MÖBIUS INVARIANT FUNCTION SPACES AND DIRICHLET SPACES WITH SUPERHARMONIC WEIGHTS

GUANLONG BAO, JAVAD MASHREGHI, STAMATIS POULIASIS[™] and HASI WULAN

(Received 21 June 2017; accepted 3 December 2017; first published online 12 July 2018)

Communicated by C. Meaney

Abstract

Let \mathcal{D}_{μ} be Dirichlet spaces with superharmonic weights induced by positive Borel measures μ on the open unit disk. Denote by $M(\mathcal{D}_{\mu})$ Möbius invariant function spaces generated by \mathcal{D}_{μ} . In this paper, we investigate the relation among \mathcal{D}_{μ} , $M(\mathcal{D}_{\mu})$ and some Möbius invariant function spaces, such as the space *BMOA* of analytic functions on the open unit disk with boundary values of bounded mean oscillation and the Dirichlet space. Applying the relation between *BMOA* and $M(\mathcal{D}_{\mu})$, under the assumption that the weight function *K* is concave, we characterize the function *K* such that $Q_K = BMOA$. We also describe inner functions in $M(\mathcal{D}_{\mu})$ spaces.

2010 Mathematics subject classification: primary 30H25; secondary 30J05, 31C25.

Keywords and phrases: Möbius invariant function spaces, Dirichlet spaces with superharmonic weights, inner functions.

1. Introduction

One of the classical topics in complex analysis is the study of Möbius invariant function spaces in the open unit disk \mathbb{D} of the complex plane \mathbb{C} . Möbius invariant function spaces are closely associated with the Möbius group denoted by Aut(\mathbb{D}). The Möbius group consists of all one-to-one analytic functions that map \mathbb{D} onto itself. It is well known that each $\phi \in Aut(\mathbb{D})$ has the form

$$\phi(z) = e^{i\theta}\sigma_a(z), \quad \sigma_a(z) = \frac{a-z}{1-\overline{a}z},$$

where θ is real and $a, z \in \mathbb{D}$. Let X be a linear space of analytic functions on \mathbb{D} which is complete in a norm or seminorm $\|.\|_X$. The space X is called Möbius invariant if for each function f in X and each element ϕ in Aut(\mathbb{D}), the composition function $f \circ \phi$ also

G. Bao and H. Wulan were supported by the NNSF of China (No. 11720101003). G. Bao was also supported by the STU Scientific Research Foundation for Talents (No. NTF17020).

 $[\]textcircled{C}$ 2018 Australian Mathematical Publishing Association Inc.

belongs to *X* and satisfies $||f \circ \phi||_X = ||f||_X$. We refer to Arazy *et al.* [4] for a general exposition on Möbius invariant function spaces.

Denote by $H(\mathbb{D})$ the space of analytic functions in \mathbb{D} . Let $(Y, \|.\|_Y)$ be a Banach space of analytic functions in \mathbb{D} containing all constant functions. Following Aleman and Simbotin [3], we denote by M(Y) the Möbius invariant function space generated by *Y*. Namely, M(Y) is the class of functions $f \in H(\mathbb{D})$ with

$$||f||_{M(Y)} = \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} ||f \circ \phi - f(\phi(0))||_{Y} < \infty.$$

This construction gives rise to all Möbius invariant Banach spaces on \mathbb{D} (cf. [34, page 1001]).

The study of analytic Hilbert function spaces is also classical. Richter [26] introduced Dirichlet spaces with harmonic weights. Aleman's work [2] initiated the study of Dirichlet spaces with superharmonic weights. These Dirichlet-type spaces are Hilbert spaces. In this paper, we consider a class of Dirichlet spaces \mathcal{D}_{μ} with superharmonic weights induced by positive Borel measures μ on \mathbb{D} . More precisely, we will study the space \mathcal{D}_{μ} consisting of functions $f \in H(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f'(z)|^2 U_{\mu}(z) \, dA(z) < +\infty,$$

where dA denotes the area measure on \mathbb{D} and

$$U_{\mu}(z) = \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{z - w} \right| d\mu(w)$$

is a superharmonic function on \mathbb{D} . The \mathcal{D}_{μ} spaces are always subsets of the Hardy space H^2 (cf. [2, 17]). Let $d\mu_p(z) = -\Delta(1 - |z|^2)^p dA(z)$, where $z \in \mathbb{D}$, $p \in (0, 1)$ and Δ is the Laplace operator. From [1], the space \mathcal{D}_{μ_p} is equal to the well-studied radial Dirichlet-type spaces \mathcal{D}_p consisting of functions $f \in H(\mathbb{D})$ with

$$\int_{\mathbb{D}} |f'(z)|^2 (1-|z|^2)^p \, dA(z) < \infty.$$

By [10, Corollary 5.6], there exists a positive Borel measure μ such that \mathcal{D}_{μ} is not equal to any generalized radial Dirichlet-type space. It is well known (cf. [5, page 98]) that $U_{\mu} \neq +\infty$ if and only if

$$\int_{\mathbb{D}} (1 - |z|) \, d\mu(z) < +\infty. \tag{1.1}$$

Thus, throughout this paper, we always assume that μ satisfies the condition (1.1). By (1.1), we get that $\mu(E) < \infty$ for every compact subset *E* of \mathbb{D} . From [10, Lemma 5.1], every \mathcal{D}_{μ} space can also be defined as the class of functions $f \in H(\mathbb{D})$ for which

$$||f||_{\mathcal{D}_{\mu}}^{2} = \int_{\mathbb{D}} |f'(z)|^{2} V_{\mu}(z) \, dA(z) < +\infty,$$

[3] Möbius invariant function spaces and Dirichlet spaces with superharmonic weights

where

$$V_{\mu}(z) = \int_{\mathbb{D}} (1 - |\sigma_z(w)|^2) \, d\mu(w).$$

A norm on \mathcal{D}_{μ} can be defined by

$$|||f|||_{\mathcal{D}_{\mu}}^{2} = |f(0)|^{2} + ||f||_{\mathcal{D}_{\mu}}^{2}.$$

In this paper we investigate $M(\mathcal{D}_{\mu})$, the Möbius invariant function space generated by the Hilbert function space \mathcal{D}_{μ} . Namely, $M(\mathcal{D}_{\mu})$ consists of functions $f \in H(\mathbb{D})$ with

$$\begin{split} \|f\|_{M(\mathcal{D}_{\mu})}^2 &= \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \int_{\mathbb{D}} |f'(\phi(z))|^2 |\phi'(z)|^2 V_{\mu}(z) \, dA(z) \\ &= \sup_{a \in \mathbb{D}, \lambda \in \mathbb{T}} \int_{\mathbb{D}} |f'(w)|^2 V_{\mu}(\lambda \sigma_a(w)) \, dA(w) < \infty, \end{split}$$

where $\mathbb{T} := \partial \mathbb{D}$ is the unit circle. A norm on $M(\mathcal{D}_{\mu})$ can be defined by $|||f||^2_{M(\mathcal{D}_{\mu})}$ = $|f(0)|^2 + ||f||^2_{M(\mathcal{D}_{\mu})}$. We will see that $M(\mathcal{D}_{\mu})$ spaces are associated with several Möbius invariant function spaces such as some special cases of Q_K spaces. For an increasing and right-continuous function $K : (0, \infty) \to [0, \infty)$, let Q_K be the space of all functions $f \in H(\mathbb{D})$ for which

$$\sup_{a\in\mathbb{D}}\int_{\mathbb{D}}|f'(z)|^2K\left(\log\frac{1}{|\sigma_a(z)|}\right)dA(z)<\infty.$$

From [18], Q_K can also be defined as the set of functions $f \in H(\mathbb{D})$ with

$$||f||_{Q_K}^2 = \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} |f'(z)|^2 K(1 - |\sigma_a(z)|^2) \, dA(z) < \infty.$$

The Q_K spaces are Möbius invariant under the above seminorm. By [18], the theory of Q_K depends only on the behavior of the weight function K near zero. We refer to [18, 19, 28] for more results about Q_K spaces. If $K_0(t) = t \log (e/t)$, 0 < t < 1, then Q_{K_0} is the analytic version of $Q_1(\mathbb{T})$ space (see [29, 32]). If $K(t) = t^p$, $0 \le p < \infty$, then Q_K coincides with Q_p (see [7, 30, 31]). Clearly, $Q_1 = BMOA$, the set of analytic functions on \mathbb{D} with boundary values of bounded mean oscillation (see [9, 22]). The space Q_0 is equal to the Dirichlet space \mathcal{D} . By [6], we see that for all $1 , <math>Q_p$ is equal to the Bloch space \mathcal{B} consisting of functions $f \in H(\mathbb{D})$ such that

$$||f||_{\mathcal{B}} = \sup_{z \in \mathbb{D}} (1 - |z|^2) |f'(z)| < \infty.$$

Rubel and Timoney [27] proved that in some sense the maximal Möbius invariant function space is the Bloch space.

A question mentioned by Wulan in several conferences or workshops is to characterize the weight function K such that $Q_K = BMOA$. See also this question in the recent monograph [28]. The paper is organized as follows. In Section 2, we show that $BMOA = M(\mathcal{D}_{\mu})$ if and only if μ is finite. As an application, we answer partially

the above question. In Section 3, we reveal how different measures μ induce the same space \mathcal{D}_{μ} . We also study the relation among \mathcal{D}_{μ} , $M(\mathcal{D}_{\mu})$ and the Dirichlet space using Carleson measures. In the last section, we investigate inner functions in $M(\mathcal{D}_{\mu})$ with infinite measure μ . We prove that any inner function in $M(\mathcal{D}_{\mu})$ must be a Blaschke product. A criterion for Carleson–Newman Blaschke products belonging to $M(\mathcal{D}_{\mu})$ is also given.

Throughout this paper, we will write $a \leq b$ if there exists a constant *C* such that $a \leq Cb$. Also, the symbol $a \approx b$ means that $a \leq b \leq a$.

2. The equality between *BMOA* and Q_K via $M(\mathcal{D}_{\mu})$ spaces

In this section, we show that $BMOA = M(\mathcal{D}_{\mu})$ if and only if μ is finite. Applying this result, under the assumption that the weight function *K* is concave, we characterize the function *K* such that Q_K is equal to *BMOA*.

As usual, denote by H^{∞} the space of bounded analytic functions on \mathbb{D} . The space H^{∞} is Möbius invariant under the following norm:

$$|||f|||_{H^{\infty}} = \sup_{z \in \mathbb{D}} |f(z)|.$$

From Aleman [2, Proposition 3.1, page 83], $H^{\infty} \subseteq \mathcal{D}_{\mu}$ if and only if μ is finite. Based on this interesting result, we get the following theorem.

THEOREM 2.1. Let μ be a positive Borel measure on \mathbb{D} . Then the following conditions are equivalent.

(1)
$$BMOA \subseteq \mathcal{D}_{\mu}$$
.

(2)
$$BMOA = M(\mathcal{D}_{\mu}).$$

(3) μ is finite.

PROOF. (3) \Rightarrow (1). Let $f \in BMOA$. Applying the Fubini theorem,

$$\|f\|_{\mathcal{D}_{\mu}}^2 \le \mu(\mathbb{D}) \|f\|_{BMOA}^2,$$

which implies the desired result.

(1) \Rightarrow (3). Note that $H^{\infty} \subseteq BMOA$. Together with condition (1), this yields $H^{\infty} \subseteq \mathcal{D}_{\mu}$. Thus, μ is finite.

 $(1) \Rightarrow (2)$. Since \mathcal{D}_{μ} is always a subset of H^2 and $BMOA = M(H^2)$ (see [9]), we have $M(\mathcal{D}_{\mu}) \subseteq BMOA$. Combining this with condition (1), we obtain that $BMOA = M(\mathcal{D}_{\mu})$.

 $(2) \Rightarrow (1)$ is true because of $M(\mathcal{D}_{\mu}) \subseteq \mathcal{D}_{\mu}$. The proof is complete.

If the weight function K is concave on (0, 1), then $Q_K \subseteq BMOA$ (cf. [28]). Applying Theorem 2.1, we answer partially the question mentioned in Section 1 as follows.

THEOREM 2.2. Let $K \in C^2(0, 1)$ be increasing and concave on (0, 1) and $\lim_{t\to 0} K(t) = 0$. Then the following conditions are equivalent. [5] Möbius invariant function spaces and Dirichlet spaces with superharmonic weights

(1) $Q_K = BMOA.$

(2)

$$\int_0^1 [K'(t) - (1-t)K''(t)] \, dt < \infty.$$

PROOF. Note that *K* is an increasing and concave function on (0, 1) with $\lim_{t\to 0} K(t) = 0$. By [1, page 99], we know that

$$K(1-|z|) = -\frac{1}{2\pi} \int_{\mathbb{D}} \Delta(K(1-|w|)) \log \frac{1}{|\sigma_w(z)|} \, dA(w), \quad z \in \mathbb{D}$$

where Δ is the Laplace operator. Set $dv(w) = -\Delta(K(1 - |w|)) dA(w)$. Then $Q_K = M(\mathcal{D}_v)$. Hence, $Q_K = BMOA$ if and only if $BMOA = M(\mathcal{D}_v)$. This, together with Theorem 2.1, yields that $Q_K = BMOA$ if and only if v is finite. Now we compute $v(\mathbb{D})$. Recall that the Laplace operator in polar coordinates is

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r}\frac{\partial}{\partial r} + \frac{1}{r^2}\frac{\partial^2}{\partial \theta^2}.$$

We have

$$-\int_{\mathbb{D}} \Delta(K(1-|w|)) \, dA(w) = -\int_{0}^{2\pi} \int_{0}^{1} \Delta(K(1-r))r \, dr \, d\theta$$
$$= -2\pi \int_{0}^{1} [rK''(1-r) - K'(1-r)] \, dr$$
$$= 2\pi \int_{0}^{1} [K'(t) - (1-t)K''(t)] \, dt.$$

Thus, $Q_K = BMOA$ if and only if

$$\int_0^1 [K'(t) - (1-t)K''(t)] \, dt < \infty.$$

Letting $K(t) = \sin t$, we obtain a weight function different from the identity which satisfies the hypotheses and the condition (2) of Theorem 2.2. From the proof of Theorem 2.2, we see that if $K \in C^2(0, 1)$ is an increasing and concave function on (0, 1) with $\lim_{t\to 0} K(t) = 0$, then the space Q_K is a special case of $M(\mathcal{D}_{\mu})$. Thus, $M(\mathcal{D}_{\mu})$ spaces also generalize Q_p spaces for $0 and the analytic version of <math>Q_1(\mathbb{T})$ space. In the next section, we will show that all nontrivial $M(\mathcal{D}_{\mu})$ spaces are between \mathcal{D} and *BMOA*. Comparing with Q_K and Q_p spaces, $M(\mathcal{D}_{\mu})$ spaces connect \mathcal{D} and *BMOA* more smoothly. We refer to [11] for a recent investigation of Q_p spaces and a class of Dirichlet-type spaces $\mathcal{D}_{\mu,p}$ induced by finite positive Borel measures μ on \mathbb{D} .

3. The Dirichlet space and \mathcal{D}_{μ} and $M(\mathcal{D}_{\mu})$ spaces

In this section, we give the precise link between the measures μ and ν such that $\mathcal{D}_{\mu} = \mathcal{D}_{\nu}$. We also investigate the relation among \mathcal{D}_{μ} , $M(\mathcal{D}_{\mu})$ and the Dirichlet space via Carleson measures.

The following test functions in \mathcal{D}_{μ} were given in [10].

LEMMA A. Let μ be a positive Borel measure on \mathbb{D} . For every $w \in \mathbb{D}$, let

$$f_w(z) = \frac{\sigma_w(z)}{\sqrt{V_\mu(w)}} - \frac{\sigma_w(0)}{\sqrt{V_\mu(w)}}, \quad z \in \mathbb{D}.$$

Then

$$\sup_{w\in\mathbb{D}}|||f_w|||_{\mathcal{D}_{\mu}}<+\infty.$$

We reveal how different measures μ induce the same space \mathcal{D}_{μ} as follows.

THEOREM 3.1. Let μ and ν be positive Borel measures on \mathbb{D} . Then $\mathcal{D}_{\mu} = \mathcal{D}_{\nu}$ if and only if there exist positive constants C_1 and C_2 such that

$$C_1 V_\mu(z) \le V_\nu(z) \le C_2 V_\mu(z)$$
 (3.1)

for all $z \in \mathbb{D}$.

PROOF. Clearly, if the condition (3.1) holds, then $\mathcal{D}_{\mu} = \mathcal{D}_{\nu}$. On the other hand, suppose that $\mathcal{D}_{\mu} = \mathcal{D}_{\nu}$. By the closed graph theorem,

$$|||f|||_{\mathcal{D}_{\nu}} \lesssim |||f|||_{\mathcal{D}_{\mu}}$$

for all $f \in \mathcal{D}_{\mu}$. For $w \in \mathbb{D}$, define the function f_w as in Lemma A. Combining the above facts and the Fubini theorem,

$$\begin{aligned} & \infty > \sup_{w \in \mathbb{D}} \||f_w\||_{\mathcal{D}_{\nu}}^2 \\ & \approx \sup_{w \in \mathbb{D}} \int_{\mathbb{D}} |f'_w(z)|^2 V_{\nu}(z) \, dA(z) \\ & \approx \sup_{w \in \mathbb{D}} \frac{(1 - |w|^2)^2}{V_{\mu}(w)} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{(1 - |z|^2)(1 - |a|^2)}{|1 - \overline{a}z|^2 |1 - \overline{w}z|^4} \, dA(z) \, d\nu(a) \end{aligned}$$

Let $\Delta(w, 1/2) = \{z \in \mathbb{D} : |\sigma_w(z)| < 1/2\}$ be a pseudo-hyperbolic disk centered at *w*. It is well known that

$$1 - |w| \approx |1 - \overline{z}w| \approx 1 - |z|$$

for all $z \in \Delta(w, 1/2)$ and the area of $\Delta(w, 1/2)$ is comparable with $(1 - |w|)^2$. Furthermore, by [33, Lemma 4.30],

$$|1 - \overline{a}z| \approx |1 - \overline{a}w|$$

for all $z \in \Delta(w, 1/2)$ and $a \in \mathbb{D}$. Consequently,

$$\begin{split} & \infty > \sup_{w \in \mathbb{D}} \frac{(1 - |w|^2)^2}{V_{\mu}(w)} \int_{\mathbb{D}} \int_{\mathbb{D}} \frac{(1 - |z|^2)(1 - |a|^2)}{|1 - \overline{a}z|^2 |1 - \overline{w}z|^4} \, dA(z) \, d\nu(a) \\ & \gtrsim \sup_{w \in \mathbb{D}} \frac{(1 - |w|^2)^2}{V_{\mu}(w)} \int_{\mathbb{D}} \int_{\Delta(w, 1/2)} \frac{(1 - |z|^2)(1 - |a|^2)}{|1 - \overline{a}z|^2 |1 - \overline{w}z|^4} \, dA(z) \, d\nu(a) \\ & \approx \sup_{w \in \mathbb{D}} \frac{(1 - |w|^2)^2}{V_{\mu}(w)} \int_{\mathbb{D}} \int_{\Delta(w, 1/2)} \frac{(1 - |w|^2)(1 - |a|^2)}{|1 - \overline{a}w|^2 (1 - |w|^2)^4} \, dA(z) \, d\nu(a) \\ & \approx \sup_{w \in \mathbb{D}} \frac{V_{\nu}(w)}{V_{\mu}(w)}. \end{split}$$

[7] Möbius invariant function spaces and Dirichlet spaces with superharmonic weights

Similarly,

$$\sup_{w\in\mathbb{D}}\frac{V_{\mu}(w)}{V_{\nu}(w)}<\infty$$

The proof is complete.

By Theorem 2.1, if μ is finite, then $\mathcal{D}_{\mu} \neq \mathcal{D}$. In fact, this is also true for infinite measures μ .

PROPOSITION 3.2. Let μ be a positive Borel measure on \mathbb{D} . Then $\mathcal{D}_{\mu} \neq \mathcal{D}$.

PROOF. For $w \in \mathbb{D}$, let f_w be the function appearing in Lemma A. Then

$$\|f_w\|_{\mathcal{D}}^2 = \frac{1}{V_{\mu}(w)} \int_{\mathbb{D}} |\sigma'_w(z)|^2 \, dA(z) = \frac{2\pi}{V_{\mu}(w)}$$

Since $\lim_{r\to 1} V_{\mu}(r\zeta) = 0$ for almost every $\zeta \in \mathbb{T}$ (cf. [21, page 94]), we know that

$$\sup_{w\in\mathbb{D}}\|f_w\|_{\mathcal{D}}=\infty.$$

Combining this with Lemma A, we get that $\mathcal{D}_{\mu} \neq \mathcal{D}$.

An important tool to study function spaces is Carleson measures. Given an arc I on the unit circle \mathbb{T} , the Carleson sector S(I) is given by

$$S(I) = \{ r\zeta \in \mathbb{D} : 1 - |I| < r < 1, \zeta \in I \},\$$

where |I| is the normalized length of the arc *I*. A positive Borel measure ν on \mathbb{D} is said to be a Carleson measure if

$$\sup_{I\subseteq\mathbb{T}}\frac{\nu(S(I))}{|I|}<\infty.$$

It is said to be a vanishing Carleson measure if

$$\lim_{|I| \to 0} \frac{\nu(S(I))}{|I|} = 0.$$

It is well known (cf. [15, 21]) that v is a Carleson measure if and only if

$$\sup_{w\in\mathbb{D}}\int_{\mathbb{D}}|\sigma'_w(z)|\,d\nu(z)<\infty.$$

The measure v is a vanishing Carleson measure if and only if

$$\lim_{|w|\to 1}\int_{\mathbb{D}}|\sigma'_w(z)|\,d\nu(z)=0.$$

Let $X \subseteq H(\mathbb{D})$ be a Banach function space. We say that X is trivial if X contains only constant functions. The following theorem establishes a link among \mathcal{D} , \mathcal{D}_{μ} and $M(\mathcal{D}_{\mu})$ spaces via Carleson measures.

THEOREM 3.3. Let μ be a positive Borel measure on \mathbb{D} . Then the following conditions are equivalent.

(1) $\mathcal{D} \subseteq M(\mathcal{D}_{\mu}).$

(2) $\mathcal{D} \subsetneq \mathcal{D}_{\mu}$.

8

- (3) $M(\mathcal{D}_{\mu})$ is not trivial.
- (4) $(1 |z|^2) d\mu(z)$ is a Carleson measure on \mathbb{D} .

PROOF. (1) \Rightarrow (2). By condition (1), $M(\mathcal{D}_{\mu}) \subseteq \mathcal{D}_{\mu}$ and Proposition 3.2, we get $\mathcal{D} \subsetneq \mathcal{D}_{\mu}$. (2) \Rightarrow (3). Suppose that $\mathcal{D} \subseteq \mathcal{D}_{\mu}$. Since \mathcal{D} is a Möbius invariant function space,

$$\mathcal{D} = M(\mathcal{D}) \subseteq M(\mathcal{D}_{\mu}).$$

It follows that $M(\mathcal{D}_{\mu})$ is not trivial.

(3) \Rightarrow (4). Since $M(\mathcal{D}_{\mu})$ is not trivial, the identity function $z \in M(\mathcal{D}_{\mu})$ (see [4]). Hence,

$$\sup_{w\in\mathbb{D}}\int_{\mathbb{D}}\frac{(1-|w|^2)^2}{|1-\overline{w}z|^4}V_{\mu}(z)\,dA(z)<\infty.$$

Using arguments similar to those in the proof of Theorem 3.1, we deduce that for all $w \in \mathbb{D}$,

$$\begin{split} &1\gtrsim \int_{\mathbb{D}} \frac{(1-|w|^2)^2}{|1-\overline{w}z|^4} V_{\mu}(z) \, dA(z) \\ &\gtrsim \int_{\Delta(w,1/2)} \frac{(1-|w|^2)^2}{|1-\overline{w}z|^4} \int_{\mathbb{D}} \frac{(1-|a|^2)(1-|z|^2)}{|1-\overline{z}a|^2} \, d\mu(a) \, dA(z) \\ &\approx \int_{\mathbb{D}} (1-|a|^2) \, d\mu(a) \int_{\Delta(w,1/2)} \frac{1}{|1-\overline{w}a|^2(1-|w|^2)} \, dA(z) \\ &\approx \int_{\mathbb{D}} \frac{(1-|a|^2)(1-|w|^2)}{|1-\overline{w}a|^2} \, d\mu(a). \end{split}$$

Thus, $(1 - |z|^2) d\mu(z)$ is a Carleson measure on \mathbb{D} . (4) \Rightarrow (1). Suppose that $(1 - |z|^2) d\mu(z)$ is a Carleson measure on \mathbb{D} . Then

$$\sup_{w\in\mathbb{D}}V_{\mu}(w) = \sup_{w\in\mathbb{D}}\int_{\mathbb{D}}\frac{(1-|w|^2)(1-|z|^2)}{|1-\bar{z}w|^2}\,d\mu(z) < \infty.$$

Therefore,

$$\int_{\mathbb{D}} |f'(z)|^2 V_{\mu}(z) \, dA(z) \lesssim \int_{\mathbb{D}} |f'(z)|^2 \, dA(z)$$

for every $f \in \mathcal{D}$, which implies that $\mathcal{D} \subseteq \mathcal{D}_{\mu}$. Again, since \mathcal{D} is a Möbius invariant function space,

$$\mathcal{D} = M(\mathcal{D}) \subseteq M(\mathcal{D}_{\mu}).$$

The proof is complete.

Let μ be a positive Borel measure on \mathbb{D} . By Theorem 3.3 and the proof of Theorem 2.1, if $M(\mathcal{D}_{\mu})$ is not trivial, then

$$\mathcal{D} \subseteq M(\mathcal{D}_{\mu}) \subseteq BMOA.$$

Furthermore, $M(\mathcal{D}_{\mu}) = BMOA$ if and only if μ is finite. For the strict inclusion relation between \mathcal{D} and $M(\mathcal{D}_{\mu})$, we get the following result.

THEOREM 3.4. Let μ be a positive Borel measure on \mathbb{D} . If $(1 - |z|^2) d\mu(z)$ is a vanishing Carleson measure on \mathbb{D} , then

$$\mathcal{D} \subsetneq M(\mathcal{D}_{\mu}).$$

PROOF. If $(1 - |z|^2) d\mu(z)$ is a vanishing Carleson measure on \mathbb{D} , from Theorem 3.3, one gets that $\mathcal{D} \subseteq M(\mathcal{D}_{\mu})$. Now we adapt an argument from [18, page 1243]. Suppose that $\mathcal{D} = M(\mathcal{D}_{\mu})$. Denote by \mathcal{D}^0 and $M^0(\mathcal{D}_{\mu})$ the spaces of functions *g* with g(0) = 0 in \mathcal{D} and $M(\mathcal{D}_{\mu})$, respectively. Then $\mathcal{D}^0 = M^0(\mathcal{D}_{\mu})$. From the closed graph theorem, there exists a positive constant *C* such that

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) \le C \sup_{a \in \mathbb{D}, \lambda \in \mathbb{T}} \int_{\mathbb{D}} |f'(w)|^2 V_{\mu}(\lambda \sigma_a(w)) dA(w)$$
(3.2)

for all $f \in M^0(\mathcal{D}_{\mu})$. Note that $(1 - |z|^2) d\mu(z)$ is a vanishing Carleson measure on \mathbb{D} . Namely,

$$\lim_{|w|\to 1} V_{\mu}(w) = 0.$$

Then there exists a constant $s \in (0, 1)$ such that

$$V_{\mu}(w) \le \frac{1}{2C}$$

for all $w \in \mathbb{D}$ with $s \le |w| < 1$. Combining this with (3.2),

$$\begin{split} \int_{\mathbb{D}} |f'(z)|^2 \, dA(z) &\leq C \sup_{a \in \mathbb{D}, \lambda \in \mathbb{T}} \int_{\Delta(a,s)} |f'(w)|^2 V_{\mu}(\lambda \sigma_a(w)) \, dA(w) \\ &+ C \sup_{a \in \mathbb{D}, \lambda \in \mathbb{T}} \int_{\mathbb{D} \setminus \Delta(a,s)} |f'(w)|^2 V_{\mu}(\lambda \sigma_a(w)) \, dA(w) \\ &\leq C \sup_{a \in \mathbb{D}, \lambda \in \mathbb{T}} \int_{\Delta(a,s)} |f'(w)|^2 V_{\mu}(\lambda \sigma_a(w)) \, dA(w) \\ &+ \frac{1}{2} \int_{\mathbb{D}} |f'(w)|^2 \, dA(w), \end{split}$$

where

$$\Delta(a,s) = \{ w \in \mathbb{D} : |\sigma_a(w)| < s \}.$$

Consequently,

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) \le 2C \sup_{a \in \mathbb{D}, \lambda \in \mathbb{T}} \int_{\Delta(a,s)} |f'(w)|^2 V_{\mu}(\lambda \sigma_a(w)) dA(w)$$

for all $f \in M^0(\mathcal{D}_{\mu})$. Since $(1 - |z|^2) d\mu(z)$ is also a Carleson measure, V_{μ} is a bounded function. Hence,

$$\int_{\mathbb{D}} |f'(z)|^2 dA(z) \lesssim \sup_{a \in \mathbb{D}} \int_{\Delta(a,s)} |f'(w)|^2 dA(w).$$

From [8, Theorem 1], for any $s \in (0, 1)$,

$$\sup_{a\in\mathbb{D}}\int_{\Delta(a,s)}\left|f'(w)\right|^2 dA(w)\approx \|f\|_{\mathscr{B}}^2.$$

Thus,

$$\int_{\mathbb{D}} |f'(z)|^2 \, dA(z) \lesssim \|f\|_{\mathcal{B}}^2$$

for all $f \in M^0(\mathcal{D}_{\mu})$. Let $h \in \mathcal{B}$ with h(0) = 0. For 0 < r < 1, set $h_r(z) = h(rz), z \in \mathbb{D}$. Clearly, $||h_r||_{\mathcal{B}} \le ||h||_{\mathcal{B}}$. Since $h_r \in M^0(\mathcal{D}_{\mu})$,

$$\int_{\mathbb{D}} |rh'(rz)|^2 \, dA(z) \lesssim ||h_r||_{\mathcal{B}}^2 \lesssim ||h||_{\mathcal{B}}^2.$$

Combining this with the Fatou lemma, one gets that $h \in \mathcal{D}$. Thus, $\mathcal{D} = \mathcal{B}$, which contradicts the fact that $\mathcal{D} \subsetneq \mathcal{B}$. Thus, $\mathcal{D} \subsetneq M(\mathcal{D}_{\mu})$.

Note that $M(\mathcal{D}_{\mu})$ spaces are always subsets of *BMOA*. Checking the proof of the above theorem, we can get the following result. Let μ and ν be positive Borel measures on \mathbb{D} . If

$$\lim_{|w|\to 1} \frac{V_{\mu}(w)}{V_{\nu}(w)} = 0$$

then $M(\mathcal{D}_{\nu}) \subsetneq M(\mathcal{D}_{\mu})$. We leave the details to the interested reader.

4. Inner functions in $M(\mathcal{D}_{\mu})$ spaces

A bounded analytic function I on \mathbb{D} is called an inner function if $|I(\zeta)| = 1$ for almost every $\zeta \in \mathbb{T}$. A sequence $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{D}$ is said to be a Blaschke sequence if

$$\sum_{k=1}^{\infty} (1 - |a_k|) < \infty.$$

The above condition implies the convergence of the corresponding Blaschke product B, defined as

$$B(z) = \prod_{k=1}^{\infty} \frac{|a_k|}{a_k} \frac{a_k - z}{1 - \overline{a_k} z}.$$

It is well known (cf. [15]) that any inner function *I* can be represented as a product of a constant $\gamma \in \mathbb{T}$, a Blaschke product and a singular inner function

$$S_{\nu}(z) = \exp\left(\int_{\mathbb{T}} \frac{z+\zeta}{z-\zeta} d\nu(\zeta)\right),$$

where v is a positive singular Borel measure on \mathbb{T} .

We will need some definitions concerning an important class of sequences and Blaschke products. A sequence $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{D}$ is called an interpolating sequence if there exists a positive constant δ such that

$$\inf_k \prod_{j \neq k} \varrho(a_j, a_k) \ge \delta.$$

https://doi.org/10.1017/S1446788718000022 Published online by Cambridge University Press

Here $\varrho(a_j, a_k) = |\sigma_{a_j}(a_k)|$ denotes the pseudo-hyperbolic metric in \mathbb{D} . The Blaschke product corresponding to an interpolating sequence is called an interpolating Blaschke product. A Blaschke product is called a Carleson–Newman Blaschke product. It is well known (cf. [24]) that a Blaschke product corresponding to a sequence $\{a_k\}_{k=1}^{\infty}$ is a Carleson–Newman Blaschke product if and only if $\sum_{k=1}^{\infty} (1 - |a_k|^2) \delta_{a_k}$ is a Carleson measure. Here δ_{a_k} is the unit point mass measure at $a_k \in \mathbb{D}$. The relation between interpolating sequences and Carleson measures originally comes from Carleson's famous works [13, 14] studying the interpolation problem and the corona theorem for H^{∞} . We refer the reader to [12, 16, 23–25] for more information about Carleson–Newman Blaschke products.

In this section, we will consider the problem of characterizing when a given inner function is contained in a given Möbius invariant function space $M(\mathcal{D}_{\mu})$. It follows from Theorem 2.1 that, if μ is a finite positive Borel measure on \mathbb{D} , then the set of all inner functions is contained in $M(\mathcal{D}_{\mu})$. From now on we will focus our study on the spaces $M(\mathcal{D}_{\mu})$ corresponding to infinite measures μ on \mathbb{D} . Let μ be an infinite positive Borel measure on \mathbb{D} . In Theorem 4.4, we will show that, in that case, $M(\mathcal{D}_{\mu})$ does not contain singular inner functions and we will characterize the set of Carleson–Newman Blaschke products contained in $M(\mathcal{D}_{\mu})$. Let CNM denote the set of Möbius invariant function spaces X satisfying the following property:

if *B* is a Blaschke product belonging to *X*,

then *B* is a Carleson–Newman Blaschke product.

Some examples of spaces contained in *CNM* are (cf. [19, 20, 32]) the well-known Q_p spaces for $0 , some <math>Q_K$ spaces and the analytic version of $Q_1(\mathbb{T})$ space. In Corollary 4.5, we give a complete characterization of the inner functions in the spaces $M(\mathcal{D}_{\mu}) \in CNM$.

LEMMA 4.1. Let μ be an infinite positive Borel measure on \mathbb{D} and let I be an inner function. Then $I \in M(\mathcal{D}_{\mu})$ if and only if

$$\sup_{\phi\in\operatorname{Aut}(\mathbb{D})}\int_{\mathbb{D}}(1-|I\circ\phi(w)|^2)\,d\mu(w)<\infty.$$

PROOF. It is well known that (cf. [5, pages 105–106]) for $f \in H^2$ and $w \in \mathbb{D}$,

$$\frac{2}{\pi} \int_{\mathbb{D}} \log \left| \frac{1 - \overline{w}z}{z - w} \right| |f'(z)|^2 \, dA(z) = \frac{1}{2\pi} \int_{\mathbb{T}} |f(\zeta)|^2 \frac{1 - |w|^2}{|\zeta - w|^2} |d\zeta| - |f(w)|^2. \tag{4.1}$$

By the above formula and the Fubini theorem, we see that $I \in M(\mathcal{D}_{\mu})$ if and only if

$$\sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \int_{\mathbb{D}} (1 - |I \circ \phi(w)|^2) \, d\mu(w) < \infty.$$

LEMMA 4.2. Let μ be an infinite positive Borel measure on \mathbb{D} . Let $I = \prod_{j=1}^{n} I_j$, where all I_j are inner functions. Then $I \in \mathcal{M}(\mathcal{D}_{\mu})$ if and only if $I_j \in \mathcal{M}(\mathcal{D}_{\mu})$ for j = 1, 2, ..., n.

PROOF. Since |I(z)| < 1 for $z \in \mathbb{D}$, the conclusion follows from Lemma 4.1 and the inequalities

$$1 - |I_j(z)|^2 \le 1 - |I(z)|^2 \le \sum_{k=1}^n (1 - |I_k(z)|^2), \quad z \in \mathbb{D}, \ j = 1, 2, \dots, n.$$

LEMMA 4.3. Let μ be an infinite positive Borel measure on \mathbb{D} . Let ν be a positive singular Borel measure on \mathbb{T} . Then $S_{\nu} \notin M(\mathcal{D}_{\mu})$.

PROOF. We will consider three cases.

(i) Suppose that $v = t\delta_1$, t > 0. Then $S_v(z) = \exp(-t(1+z)/(1-z))$ and $|S_v(z)| = \exp(-t(1-|z|^2)/(|1-z|^2))$, $z \in \mathbb{D}$. Fix c > 0. We denote by D_c the horodisk

$$D_c = \Big\{ z \in \mathbb{D} : \frac{1 - |z|^2}{|1 - z|^2} > c \Big\},\$$

which is a disk tangent to the unit circle at 1 (see, for example, [21, page 73]). Note that $|S_{\nu}| \le e^{-tc}$ on D_c . For every $a \in \mathbb{D}$, let $\mu_a = \mu \circ \sigma_a$. Then, by formula (4.1) and the Fubini theorem, it is easy to see that for every $a \in \mathbb{D}$,

$$\begin{split} \|S_{\nu} \circ \sigma_{a}\|_{\mathcal{D}_{\mu}}^{2} \approx \int_{\mathbb{D}} |(S_{\nu} \circ \sigma_{a})'(z)|^{2} U_{\mu}(z) \, dA(z) \approx \int_{\mathbb{D}} (1 - |S_{\nu}(\sigma_{a}(z))|^{2}) \, d\mu(z) \\ \gtrsim \int_{\sigma_{a}(D_{c})} (1 - |S_{\nu}(\sigma_{a}(z))|^{2}) \, d\mu(z) \\ \approx \int_{D_{c}} (1 - |S_{\nu}(z)|^{2}) \, d\mu_{a}(z) \\ \gtrsim (1 - e^{-2tc}) \mu(\sigma_{a}(D_{c})). \end{split}$$
(4.2)

For every $r \in (-1, 1)$, let $\phi_r(z) = -\sigma_r(z)$, $z \in \mathbb{D}$. Note that, if *s* is the point where ∂D_c intersects the interval (-1, 1), then ϕ_r maps D_c to the disk having diameter the interval (-(r - s)/(1 - rs), 1); in particular, $\phi_r(D_c) \nearrow \mathbb{D}$ as $r \to 1$. Therefore, from the inequality (4.2),

$$\lim_{r \to 1} \|S_v \circ \phi_r\|_{\mathcal{D}_{\mu}}^2 \gtrsim \lim_{r \to 1} (1 - e^{-2tc}) \mu(\phi_r(D_c)) \approx (1 - e^{-2tc}) \mu(\mathbb{D}) = +\infty$$

and $S_{\nu} \notin M(\mathcal{D}_{\mu})$. Similarly, we show that $S_{t\delta_{\zeta}} \notin M(\mathcal{D}_{\mu})$ for every $\zeta \in \mathbb{T}$.

(ii) Suppose that ν has an atom at the point $\zeta \in \mathbb{T}$ and let $t = \nu(\{\zeta\}) > 0$. Then $|S_{\nu}| \leq |S_{t\delta_{\zeta}}|$ on \mathbb{D} . Since $S_{t\delta_{\zeta}} \notin M(\mathcal{D}_{\mu})$,

$$\sup_{a \in \mathbb{D}} \|S_{\nu} \circ \sigma_{a}\|_{\mathcal{D}_{\mu}}^{2} \approx \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} (1 - |S_{\nu}(\sigma_{a}(z))|^{2}) d\mu(z)$$
$$\gtrsim \sup_{a \in \mathbb{D}} \int_{\mathbb{D}} (1 - |S_{t\delta_{\zeta}}(\sigma_{a}(z))|^{2}) d\mu(z)$$
$$= +\infty.$$

Therefore, $S_{\nu} \notin M(\mathcal{D}_{\mu})$.

[13] Möbius invariant function spaces and Dirichlet spaces with superharmonic weights

(iii) Suppose that *v* has no atoms. Note that, by assumption, $\mu(\mathbb{D}) = \infty$. We will show that there exists $\xi_0 \in \mathbb{T}$ such that

$$\mu(D(\xi_0,\delta)\cap\mathbb{D})=\infty\tag{4.3}$$

for every $\delta > 0$. Here $D(\xi_0, \delta)$ is the Euclidean disk with center ξ_0 and radius δ . Otherwise, by the compactness of \mathbb{T} , there would exist $\zeta_1, \ldots, \zeta_n \in \mathbb{T}$ and $\delta_0 > 0$ such that $\mu(D(\zeta_i, \delta_0) \cap \mathbb{D}) < \infty$, $i = 1, \ldots, n$, and $\mathbb{T} \subset \bigcup_{i=1}^n D(\zeta_i, \delta_0)$. Let r > 0 be such that $\mathbb{D} \setminus r\mathbb{D} \subseteq \bigcup_{i=1}^n D(\zeta_i, \delta_0)$. Then $\mu(\mathbb{D} \setminus r\mathbb{D}) < \infty$. Since $\mu(r\mathbb{D}) < \infty$, we get $\mu(\mathbb{D}) < \infty$. This is a contradiction.

Since v has no atoms, $\operatorname{supp}(v) \setminus \{\xi_0\} \neq \emptyset$. Let $\xi_1 \in \operatorname{supp}(v) \setminus \{\xi_0\}$. We can assume that $\xi_1 = 1$, since, otherwise, we can compose μ and v with the rotation $z \mapsto z/\xi_1$. Fix c > 0 and let D_c and ϕ_r , $r \in (0, 1)$, be as above. Note that for every $\zeta \in \mathbb{T}$, there exists a unique $\eta \in \partial D_c$ such that $\lim_{r \to 1} \phi_r(\eta) = \zeta$. Let η_0 be the point in ∂D_c such that $\lim_{r \to 1} \phi_r(\eta_0) = \xi_0$ and let $\epsilon = |1 - \eta_0|/2$. Then there exists $\delta_0 > 0$ such that $D(\xi_0, \delta_0) \cap \phi_r(D_c \setminus D(1, \epsilon)), r \in (0, 1)$, is an increasing family of sets and

$$D(\xi_0, \delta_0) \subset \bigcup_{r \in (0,1)} \phi_r(D_c \setminus D(1, \epsilon)).$$
(4.4)

From (4.3) and (4.4),

$$\lim_{r \to 1} \mu(\phi_r(D_c \setminus D(1, \epsilon))) = +\infty.$$
(4.5)

Let $I_{\epsilon} = \{\zeta \in \mathbb{T} : |1 - \zeta| < \epsilon\}$. Since $1 \in \text{supp}(\nu)$, $\nu(I_{\epsilon}) > 0$. Then, for every $z \in D_c \setminus D(1, \epsilon)$ and for every $\zeta \in I_{\epsilon}$, we have $|1 - \zeta| < \epsilon \le |1 - z|$, so

$$|\zeta - z| \le |1 - \zeta| + |1 - z| \le 2|1 - z|$$

and

$$\frac{1-|z|^2}{|\zeta-z|^2} \ge \frac{1-|z|^2}{4|1-z|^2} \ge \frac{c}{4}.$$
(4.6)

From the inequality (4.6), we obtain that for every $z \in D_c \setminus D(1, \epsilon)$,

$$-\log|S_{\nu}(z)| = \int_{\mathbb{T}} \frac{1-|z|^2}{|\zeta-z|^2} d\nu(\zeta) \ge \int_{I_{\epsilon}} \frac{1-|z|^2}{|\zeta-z|^2} d\nu(\zeta) \ge \frac{c}{4} \nu(I_{\epsilon}) > 0.$$
(4.7)

Therefore, from (4.5) and (4.7),

$$\begin{split} \lim_{r \to 1} \|S_{\nu} \circ \phi_r\|_{\mathcal{D}_{\mu}}^2 &\approx \lim_{r \to 1} \int_{\mathbb{D}} (1 - |S_{\nu}(\phi_r(z))|^2) \, d\mu(z) \\ &\gtrsim \lim_{r \to 1} \int_{\phi_r(D_c \setminus D(1,\epsilon))} (1 - |S_{\nu}(\phi_r(z))|^2) \, d\mu(z) \\ &\approx \lim_{r \to 1} \int_{D_c \setminus D(1,\epsilon)} (1 - |S_{\nu}(z)|^2) \, d(\mu \circ \phi_r)(z) \\ &\gtrsim (1 - e^{-c\nu(I_{\epsilon})/4}) \lim_{r \to 1} \mu(\phi_r(D_c \setminus D(1,\epsilon))) \\ &= +\infty \end{split}$$

and hence $S_{\nu} \notin M(\mathcal{D}_{\mu})$.

Now we state the main result of this section, as follows.

THEOREM 4.4. Let μ be an infinite positive Borel measure on \mathbb{D} . Then the following statements are true.

- (1) If an inner function I belongs to $M(\mathcal{D}_{\mu})$, then I must be a Blaschke product.
- (2) Let B be a Carleson–Newman Blaschke product with zeros $\{a_k\}_{k=1}^{\infty}$. Then $B \in M(\mathcal{D}_{\mu})$ if and only if

$$\sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_k}(\phi(w))|^2) \, d\mu(w) < \infty.$$
(4.8)

PROOF. (1) Let *I* be an inner function belonging to $M(\mathcal{D}_{\mu})$. Note that *I* can be represented as a product of a constant $\gamma \in \mathbb{T}$, a Blaschke product and a singular inner function. Applying Lemmas 4.2 and 4.3, we obtain that *I* must be a Blaschke product.

(2) First, we assume that condition (4.8) holds. From the following elementary inequality:

$$1 - \prod_{k=1}^{\infty} x_k \le \sum_{k=1}^{\infty} (1 - x_k), \quad x_k \in (0, 1],$$

one gets here

$$1-|B(z)| \leq \sum_{k=1}^{\infty} (1-|\sigma_{a_k}(z)|^2), \quad z \in \mathbb{D}.$$

Consequently,

$$1 - |B(\phi(z))| \le \sum_{k=1}^{\infty} (1 - |\sigma_{a_k}(\phi(z))|^2)$$

for any $\phi \in Aut(\mathbb{D})$ and $z \in \mathbb{D}$. Combining this with the Fubini theorem,

$$\sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \int_{\mathbb{D}} (1 - |B(\phi(z))|) \, d\mu(z) \le \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_k}(\phi(z))|^2) \, d\mu(z).$$

By the above inequality, condition (4.8) and Lemma 4.1, we get $B \in M(\mathcal{D}_{\mu})$. On the other hand, let $B \in M(\mathcal{D}_{\mu})$. Then

$$\begin{split} \log |B(z)|^2 &= \sum_{k=1}^{\infty} \log \left(1 - \frac{(1 - |a_k|^2)(1 - |z|^2)}{|1 - \overline{a_k} z|^2} \right) \\ &\leq -\sum_{k=1}^{\infty} \frac{(1 - |a_k|^2)(1 - |z|^2)}{|1 - \overline{a_k} z|^2} \\ &= -\sum_{k=1}^{\infty} (1 - |\sigma_{a_k}(z)|^2) \end{split}$$

for any $z \in \mathbb{D}$. Consequently,

$$1 - |B(z)|^2 \ge 1 - \exp\left(-\sum_{k=1}^{\infty} (1 - |\sigma_{a_k}(z)|^2)\right), \quad z \in \mathbb{D}.$$

Note that *B* is a Carleson–Newman Blaschke product. By [24], $\sum_{k=1}^{\infty} (1 - |a_k|^2) \delta_{a_k}$ is a Carleson measure. Namely,

$$M =: \sup_{z \in \mathbb{D}} \sum_{k} (1 - |\sigma_{a_k}(z)|^2) < \infty.$$

Bear in mind that

$$\frac{1 - e^{-t}}{t} \approx 1, \quad 0 < t < M.$$

Therefore,

$$1 - |B(z)|^2 \gtrsim \sum_{k=1}^{\infty} (1 - |\sigma_{a_k}(z)|^2)$$

for all $z \in \mathbb{D}$. Combining this with Lemma 4.1,

$$\sup_{\phi\in\operatorname{Aut}(\mathbb{D})}\sum_{k=1}^{\infty}\int_{\mathbb{D}}(1-|\sigma_{a_k}(\phi(w))|^2)\,d\mu(w)\lesssim \sup_{\phi\in\operatorname{Aut}(\mathbb{D})}\int_{\mathbb{D}}(1-|B\circ\phi(w)|^2)\,d\mu(w)<\infty.$$

The proof is complete.

The following result is a direct consequence of Theorem 4.4.

COROLLARY 4.5. Let I be an inner function and let μ be an infinite positive Borel measure on \mathbb{D} such that $M(\mathcal{D}_{\mu}) \in CNM$. Then $I \in M(\mathcal{D}_{\mu})$ if and only if I is a Carleson–Newman Blaschke product with zeros $\{a_k\}_{k=1}^{\infty}$ satisfying

$$\sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_k}(\phi(w))|^2) \, d\mu(w) < \infty.$$

Clearly, the condition of μ in Theorem 4.4 is best possible. Applying Theorem 4.4, we can characterize inner functions in some function spaces. For example, let $K_1(t) = t(\log e^2/t)^2$, 0 < t < 1. By [18, Theorem 2.6], Q_{K_1} is located strictly between $\bigcup_{0 and the space of the analytic version of <math>Q_1(\mathbb{T})$. The characterization of inner functions in Q_{K_1} was not studied in previous papers. Using Theorem 4.4, we obtain a complete characterization of inner functions in Q_{K_1} as follows.

COROLLARY 4.6. Let I be an inner function. Then $I \in Q_{K_1}$ if and only if I is a Blaschke product with zeros $\{a_k\}_{k=1}^{\infty}$ satisfying

$$\sup_{a\in\mathbb{D}}\sum_{k=1}^{\infty}\int_{\mathbb{D}}(1-|\sigma_{a_k}(\sigma_a(z))|^2)[K_1'(1-|z|)-|z|K_1''(1-|z|)]\,dA(z)<\infty$$

PROOF. It is easy to check that K_1 is increasing and concave on (0, 1) with $\lim_{t\to 0^+} K(t) = 0$. Thus, $Q_{K_1} = M(\mathcal{D}_{\mu_1})$, where $d\mu_1(w) = -\Delta(K_1(1 - |w|)) dA(w)$, $w \in \mathbb{D}$. By [18, Theorem 2.6], $Q_{K_1} \subseteq BMOA$; hence, μ_1 is an infinite measure, a fact which can also be proved via a direct computation. Clearly, Q_{K_1} is a subset of the space of the analytic version of $Q_1(\mathbb{T})$. By [32, page 1100], the space of the analytic version of $Q_1(\mathbb{T})$.

belongs to *CNM*; therefore, $Q_{K_1} \in CNM$. This, together with Corollary 4.5, yields that an inner function *I* belongs to Q_{K_1} if and only if *I* is a Blaschke product with zeros $\{a_k\}_{k=1}^{\infty}$ satisfying

$$\sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_k}(\phi(w))|^2) \, d\mu_1(w) < \infty.$$
(4.9)

Note that $K_1(1 - |z|)$ is a radial function. By the change of variables, we compute the above integral as follows.

$$\begin{split} \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} & \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_{k}}(\phi(w))|^{2}) \, d\mu_{1}(w) \\ &\approx \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{0}^{1} \int_{0}^{2\pi} (1 - |\sigma_{a_{k}}(\phi(re^{i\theta}))|^{2}) [K'_{1}(1 - r) - rK''_{1}(1 - r)] \, d\theta \, dr \\ &\approx \sup_{\phi \in \operatorname{Aut}(\mathbb{D})} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_{k}}(z)|^{2}) [K'_{1}(1 - |\phi^{-1}(z)|) - |\phi^{-1}(z)|K''_{1}(1 - |\phi^{-1}(z)|)] \\ &\times |(\phi^{-1})'(z)|^{2} \, dA(z) \\ &\approx \sup_{a \in \mathbb{D}} \sum_{k=1}^{\infty} \int_{\mathbb{D}} (1 - |\sigma_{a_{k}}(\sigma_{a}(z))|^{2}) [K'_{1}(1 - |z|) - |z|K''_{1}(1 - |z|)] \, dA(z). \end{split}$$

Combining the above computation with condition (4.9), we get the desired result. \Box

Finally, we pose two natural questions as follows. Is it true that $M(\mathcal{D}_{\mu}) \in CNM$ for every infinite positive Borel measure μ on \mathbb{D} ? If the answer is negative, how can we characterize the measures μ such that $M(\mathcal{D}_{\mu}) \in CNM$?

Acknowledgement

The authors thank the anonymous referee very much for his/her helpful suggestions.

References

- [1] A. Aleman, 'Hilbert spaces of analytic functions between the Hardy and the Dirichlet space', *Proc. Amer. Math. Soc.* **115** (1992), 97–104.
- [2] A. Aleman, 'The multiplication operator on Hilbert spaces of analytic functions', Habilitation, FernUniversität in Hagen, 1993.
- [3] A. Aleman and A. Simbotin, 'Estimates in Möbius invariant spaces of analytic functions', *Complex Var. Theory Appl.* 49 (2004), 487–510.
- [4] J. Arazy, S. Fisher and J. Peetre, 'Möbius invariant function spaces', J. reine angew. Math. 363 (1985), 110–145.
- [5] D. H. Armitage and S. J. Gardiner, *Classical Potential Theory*, Springer Monographs in Mathematics (Springer, London, 2001).
- [6] R. Aulaskari and P. Lappan, 'Criteria for an analytic function to be Bloch and a harmonic or meromorphic function to be normal', in: *Complex Analysis and its Applications*, Pitman Research Notes in Mathematics, 305 (Longman Scientific and Technical, Harlow, 1994), 136–146.

- [17] Möbius invariant function spaces and Dirichlet spaces with superharmonic weights
- [7] R. Aulaskari, J. Xiao and R. Zhao, 'On subspaces and subsets of BMOA and UBC', Analysis 15 (1995), 101–121.
- [8] S. Axler, 'The Bergman space, the Bloch space, and commutators of multiplication operators', *Duke Math. J.* 53 (1986), 315–332.
- [9] A. Baernstein, Analytic Functions of Bounded Mean Oscillation, Aspects of Contemporary Complex Analysis (Academic Press, London–New York, 1980), 3–36.
- [10] G. Bao, N. G. Göğüş and S. Pouliasis, 'On Dirichlet spaces with a class of superharmonic weights', *Canad. J. Math.* doi:10.4153/CJM-2017-005-1.
- [11] G. Bao, N. G. Göğüş and S. Pouliasis, ' Q_p spaces and Dirichlet type spaces', *Canad. Math. Bull.* **60** (2017), 690–704.
- [12] G. Bao, Z. Lou, R. Qian and H. Wulan, 'Improving multipliers and zero sets in Q_K spaces', Collect. Math. 66 (2015), 453–468.
- [13] L. Carleson, 'An interpolation problem for bounded analytic functions', *Amer. J. Math.* 80 (1958), 921–930.
- [14] L. Carleson, 'Interpolation by bounded analytic functions and the corona problem', *Ann. of Math.* 76 (1962), 547–559.
- [15] P. L. Duren, *Theory of H^p Spaces* (Academic Press, New York–London, 1970). Reprinted with supplement by Dover Publications, Mineola, New York, 2000.
- P. L. Duren and A. Schuster, 'Finite unions of interpolation sequences', *Proc. Amer. Math. Soc.* 130 (2002), 2609–2615.
- [17] O. El-Fallah, K. Kellay, H. Klaja, J. Mashreghi and T. Ransford, 'Dirichlet spaces with superharmonic weights and de Branges–Rovnyak spaces', *Complex Anal. Oper. Theory* 10 (2016), 97–107.
- [18] M. Essén and H. Wulan, 'On analytic and meromorphic functions and spaces of Q_K-type', *Illinois J. Math.* 46 (2002), 1233–1258.
- [19] M. Essén, H. Wulan and J. Xiao, 'Several function-theoretic characterizations of Möbius invariant Q_K spaces', J. Funct. Anal. 230 (2006), 78–115.
- [20] M. Essén and J. Xiao, 'Some results on Q_p spaces, 0 ',*J. reine angew. Math.***485**(1997), 173–195.
- [21] J. B. Garnett, *Bounded Analytic Functions*. Revised 1st edn, Graduate Texts in Mathematics, 236 (Springer, 2007).
- [22] D. Girela, 'Analytic functions of bounded mean oscillation', in: Complex Function Spaces, Mekrijärvi, 1999, Department of Mathematics Report Series, 4 (ed. R. Aulaskari) (University of Joensuu, Joensuu, 2001), 61–170.
- [23] P. Gorkin and R. Mortini, 'Two new characterizations of Carleson–Newman Blaschke products', *Israel J. Math.* 177 (2010), 267–284.
- [24] G. McDonald and C. Sundberg, 'Toeplitz operators on the disc', *Indiana Univ. J. Math.* 28 (1979), 595–611.
- [25] J. Pau and J. Peláez, 'On the zeros of functions in Dirichlet-type spaces', *Trans. Amer. Math. Soc.* 363 (2011), 1981–2002.
- [26] S. Richter, 'A representation theorem for cyclic analytic two-isometries', *Trans. Amer. Math. Soc.* 328 (1991), 325–349.
- [27] L. Rubel and R. Timoney, 'An extremal property of the Bloch space', Proc. Amer. Math. Soc. 75 (1979), 45–49.
- [28] H. Wulan and K. Zhu, *Möbius Invariant Q_K Spaces* (Springer, Cham, 2017).
- [29] J. Xiao, 'Some essential properties of $Q_p(\partial \Delta)$ -spaces', J. Fourier Anal. Appl. 6 (2000), 311–323.
- [30] J. Xiao, Holomorphic Q Classes, Lecture Notes in Mathematics, 1767 (Springer, Berlin, 2001).
- [31] J. Xiao, Geometric Q_p Functions (Birkhäuser, Basel–Boston–Berlin, 2006).
- [32] J. Zhou and G. Bao, 'Analytic version of $Q_1(\partial \mathbb{D})$ space', J. Math. Anal. Appl. **422** (2015), 1091–1102.
- [33] K. Zhu, Operator Theory in Function Spaces (American Mathematical Society, Providence, RI, 2007).
- [34] K. Zhu, 'A class of Möbius invariant function spaces', *Illinois J. Math.* **51** (2007), 977–1002.

GUANLONG BAO, Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China e-mail: glbao@stu.edu.cn

JAVAD MASHREGHI, Département de Mathématiques et de Statistique, Université Laval, 1045 avenue de la Médecine, Québec, QC G1V 0A6, Canada e-mail: javad.mashreghi@mat.ulaval.ca

STAMATIS POULIASIS, Department of Mathematics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece and Current address: Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas 79409, USA e-mail: stamatis.pouliasis@ttu.edu

HASI WULAN, Department of Mathematics, Shantou University, Shantou, Guangdong 515063, China e-mail: wulan@stu.edu.cn