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Abstract

Let Dµ be Dirichlet spaces with superharmonic weights induced by positive Borel measures µ on the
open unit disk. Denote by M(Dµ) Möbius invariant function spaces generated by Dµ. In this paper, we
investigate the relation amongDµ, M(Dµ) and some Möbius invariant function spaces, such as the space
BMOA of analytic functions on the open unit disk with boundary values of bounded mean oscillation
and the Dirichlet space. Applying the relation between BMOA and M(Dµ), under the assumption that the
weight function K is concave, we characterize the function K such that QK = BMOA. We also describe
inner functions in M(Dµ) spaces.
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1. Introduction

One of the classical topics in complex analysis is the study of Möbius invariant
function spaces in the open unit disk D of the complex plane C. Möbius invariant
function spaces are closely associated with the Möbius group denoted by Aut(D). The
Möbius group consists of all one-to-one analytic functions that map D onto itself. It is
well known that each φ ∈ Aut(D) has the form

φ(z) = eiθσa(z), σa(z) =
a − z
1 − az

,

where θ is real and a, z ∈ D. Let X be a linear space of analytic functions on D which
is complete in a norm or seminorm ‖.‖X . The space X is called Möbius invariant if for
each function f in X and each element φ in Aut(D), the composition function f ◦ φ also
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belongs to X and satisfies ‖ f ◦ φ‖X = ‖ f ‖X . We refer to Arazy et al. [4] for a general
exposition on Möbius invariant function spaces.

Denote by H(D) the space of analytic functions in D. Let (Y, ||.||Y ) be a Banach
space of analytic functions in D containing all constant functions. Following Aleman
and Simbotin [3], we denote by M(Y) the Möbius invariant function space generated
by Y . Namely, M(Y) is the class of functions f ∈ H(D) with

‖ f ‖M(Y) = sup
φ∈Aut(D)

|| f ◦ φ − f (φ(0))||Y <∞.

This construction gives rise to all Möbius invariant Banach spaces on D (cf. [34,
page 1001]).

The study of analytic Hilbert function spaces is also classical. Richter [26]
introduced Dirichlet spaces with harmonic weights. Aleman’s work [2] initiated the
study of Dirichlet spaces with superharmonic weights. These Dirichlet-type spaces
are Hilbert spaces. In this paper, we consider a class of Dirichlet spaces Dµ with
superharmonic weights induced by positive Borel measures µ on D. More precisely,
we will study the spaceDµ consisting of functions f ∈ H(D) with∫

D

| f ′(z)|2Uµ(z) dA(z) < +∞,

where dA denotes the area measure on D and

Uµ(z) =

∫
D

log
∣∣∣∣1 − wz

z − w

∣∣∣∣ dµ(w)

is a superharmonic function on D. The Dµ spaces are always subsets of the Hardy
space H2 (cf. [2, 17]). Let dµp(z) = −∆(1 − |z|2)p dA(z), where z ∈ D, p ∈ (0, 1) and
∆ is the Laplace operator. From [1], the space Dµp is equal to the well-studied radial
Dirichlet-type spacesDp consisting of functions f ∈ H(D) with∫

D

| f ′(z)|2(1 − |z|2)p dA(z) <∞.

By [10, Corollary 5.6], there exists a positive Borel measure µ such that Dµ is not
equal to any generalized radial Dirichlet-type space. It is well known (cf. [5, page 98])
that Uµ . +∞ if and only if ∫

D

(1 − |z|) dµ(z) < +∞. (1.1)

Thus, throughout this paper, we always assume that µ satisfies the condition (1.1). By
(1.1), we get that µ(E) <∞ for every compact subset E of D. From [10, Lemma 5.1],
everyDµ space can also be defined as the class of functions f ∈ H(D) for which

‖ f ‖2Dµ
=

∫
D

| f ′(z)|2Vµ(z) dA(z) < +∞,
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where
Vµ(z) =

∫
D

(1 − |σz(w)|2) dµ(w).

A norm onDµ can be defined by

||| f |||2Dµ
= | f (0)|2 + ‖ f ‖2Dµ

.

In this paper we investigate M(Dµ), the Möbius invariant function space generated
by the Hilbert function spaceDµ. Namely, M(Dµ) consists of functions f ∈ H(D) with

‖ f ‖2M(Dµ) = sup
φ∈Aut(D)

∫
D

| f ′(φ(z))|2|φ′(z)|2Vµ(z) dA(z)

= sup
a∈D,λ∈T

∫
D

| f ′(w)|2Vµ(λσa(w)) dA(w) <∞,

where T := ∂D is the unit circle. A norm on M(Dµ) can be defined by ||| f |||2M(Dµ)

= | f (0)|2 + ‖ f ‖2M(Dµ). We will see that M(Dµ) spaces are associated with several
Möbius invariant function spaces such as some special cases of QK spaces. For an
increasing and right-continuous function K : (0,∞)→ [0,∞), let QK be the space of
all functions f ∈ H(D) for which

sup
a∈D

∫
D

| f ′(z)|2K
(
log

1
|σa(z)|

)
dA(z) <∞.

From [18], QK can also be defined as the set of functions f ∈ H(D) with

‖ f ‖2
QK

= sup
a∈D

∫
D

| f ′(z)|2K(1 − |σa(z)|2) dA(z) <∞.

The QK spaces are Möbius invariant under the above seminorm. By [18], the theory
of QK depends only on the behavior of the weight function K near zero. We refer
to [18, 19, 28] for more results about QK spaces. If K0(t) = t log (e/t), 0 < t < 1, then
QK0 is the analytic version of Q1(T) space (see [29, 32]). If K(t) = tp, 0 ≤ p < ∞,
then QK coincides with Qp (see [7, 30, 31]). Clearly, Q1 = BMOA, the set of analytic
functions on D with boundary values of bounded mean oscillation (see [9, 22]). The
space Q0 is equal to the Dirichlet spaceD. By [6], we see that for all 1 < p <∞, Qp is
equal to the Bloch space B consisting of functions f ∈ H(D) such that

‖ f ‖B = sup
z∈D

(1 − |z|2)| f ′(z)| <∞.

Rubel and Timoney [27] proved that in some sense the maximal Möbius invariant
function space is the Bloch space.

A question mentioned by Wulan in several conferences or workshops is to
characterize the weight function K such that QK = BMOA. See also this question in
the recent monograph [28]. The paper is organized as follows. In Section 2, we show
that BMOA = M(Dµ) if and only if µ is finite. As an application, we answer partially
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the above question. In Section 3, we reveal how different measures µ induce the same
spaceDµ. We also study the relation amongDµ, M(Dµ) and the Dirichlet space using
Carleson measures. In the last section, we investigate inner functions in M(Dµ) with
infinite measure µ. We prove that any inner function in M(Dµ) must be a Blaschke
product. A criterion for Carleson–Newman Blaschke products belonging to M(Dµ) is
also given.

Throughout this paper, we will write a . b if there exists a constant C such that
a ≤ Cb. Also, the symbol a ≈ b means that a . b . a.

2. The equality between BMOA and QK via M(Dµ) spaces

In this section, we show that BMOA = M(Dµ) if and only if µ is finite. Applying
this result, under the assumption that the weight function K is concave, we characterize
the function K such that QK is equal to BMOA.

As usual, denote by H∞ the space of bounded analytic functions on D. The space
H∞ is Möbius invariant under the following norm:

||| f |||H∞ = sup
z∈D
| f (z)|.

From Aleman [2, Proposition 3.1, page 83], H∞ ⊆ Dµ if and only if µ is finite. Based
on this interesting result, we get the following theorem.

Theorem 2.1. Let µ be a positive Borel measure on D. Then the following conditions
are equivalent.

(1) BMOA ⊆ Dµ.
(2) BMOA = M(Dµ).
(3) µ is finite.

Proof. (3)⇒ (1). Let f ∈ BMOA. Applying the Fubini theorem,

‖ f ‖2Dµ
≤ µ(D)‖ f ‖2BMOA,

which implies the desired result.
(1)⇒ (3). Note that H∞ ⊆ BMOA. Together with condition (1), this yields H∞ ⊆

Dµ. Thus, µ is finite.
(1)⇒ (2). Since Dµ is always a subset of H2 and BMOA = M(H2) (see [9]), we

have M(Dµ) ⊆ BMOA. Combining this with condition (1), we obtain that BMOA =

M(Dµ).
(2)⇒ (1) is true because of M(Dµ) ⊆ Dµ. The proof is complete. �

If the weight function K is concave on (0, 1), then QK ⊆ BMOA (cf. [28]). Applying
Theorem 2.1, we answer partially the question mentioned in Section 1 as follows.

Theorem 2.2. Let K ∈C2(0,1) be increasing and concave on (0,1) and limt→0 K(t) = 0.
Then the following conditions are equivalent.
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(1) QK = BMOA.
(2) ∫ 1

0
[K′(t) − (1 − t)K′′(t)] dt <∞.

Proof. Note that K is an increasing and concave function on (0, 1) with limt→0 K(t)
= 0. By [1, page 99], we know that

K(1 − |z|) = −
1

2π

∫
D

∆(K(1 − |w|)) log
1

|σw(z)|
dA(w), z ∈ D,

where ∆ is the Laplace operator. Set dν(w) = −∆(K(1 − |w|)) dA(w). Then QK =

M(Dν). Hence, QK = BMOA if and only if BMOA = M(Dν). This, together with
Theorem 2.1, yields that QK = BMOA if and only if ν is finite. Now we compute
ν(D). Recall that the Laplace operator in polar coordinates is

∆ =
∂2

∂r2 +
1
r
∂

∂r
+

1
r2

∂2

∂θ2 .

We have

−

∫
D

∆(K(1 − |w|)) dA(w) =−

∫ 2π

0

∫ 1

0
∆(K(1 − r))r dr dθ

=−2π
∫ 1

0
[rK′′(1 − r) − K′(1 − r)] dr

= 2π
∫ 1

0
[K′(t) − (1 − t)K′′(t)] dt.

Thus, QK = BMOA if and only if∫ 1

0
[K′(t) − (1 − t)K′′(t)] dt <∞. �

Letting K(t) = sin t, we obtain a weight function different from the identity which
satisfies the hypotheses and the condition (2) of Theorem 2.2. From the proof of
Theorem 2.2, we see that if K ∈ C2(0, 1) is an increasing and concave function on
(0,1) with limt→0 K(t) = 0, then the space QK is a special case of M(Dµ). Thus, M(Dµ)
spaces also generalize Qp spaces for 0 < p ≤ 1 and the analytic version of Q1(T) space.
In the next section, we will show that all nontrivial M(Dµ) spaces are between D and
BMOA. Comparing with QK and Qp spaces, M(Dµ) spaces connect D and BMOA
more smoothly. We refer to [11] for a recent investigation of Qp spaces and a class of
Dirichlet-type spacesDµ,p induced by finite positive Borel measures µ on D.

3. The Dirichlet space andDµ and M(Dµ) spaces

In this section, we give the precise link between the measures µ and ν such that
Dµ =Dν. We also investigate the relation among Dµ, M(Dµ) and the Dirichlet space
via Carleson measures.

The following test functions inDµ were given in [10].
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Lemma A. Let µ be a positive Borel measure on D. For every w ∈ D, let

fw(z) =
σw(z)√
Vµ(w)

−
σw(0)√
Vµ(w)

, z ∈ D.

Then
sup
w∈D
||| fw|||Dµ

< +∞.

We reveal how different measures µ induce the same spaceDµ as follows.

Theorem 3.1. Let µ and ν be positive Borel measures on D. ThenDµ =Dν if and only
if there exist positive constants C1 and C2 such that

C1Vµ(z) ≤ Vν(z) ≤ C2Vµ(z) (3.1)

for all z ∈ D.

Proof. Clearly, if the condition (3.1) holds, thenDµ =Dν. On the other hand, suppose
thatDµ =Dν. By the closed graph theorem,

||| f |||Dν
. ||| f |||Dµ

for all f ∈ Dµ. For w ∈ D, define the function fw as in Lemma A. Combining the above
facts and the Fubini theorem,

∞> sup
w∈D
||| fw|||2Dν

≈ sup
w∈D

∫
D

| f ′w(z)|2Vν(z) dA(z)

≈ sup
w∈D

(1 − |w|2)2

Vµ(w)

∫
D

∫
D

(1 − |z|2)(1 − |a|2)
|1 − az|2|1 − wz|4

dA(z) dν(a).

Let ∆(w, 1/2) = {z ∈ D : |σw(z)| < 1/2} be a pseudo-hyperbolic disk centered at w. It is
well known that

1 − |w| ≈ |1 − zw| ≈ 1 − |z|

for all z ∈ ∆(w, 1/2) and the area of ∆(w, 1/2) is comparable with (1 − |w|)2.
Furthermore, by [33, Lemma 4.30],

|1 − az| ≈ |1 − aw|

for all z ∈ ∆(w, 1/2) and a ∈ D. Consequently,

∞> sup
w∈D

(1 − |w|2)2

Vµ(w)

∫
D

∫
D

(1 − |z|2)(1 − |a|2)
|1 − az|2|1 − wz|4

dA(z) dν(a)

& sup
w∈D

(1 − |w|2)2

Vµ(w)

∫
D

∫
∆(w,1/2)

(1 − |z|2)(1 − |a|2)
|1 − az|2|1 − wz|4

dA(z) dν(a)

≈ sup
w∈D

(1 − |w|2)2

Vµ(w)

∫
D

∫
∆(w,1/2)

(1 − |w|2)(1 − |a|2)
|1 − aw|2(1 − |w|2)4 dA(z) dν(a)

≈ sup
w∈D

Vν(w)
Vµ(w)

.
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Similarly,

sup
w∈D

Vµ(w)
Vν(w)

<∞.

The proof is complete. �

By Theorem 2.1, if µ is finite, then Dµ , D. In fact, this is also true for infinite
measures µ.

Proposition 3.2. Let µ be a positive Borel measure on D. ThenDµ ,D.

Proof. For w ∈ D, let fw be the function appearing in Lemma A. Then

‖ fw‖2D =
1

Vµ(w)

∫
D

|σ′w(z)|2 dA(z) =
2π

Vµ(w)
.

Since limr→1 Vµ(rζ) = 0 for almost every ζ ∈ T (cf. [21, page 94]), we know that

sup
w∈D
‖ fw‖D =∞.

Combining this with Lemma A, we get thatDµ ,D. �

An important tool to study function spaces is Carleson measures. Given an arc I on
the unit circle T, the Carleson sector S (I) is given by

S (I) = {rζ ∈ D : 1 − |I| < r < 1, ζ ∈ I},

where |I| is the normalized length of the arc I. A positive Borel measure ν on D is said
to be a Carleson measure if

sup
I⊆T

ν(S (I))
|I|

<∞.

It is said to be a vanishing Carleson measure if

lim
|I|→0

ν(S (I))
|I|

= 0.

It is well known (cf. [15, 21]) that ν is a Carleson measure if and only if

sup
w∈D

∫
D

|σ′w(z)| dν(z) <∞.

The measure ν is a vanishing Carleson measure if and only if

lim
|w|→1

∫
D

|σ′w(z)| dν(z) = 0.

Let X ⊆ H(D) be a Banach function space. We say that X is trivial if X contains
only constant functions. The following theorem establishes a link among D, Dµ and
M(Dµ) spaces via Carleson measures.

Theorem 3.3. Let µ be a positive Borel measure on D. Then the following conditions
are equivalent.
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(1) D ⊆ M(Dµ).
(2) D $Dµ.
(3) M(Dµ) is not trivial.
(4) (1 − |z|2) dµ(z) is a Carleson measure on D.

Proof. (1)⇒ (2). By condition (1), M(Dµ) ⊆ Dµ and Proposition 3.2, we getD $Dµ.
(2)⇒ (3). Suppose thatD ⊆ Dµ. SinceD is a Möbius invariant function space,

D = M(D) ⊆ M(Dµ).

It follows that M(Dµ) is not trivial.
(3)⇒ (4). Since M(Dµ) is not trivial, the identity function z ∈ M(Dµ) (see [4]).

Hence,

sup
w∈D

∫
D

(1 − |w|2)2

|1 − wz|4
Vµ(z) dA(z) <∞.

Using arguments similar to those in the proof of Theorem 3.1, we deduce that for all
w ∈ D,

1&
∫
D

(1 − |w|2)2

|1 − wz|4
Vµ(z) dA(z)

&

∫
∆(w,1/2)

(1 − |w|2)2

|1 − wz|4

∫
D

(1 − |a|2)(1 − |z|2)
|1 − za|2

dµ(a) dA(z)

≈

∫
D

(1 − |a|2) dµ(a)
∫

∆(w,1/2)

1
|1 − wa|2(1 − |w|2)

dA(z)

≈

∫
D

(1 − |a|2)(1 − |w|2)
|1 − wa|2

dµ(a).

Thus, (1 − |z|2) dµ(z) is a Carleson measure on D.
(4)⇒ (1). Suppose that (1 − |z|2) dµ(z) is a Carleson measure on D. Then

sup
w∈D

Vµ(w) = sup
w∈D

∫
D

(1 − |w|2)(1 − |z|2)
|1 − zw|2

dµ(z) <∞.

Therefore, ∫
D

| f ′(z)|2Vµ(z) dA(z) .
∫
D

| f ′(z)|2 dA(z)

for every f ∈ D, which implies that D ⊆ Dµ. Again, since D is a Möbius invariant
function space,

D = M(D) ⊆ M(Dµ).

The proof is complete. �

Let µ be a positive Borel measure on D. By Theorem 3.3 and the proof of
Theorem 2.1, if M(Dµ) is not trivial, then

D ⊆ M(Dµ) ⊆ BMOA.

Furthermore, M(Dµ) = BMOA if and only if µ is finite. For the strict inclusion relation
betweenD and M(Dµ), we get the following result.
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Theorem 3.4. Let µ be a positive Borel measure on D. If (1 − |z|2) dµ(z) is a vanishing
Carleson measure on D, then

D $ M(Dµ).

Proof. If (1 − |z|2) dµ(z) is a vanishing Carleson measure on D, from Theorem 3.3, one
gets thatD ⊆ M(Dµ). Now we adapt an argument from [18, page 1243]. Suppose that
D = M(Dµ). Denote by D0 and M0(Dµ) the spaces of functions g with g(0) = 0 in D
and M(Dµ), respectively. Then D0 = M0(Dµ). From the closed graph theorem, there
exists a positive constant C such that∫

D

| f ′(z)|2 dA(z) ≤ C sup
a∈D,λ∈T

∫
D

| f ′(w)|2Vµ(λσa(w)) dA(w) (3.2)

for all f ∈ M0(Dµ). Note that (1 − |z|2) dµ(z) is a vanishing Carleson measure on D.
Namely,

lim
|w|→1

Vµ(w) = 0.

Then there exists a constant s ∈ (0, 1) such that

Vµ(w) ≤
1

2C

for all w ∈ D with s ≤ |w| < 1. Combining this with (3.2),∫
D

| f ′(z)|2 dA(z)≤C sup
a∈D,λ∈T

∫
∆(a,s)

| f ′(w)|2Vµ(λσa(w)) dA(w)

+ C sup
a∈D,λ∈T

∫
D\∆(a,s)

| f ′(w)|2Vµ(λσa(w)) dA(w)

≤C sup
a∈D,λ∈T

∫
∆(a,s)

| f ′(w)|2Vµ(λσa(w)) dA(w)

+
1
2

∫
D

| f ′(w)|2 dA(w),

where
∆(a, s) = {w ∈ D : |σa(w)| < s}.

Consequently,∫
D

| f ′(z)|2 dA(z) ≤ 2C sup
a∈D,λ∈T

∫
∆(a,s)

| f ′(w)|2Vµ(λσa(w)) dA(w)

for all f ∈ M0(Dµ). Since (1 − |z|2) dµ(z) is also a Carleson measure, Vµ is a bounded
function. Hence, ∫

D

| f ′(z)|2 dA(z) . sup
a∈D

∫
∆(a,s)

| f ′(w)|2 dA(w).
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From [8, Theorem 1], for any s ∈ (0, 1),

sup
a∈D

∫
∆(a,s)

| f ′(w)|2 dA(w) ≈ ‖ f ‖2B.

Thus, ∫
D

| f ′(z)|2 dA(z) . ‖ f ‖2B

for all f ∈ M0(Dµ). Let h ∈ B with h(0) = 0. For 0 < r < 1, set hr(z) = h(rz), z ∈ D.
Clearly, ‖hr‖B ≤ ‖h‖B. Since hr ∈ M0(Dµ),∫

D

|rh′(rz)|2 dA(z) . ‖hr‖
2
B . ‖h‖

2
B.

Combining this with the Fatou lemma, one gets that h ∈ D. Thus, D = B, which
contradicts the fact thatD $ B. Thus,D $ M(Dµ). �

Note that M(Dµ) spaces are always subsets of BMOA. Checking the proof of the
above theorem, we can get the following result. Let µ and ν be positive Borel measures
on D. If

lim
|w|→1

Vµ(w)
Vν(w)

= 0,

then M(Dν) $ M(Dµ). We leave the details to the interested reader.

4. Inner functions in M(Dµ) spaces

A bounded analytic function I onD is called an inner function if |I(ζ)| = 1 for almost
every ζ ∈ T. A sequence {ak}

∞
k=1 ⊆ D is said to be a Blaschke sequence if

∞∑
k=1

(1 − |ak|) <∞.

The above condition implies the convergence of the corresponding Blaschke product
B, defined as

B(z) =

∞∏
k=1

|ak|

ak

ak − z
1 − akz

.

It is well known (cf. [15]) that any inner function I can be represented as a product of
a constant γ ∈ T, a Blaschke product and a singular inner function

S ν(z) = exp
( ∫
T

z + ζ

z − ζ
dν(ζ)

)
,

where ν is a positive singular Borel measure on T.
We will need some definitions concerning an important class of sequences and

Blaschke products. A sequence {ak}
∞
k=1 ⊆ D is called an interpolating sequence if there

exists a positive constant δ such that

inf
k

∏
j,k

%(a j, ak) ≥ δ.
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[11] Möbius invariant function spaces and Dirichlet spaces with superharmonic weights 11

Here %(a j, ak) = |σa j (ak)| denotes the pseudo-hyperbolic metric in D. The Blaschke
product corresponding to an interpolating sequence is called an interpolating Blaschke
product. A Blaschke product is called a Carleson–Newman Blaschke product if it can
be expressed as a product of finitely many interpolating Blaschke products. It is well
known (cf. [24]) that a Blaschke product corresponding to a sequence {ak}

∞
k=1 is a

Carleson–Newman Blaschke product if and only if
∑∞

k=1(1 − |ak|
2)δak is a Carleson

measure. Here δak is the unit point mass measure at ak ∈ D. The relation between
interpolating sequences and Carleson measures originally comes from Carleson’s
famous works [13, 14] studying the interpolation problem and the corona theorem
for H∞. We refer the reader to [12, 16, 23–25] for more information about Carleson–
Newman Blaschke products.

In this section, we will consider the problem of characterizing when a given inner
function is contained in a given Möbius invariant function space M(Dµ). It follows
from Theorem 2.1 that, if µ is a finite positive Borel measure on D, then the set of all
inner functions is contained in M(Dµ). From now on we will focus our study on the
spaces M(Dµ) corresponding to infinite measures µ on D. Let µ be an infinite positive
Borel measure on D. In Theorem 4.4, we will show that, in that case, M(Dµ) does not
contain singular inner functions and we will characterize the set of Carleson–Newman
Blaschke products contained in M(Dµ). Let CNM denote the set of Möbius invariant
function spaces X satisfying the following property:

if B is a Blaschke product belonging to X,
then B is a Carleson–Newman Blaschke product.

Some examples of spaces contained in CNM are (cf. [19, 20, 32]) the well-known
Qp spaces for 0 < p < 1, some QK spaces and the analytic version of Q1(T) space. In
Corollary 4.5, we give a complete characterization of the inner functions in the spaces
M(Dµ) ∈ CNM.

Lemma 4.1. Let µ be an infinite positive Borel measure on D and let I be an inner
function. Then I ∈ M(Dµ) if and only if

sup
φ∈Aut(D)

∫
D

(1 − |I ◦ φ(w)|2) dµ(w) <∞.

Proof. It is well known that (cf. [5, pages 105–106]) for f ∈ H2 and w ∈ D,

2
π

∫
D

log
∣∣∣∣1 − wz

z − w

∣∣∣∣| f ′(z)|2 dA(z) =
1

2π

∫
T

| f (ζ)|2
1 − |w|2

|ζ − w|2
|dζ | − | f (w)|2. (4.1)

By the above formula and the Fubini theorem, we see that I ∈ M(Dµ) if and only if

sup
φ∈Aut(D)

∫
D

(1 − |I ◦ φ(w)|2) dµ(w) <∞. �

Lemma 4.2. Let µ be an infinite positive Borel measure on D. Let I =
∏n

j=1 I j, where
all I j are inner functions. Then I ∈ M(Dµ) if and only if I j ∈ M(Dµ) for j = 1, 2, . . . , n.
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12 G. Bao, J. Mashreghi, S. Pouliasis and H. Wulan [12]

Proof. Since |I(z)| < 1 for z ∈ D, the conclusion follows from Lemma 4.1 and the
inequalities

1 − |I j(z)|2 ≤ 1 − |I(z)|2 ≤
n∑

k=1

(1 − |Ik(z)|2), z ∈ D, j = 1, 2, . . . , n. �

Lemma 4.3. Let µ be an infinite positive Borel measure on D. Let ν be a positive
singular Borel measure on T. Then S ν < M(Dµ).

Proof. We will consider three cases.
(i) Suppose that ν = tδ1, t > 0. Then S ν(z) = exp(−t(1 + z)/(1 − z)) and |S ν(z)| =

exp(−t(1 − |z|2)/(|1 − z|2)), z ∈ D. Fix c > 0. We denote by Dc the horodisk

Dc =

{
z ∈ D :

1 − |z|2

|1 − z|2
> c

}
,

which is a disk tangent to the unit circle at 1 (see, for example, [21, page 73]). Note
that |S ν| ≤ e−tc on Dc. For every a ∈ D, let µa = µ ◦ σa. Then, by formula (4.1) and the
Fubini theorem, it is easy to see that for every a ∈ D,

‖S ν ◦ σa‖
2
Dµ
≈

∫
D

|(S ν ◦ σa)′(z)|2Uµ(z) dA(z)≈
∫
D

(1 − |S ν(σa(z))|2) dµ(z)

&

∫
σa(Dc)

(1 − |S ν(σa(z))|2) dµ(z)

≈

∫
Dc

(1 − |S ν(z)|2) dµa(z)

& (1 − e−2tc)µ(σa(Dc)). (4.2)

For every r ∈ (−1, 1), let φr(z) = −σr(z), z ∈ D. Note that, if s is the point where
∂Dc intersects the interval (−1, 1), then φr maps Dc to the disk having diameter the
interval (−(r − s)/(1 − rs), 1); in particular, φr(Dc)↗ D as r→ 1. Therefore, from the
inequality (4.2),

lim
r→1
‖S ν ◦ φr‖

2
Dµ
& lim

r→1
(1 − e−2tc)µ(φr(Dc)) ≈ (1 − e−2tc)µ(D) = +∞

and S ν < M(Dµ). Similarly, we show that S tδζ < M(Dµ) for every ζ ∈ T.
(ii) Suppose that ν has an atom at the point ζ ∈ T and let t = ν({ζ}) > 0. Then

|S ν| ≤ |S tδζ | on D. Since S tδζ < M(Dµ),

sup
a∈D
‖S ν ◦ σa‖

2
Dµ
≈ sup

a∈D

∫
D

(1 − |S ν(σa(z))|2) dµ(z)

& sup
a∈D

∫
D

(1 − |S tδζ (σa(z))|2) dµ(z)

= +∞.

Therefore, S ν < M(Dµ).
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(iii) Suppose that ν has no atoms. Note that, by assumption, µ(D) = ∞. We will
show that there exists ξ0 ∈ T such that

µ(D(ξ0, δ) ∩ D) =∞ (4.3)

for every δ > 0. Here D(ξ0, δ) is the Euclidean disk with center ξ0 and radius δ.
Otherwise, by the compactness of T, there would exist ζ1, . . . , ζn ∈ T and δ0 > 0 such
that µ(D(ζi, δ0) ∩ D) < ∞, i = 1, . . . , n, and T ⊂

⋃n
i=1 D(ζi, δ0). Let r > 0 be such that

D \ rD ⊆
⋃n

i=1 D(ζi, δ0). Then µ(D \ rD) <∞. Since µ(rD) <∞, we get µ(D) <∞. This
is a contradiction.

Since ν has no atoms, supp(ν) \ {ξ0} , ∅. Let ξ1 ∈ supp(ν) \ {ξ0}. We can assume
that ξ1 = 1, since, otherwise, we can compose µ and ν with the rotation z 7→ z/ξ1.
Fix c > 0 and let Dc and φr, r ∈ (0, 1), be as above. Note that for every ζ ∈ T,
there exists a unique η ∈ ∂Dc such that limr→1 φr(η) = ζ. Let η0 be the point in ∂Dc
such that limr→1 φr(η0) = ξ0 and let ε = |1 − η0|/2. Then there exists δ0 > 0 such that
D(ξ0, δ0) ∩ φr(Dc \ D(1, ε)), r ∈ (0, 1), is an increasing family of sets and

D(ξ0, δ0) ⊂
⋃

r∈(0,1)

φr(Dc \ D(1, ε)). (4.4)

From (4.3) and (4.4),
lim
r→1

µ(φr(Dc \ D(1, ε))) = +∞. (4.5)

Let Iε = {ζ ∈ T : |1 − ζ | < ε}. Since 1 ∈ supp(ν), ν(Iε) > 0. Then, for every z ∈ Dc \

D(1, ε) and for every ζ ∈ Iε , we have |1 − ζ | < ε ≤ |1 − z|, so

|ζ − z| ≤ |1 − ζ | + |1 − z| ≤ 2|1 − z|

and
1 − |z|2

|ζ − z|2
≥

1 − |z|2

4|1 − z|2
≥

c
4
. (4.6)

From the inequality (4.6), we obtain that for every z ∈ Dc \ D(1, ε),

−log |S ν(z)| =
∫
T

1 − |z|2

|ζ − z|2
dν(ζ) ≥

∫
Iε

1 − |z|2

|ζ − z|2
dν(ζ) ≥

c
4
ν(Iε) > 0. (4.7)

Therefore, from (4.5) and (4.7),

lim
r→1
‖S ν ◦ φr‖

2
Dµ
≈ lim

r→1

∫
D

(1 − |S ν(φr(z))|2) dµ(z)

& lim
r→1

∫
φr(Dc\D(1,ε))

(1 − |S ν(φr(z))|2) dµ(z)

≈ lim
r→1

∫
Dc\D(1,ε)

(1 − |S ν(z)|2) d(µ ◦ φr)(z)

& (1 − e−cν(Iε )/4) lim
r→1

µ(φr(Dc \ D(1, ε)))

= +∞,

and hence S ν < M(Dµ). �
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Now we state the main result of this section, as follows.

Theorem 4.4. Let µ be an infinite positive Borel measure on D. Then the following
statements are true.

(1) If an inner function I belongs to M(Dµ), then I must be a Blaschke product.
(2) Let B be a Carleson–Newman Blaschke product with zeros {ak}

∞
k=1. Then B ∈

M(Dµ) if and only if

sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (φ(w))|2) dµ(w) <∞. (4.8)

Proof. (1) Let I be an inner function belonging to M(Dµ). Note that I can be
represented as a product of a constant γ ∈ T, a Blaschke product and a singular inner
function. Applying Lemmas 4.2 and 4.3, we obtain that I must be a Blaschke product.

(2) First, we assume that condition (4.8) holds. From the following elementary
inequality:

1 −
∞∏

k=1

xk ≤

∞∑
k=1

(1 − xk), xk ∈ (0, 1],

one gets here

1 − |B(z)| ≤
∞∑

k=1

(1 − |σak (z)|2), z ∈ D.

Consequently,

1 − |B(φ(z))| ≤
∞∑

k=1

(1 − |σak (φ(z))|2)

for any φ ∈ Aut(D) and z ∈ D. Combining this with the Fubini theorem,

sup
φ∈Aut(D)

∫
D

(1 − |B(φ(z))|) dµ(z) ≤ sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (φ(z))|2) dµ(z).

By the above inequality, condition (4.8) and Lemma 4.1, we get B ∈ M(Dµ).
On the other hand, let B ∈ M(Dµ). Then

log |B(z)|2 =

∞∑
k=1

log
(
1 −

(1 − |ak|
2)(1 − |z|2)

|1 − akz|2

)
≤−

∞∑
k=1

(1 − |ak|
2)(1 − |z|2)

|1 − akz|2

=−

∞∑
k=1

(1 − |σak (z)|2)

for any z ∈ D. Consequently,

1 − |B(z)|2 ≥ 1 − exp
(
−

∞∑
k=1

(1 − |σak (z)|2)
)
, z ∈ D.
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Note that B is a Carleson–Newman Blaschke product. By [24],
∑∞

k=1(1 − |ak|
2)δak is a

Carleson measure. Namely,

M =: sup
z∈D

∑
k

(1 − |σak (z)|2) <∞.

Bear in mind that
1 − e−t

t
≈ 1, 0 < t < M.

Therefore,

1 − |B(z)|2 &
∞∑

k=1

(1 − |σak (z)|2)

for all z ∈ D. Combining this with Lemma 4.1,

sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (φ(w))|2) dµ(w) . sup
φ∈Aut(D)

∫
D

(1 − |B ◦ φ(w)|2) dµ(w) <∞.

The proof is complete. �

The following result is a direct consequence of Theorem 4.4.

Corollary 4.5. Let I be an inner function and let µ be an infinite positive Borel
measure onD such that M(Dµ) ∈ CNM. Then I ∈ M(Dµ) if and only if I is a Carleson–
Newman Blaschke product with zeros {ak}

∞
k=1 satisfying

sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (φ(w))|2) dµ(w) <∞.

Clearly, the condition of µ in Theorem 4.4 is best possible. Applying Theorem 4.4,
we can characterize inner functions in some function spaces. For example, let K1(t) =

t(log e2/t)2, 0 < t < 1. By [18, Theorem 2.6], QK1 is located strictly between
⋃

0<p<1Qp

and the space of the analytic version of Q1(T). The characterization of inner functions
in QK1 was not studied in previous papers. Using Theorem 4.4, we obtain a complete
characterization of inner functions in QK1 as follows.

Corollary 4.6. Let I be an inner function. Then I ∈ QK1 if and only if I is a Blaschke
product with zeros {ak}

∞
k=1 satisfying

sup
a∈D

∞∑
k=1

∫
D

(1 − |σak (σa(z))|2)[K′1(1 − |z|) − |z|K′′1 (1 − |z|)] dA(z) <∞.

Proof. It is easy to check that K1 is increasing and concave on (0, 1) with limt→0+

K(t) = 0. Thus, QK1 = M(Dµ1 ), where dµ1(w) = −∆(K1(1 − |w|)) dA(w), w ∈ D. By [18,
Theorem 2.6], QK1 $ BMOA; hence, µ1 is an infinite measure, a fact which can also
be proved via a direct computation. Clearly, QK1 is a subset of the space of the analytic
version of Q1(T). By [32, page 1100], the space of the analytic version of Q1(T)
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belongs to CNM; therefore, QK1 ∈ CNM. This, together with Corollary 4.5, yields
that an inner function I belongs to QK1 if and only if I is a Blaschke product with zeros
{ak}

∞
k=1 satisfying

sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (φ(w))|2) dµ1(w) <∞. (4.9)

Note that K1(1 − |z|) is a radial function. By the change of variables, we compute the
above integral as follows.

sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (φ(w))|2) dµ1(w)

≈ sup
φ∈Aut(D)

∞∑
k=1

∫ 1

0

∫ 2π

0
(1 − |σak (φ(reiθ))|2)[K′1(1 − r) − rK′′1 (1 − r)] dθ dr

≈ sup
φ∈Aut(D)

∞∑
k=1

∫
D

(1 − |σak (z)|2)[K′1(1 − |φ−1(z)|) − |φ−1(z)|K′′1 (1 − |φ−1(z)|)]

× |(φ−1)′(z)|2 dA(z)

≈ sup
a∈D

∞∑
k=1

∫
D

(1 − |σak (σa(z))|2)[K′1(1 − |z|) − |z|K′′1 (1 − |z|)] dA(z).

Combining the above computation with condition (4.9), we get the desired result. �

Finally, we pose two natural questions as follows. Is it true that M(Dµ) ∈ CNM for
every infinite positive Borel measure µ on D? If the answer is negative, how can we
characterize the measures µ such that M(Dµ) ∈ CNM?
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