point s ∈Max Spec(A),

let Rs =R0 ⊗A κ(s), where κ(s) is the residue field of s ∈ Spec(R). Then,

there exists a dense open subset U ⊆Max Spec(A) such that ad(R) = ad(Rs)

for all s ∈ U .

Proof. Since R0 is a finitely generated graded A-algebra, we write

R0
∼=B/J , for some homogeneous ideal J ⊆B :=A[x1, . . . , xn]. Let
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T =B ⊗A K ∼=K[x1, . . . , xn], and for s ∈Max Spec(R), let Bs =B ⊗A
κ(s)∼= κ(s)[x1, . . . , xn]. By [HH99, Theorem 2.3.5 & Theorem 2.3.15], there

exists a dense open subset U ⊆Max Spec(R) such that, for all s ∈ U , Rs is

Cohen–Macaulay of dimension d= dim(R). Furthermore, the graded Betti

numbers of R over T are the same as the graded Betti numbers of Rs over

Bs [HH99, Theorem 2.3.5(e)]. In particular, it follows from Remark 6.6 that

ad(R) = ad(Rs) for all s ∈ U .

Theorem 6.8. Let K be a field of characteristic zero, and let (R,m, K)

be a standard graded normal and Q-Gorenstein K-algebra such that X =

SpecR is log-terminal. Let d= dim(R). Then,

(1) lct(X) 6−ad(R).

(2) If R is Gorenstein, then lct(X) =−ad(R).

Proof. We can write R=K[x1, . . . , xn]/(f1, . . . , f`) for some integer

n and some homogeneous polynomials f1, . . . , f` ∈ S :=K[x1, . . . , xn]. Let

A be the finitely generated Z-algebra generated by all the coefficients

of f1, . . . , f`. Define T :=A[x1, . . . , xn] and notice that, if we set R0 :=

T/(f1, . . . , f`), we have that R0 ⊗A K ∼=R. Since X is log-terminal, R is a

Cohen–Macaulay ring. For a closed point s ∈ Spec(A), set Rs :=R0 ⊗A κ(s),

and ms := (x1, . . . , xn)Rs. For m ∈ N, let λm = lct(X)− 1/m. Then, the

pair (X, λmY ) is klt by Remark 6.2. Thus, (X, λmY ) is of dense strongly

F -regular type [HY03, Theorem 6.8] [Tak04, Corollary 3.5]. It follows

that (Rs,m
λm
s ) is strongly F -regular for each closed point s ∈ V , where

V ⊆Max Spec(A) is a dense set. By Remark 6.4, we have that λm 6 fpt(Rs)

for all m, and hence

λm 6 fpt(Rs) 6−ad(Rs)

by Theorem 4.3. By Lemma 6.7, there exists a dense open subset U ⊆
Max Spec(A) such that ad(Rs) = ad(R) for all s ∈ U . Thus, for s in

nonempty intersection U ∩ V , we have

lct(X)− 1

m
6−ad(Rs) =−ad(R).

After taking the limit as m→∞, we obtain that lct(X) 6−ad(R).

For the second result, we note that if R is a Gorenstein ring, then Rs is

a Gorenstein ring for s in a dense open subset W ⊆Max Spec(A) [HH99,

Theorem 2.3.15]. Let U be as above. Then, fpt(Rs) =−ad(Rs) =−ad(R)

for s ∈W ∩ U , where W ∩ U is a dense open subset of Max Spec(A).
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Let δm :=−ad(R)− 1/m. Because of the equality obtained above, we

have that (R,mδm
s ) is F -pure for s ∈W . Thus, δm 6 lct(X) for every

m ∈ N [TW04, Proposition 3.2(1)], and hence −ad(R) 6 lct(X). The desired

equality now follows from the first part.

A key point in the proof of Theorem 6.8 is that, if X is log-terminal, then

lct(X) = sup{λ ∈ R>0 | the pair (X, λY ) is klt},

and a pair is klt if and only if the pair is of dense strongly F -regular type.

In a private communication with Linquan Ma and Karl Schwede, we were

informed that Theorem 6.8 holds, more generally, when X is a Q-Gorenstein

log-canonical normal scheme. The proof involves methods in characteristic

zero. Our proof of Theorem 6.8, instead, relies on reduction to positive

characteristic techniques. If we try to replace log-terminal by log-canonical

in our proof, we face a very important and longstanding open problem in

birational geometry, that is, whether a pair is log-canonical if and only

if it is of dense F -pure type (see [Tak04, HW02, MS11]). To the best of

our knowledge, the characteristic zero analogue of Theorem 4.3 is open for

non Q-Gorenstein rings. We note that in this case one can still define log-

canonical singularities by the work of De Fernex and Hacon [dFH09]. Then,

we ask the following question.

Question 6.9. Let (R,m, K) be a standard graded normal algebra

over a field, K, of characteristic zero. Let d= dim(R) and let X = SpecR.

Suppose that X is log-canonical. Is lct(X) 6−ai(R) for every i ∈ N?

Ma also informed us that the analogue of Theorem 5.2 in characteristic

zero is also true. This can be proved using geometric methods in charac-

teristic zero, such as Bertini theorems, and his recent work on Du Bois

singularities [Ma15].

§7. Homological invariants of F -pure rings

LetK be a field and let S =K[x1, . . . , xn] be a polynomial ring. Let I ⊆ S
be a homogeneous ideal, and let R= S/I. Suppose that I = (f1, . . . , fj) is

generated by forms of degree di = deg(fi). Let G• be the minimal graded

free resolution of R. Each Gi can be written as a direct sum of copies of S

with shifts:

Gi =
⊕
j∈Z

S(−j)βi,j(R),
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where S(−j) denotes a rank one free module where the generator has degree

j. The exponents βi,j(R) are called the graded Betti numbers of R. We define

the projective dimension of R by

pdS(R) = max{i | βi,j(R) 6= 0 for some j}.

The Castelnuovo–Mumford regularity of R= S/I is defined by

regS(R) = max{j − i | βi,j(R) 6= 0 for some i}.

Equivalently, if d= dim(R), it can be defined as

regS(R) = max{ai(R) + i | i= 0, . . . , d}.

Suppose that R is an F -pure ring. In this section, we provide bounds for

the projective dimension and Castelnuovo–Mumford regularity of R over

S. This relates to an important question in commutative algebra asked by

Stillman:

Question 7.1. [PS09, Problem 3.14] Let S =K[x1, . . . , xn] be a poly-

nomial ring over a field K and fix a sequence of natural numbers d1, . . . , dj .

Does there exist a constant C = C(d1, . . . , dj) (independent of n) such that

pdS(S/J) 6 C

for all homogeneous ideals J ⊆ S generated by homogeneous polynomials of

degrees d1, . . . , dj?

Recall that bm(pe) = max{r |mr 6⊆ Ie(R)}. Proposition 5.4 gives a relation

between bm(p) and depthS(R), hence between bm(p) and pdS(R) by the

Auslander–Buchsbaum’s formula. For F -pure rings, the projective dimen-

sion and the Castelnuovo–Mumford regularity have explicit upper bounds.

The bound for the projective dimension easily follows from a special case of

a result of Lyubeznik.

Theorem 7.2. [Lyu06, Corollary 3.2] Let S be regular local ring of

positive characteristic p, and let I ⊆ S be an ideal. Let R= S/I, with

maximal ideal m. Then, for i ∈ N, we have Hn−i
I (S) = 0 if and only if

F e :H i
m(R)→H i

m(R) is the zero map for some e ∈ N.

We now exhibit some upper bounds for homological invariants of standard

graded F -pure K-algebras. We note that the argument for projective dimen-

sion has already been used, essentially, in [SW07, Theorem 4.1]. Moreover,

https://doi.org/10.1017/nmj.2016.65 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.65


164 A. DE STEFANI AND L. NÚÑEZ-BETANCOURT

the fact that pdS(S/I) = cd(I, S) if S/I is F -pure was first pointed out

in [DHS13]. However, the bound for the Castelnuovo–Mumford regularity

follows from our results in this article, in particular, from Theorem B.

Theorem 7.3. Let S =K[x1, . . . , xn] be a polynomial ring over a field

of positive characteristic p. Let I ⊆ S be a homogeneous ideal such that

R= S/I is F -pure. Then,

pdS(R) 6 µS(I),

where µS(I) denotes the minimal number of generators of I in S. If K is

F -finite, then

regS(R) 6 dim(R)− fpt(R).

Proof. Since R is an F -pure ring, so is the localization (R′,m′) :=

(Rm,mm). In fact if R⊆R1/p is pure, then so is Rm ⊆ (R1/p)m = (Rm)1/p.

Hence the Frobenius homomorphism acts injectively on the local cohomol-

ogy modules of R′. In particular, for any integer i and for any e ∈ N, we

have that F e :H i
m′(R

′)→H i
m′(R

′) is the zero map if and only if H i
m′(R

′) = 0.

Let n = (x1, . . . , xn). Since I is homogeneous, we have that Hn−i
I (S) = 0 if

and only if Hn−i
In

(Sn) = 0. By Theorem 7.2, it follows that H i
m′(R

′) = 0 for

all n− i > cd(I, S), and H
n−cd(I,S)
m′ (R′) 6= 0. Therefore, by the Auslander–

Buchsbaum’s formula, we get pdS(R) = n− depthSn
(R′) = cd(I, S). Since

cd(I, S) 6 µS(I), the first claim follows. For the second claim, let d=

dim(R). Then we have that

regS(R) = max{ai(R) + i | i= 0, . . . , d}

6 max{i− fpt(R) | i= 0, . . . , d}

= d− fpt(R),

where the second line follows from Theorem 4.3.

Remark 7.4. In the notation introduced above, Caviglia proved that

finding an upper bound C = C(d1, . . . , dj) for pdS(R) is equivalent to

finding an upper bound B =B(d1, . . . , dj) for regS(R) (see [Pee11, Theorem

29.5] and [MS13, Theorem 2.4]). The bound for regS(R) that we give in

Theorem 7.3, a priori, does not give an answer to Stillman’s question.

However, the inequality pdS(R) 6 µS(I) for the projective dimension shows

that Stillman’s question has positive answer for F -pure rings. In particular,

there also exists B =B(d1, . . . , dj) such that regS(R) 6B.
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Motivated by the results in the previous theorem, we ask the following

question.

Question 7.5. Let S =K[x1, . . . , xn] be a polynomial ring over a field,

K, of characteristic zero, and let I be a homogeneous ideal. Suppose that

R= S/I is a normal, and that X = SpecR is log-canonical. Is it true that

pdS(R) 6 µS(I) and regS(R) 6 dim(R)− lct(X)?1

We end this section by exhibiting an Sk condition that forces an F -pure

ring to be Cohen–Macaulay.

Proposition 7.6. Let S =K[x1, . . . , xn] be a polynomial ring over a

field of positive characteristic p. Let I be a homogeneous ideal generated by

forms f1, . . . , f`. Let D = deg(f1) + · · ·+ deg(f`). Suppose that R= S/I is

F -pure. If RQ is Cohen–Macaulay for every prime ideal such dim(RQ) 6D,

then R is Cohen–Macaulay.

Proof. Our proof will be by contradiction. Suppose that R is not Cohen–

Macaulay. Then, depth(R)< dim(R). Let c= cd(I, S) and r = depthI(S).

We have that

r = n− dim(R)< n− depth(R) = pdS(R) = c

by Theorem 7.3. Let Q ∈AssS H
c
I (S). Note that Hc

I (SQ) 6= 0 by our choice

of Q, and then c= cd(ISQ, SQ). In addition, Hr
I (SQ) 6= 0 because I ⊆Q.

Thus, r = depthI(SQ). It follows that

r = dim(SQ)− dim(RQ)< dim(SQ)− depth(R) = pdSQ
(RQ) = c

by Theorem 7.3. Thus, dim(RQ) 6= depth(RQ), and so RQ is not Cohen–

Macaulay.

We have that dim S/Q> n−D [Zha11, Theorem 1], therefore dim SQ 6
D, because regular rings satisfy the dimension formula. In particular,

dim(RQ) 6D. Since we are assuming that R is SD, we have that RQ must

be Cohen–Macaulay, and we reach a contradiction.

1Very recently, Ma, Schwede, and Shimomoto answered the question about projective
dimension for Du Bois singularities [MSS16, Corollary 4.3].
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[MS11] M. Mustaţă and V. Srinivas, Ordinary varieties and the comparison between
multiplier ideals and test ideals, Nagoya Math. J. 204 (2011), 125–157.

[MS13] J. McCullough and A. Seceleanu, “Bounding projective dimension”, in
Commutative Algebra, Springer, New York, 2013, 551–576.

[MSS16] L. Ma, K. Schwede and K. Shimomoto, Local cohomology of Du Bois
singularities and applications to families, preprint, 2016, arXiv:1605.02755.
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