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THE EXPLICIT FOURIER DECOMPOSITION OF 
L\SO{n)/SO(n - m)) 

ROBERT S. STRICHARTZ 

1. I n t r o d u c t i o n . T h e decomposition of L2(SO{n)/SO(n — m)) into a direct 
sum of irreducible representat ions of SO in) is given abs t rac t ly by the branching 
theorem and the Frobenius reciprocity theorem [1]. T h e goal of this paper is to 
obtain this decomposition explicitly, generalizing the theory of spherical har
monics (m = 1). T h e case m = 2 has been studied in Levine [6], and the case 
2m ^ n in Gelbar t [3]. Our results shed more light on these cases as well as 
revealing new phenomena which only occur when 2m > n. 

Following Gelbar t [3] we realize SO(n)/SO(n — m) for 1 ^ m < n as the 
Stiefel manifold Sm

n = {real n X m matr ices whose columns are or thonormal 
vectors in Rw}. The irreducible subspaces of L2(Sm

n) are realized as restric
tions to Sm

n of certain harmonic polynomials on real n X m matr ix space. We 
now describe them. 

Let Xi, . . . , xm denote the columns of the n X m matr ix x, so t h a t each x 
is a vector in Rw. Let n = [n/2] and let a i , . . . , aM be vectors in Cn satisfying 
cij • ak = 0 (bilinear do t p roduc t ) . If n is odd let b G Cn satisfy b • a5 = 0, 
b - b = 1. One choice for the a/s and b is 

1 0 " 
i 0 
0 1 

, a2 = 
i 
0 

_ 0 _ _ 0 _ 

We shall refer to this as the canonical choice. 
Let A denote any subset of {1, . . . , m}, and let \A\ denote its cardinali ty. 

We define M (A), a polynomial on matr ix space, as follows (M{A) depends on 
the choice of the a / s and b) : 

(i) if |-41 ^ /x, M {A) is the de te rminan t of the \A\ X \A\ matr ix obtained 
from the /JL X m matr ix {a3,- xk\ by selecting the first \A\ rows and those 
columns corresponding to k Ç A. 

(ii) if |̂ 41 > /x, M (A) is the de te rminan t of the \A\ X \A\ matr ix obtained 
be selecting the first y. rows and the last \A \ — y. rows and those columns cor-
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responding to k £ A from the n X m matrix 

< J > if n is even, or 
{aj • xh) 

dj - Xjcf if n is odd. 
b -xk) 

L e t s / denote a finite sequence Au A2, . . . , AN of non-empty subsets of 
{1, . . . , m) of decreasing cardinality, \A j\ ^ M ml» a n d satisfying |^4i| + 
\A2\ ^ w. We write f{$/) = II^Li Af(-4^), with the canonical choice for the 
a / s and b. If w is even and |^4i| = n/2 we write f~i^/) for the polynomial 
obtained from f{s/) by replacing aM by âM. 

THEOREM 1. f(s/) is a non-zero highest weight vector for an irreducible rep
resentation of SO(n) of highest weight œ = (mi, . . . , w j given as follows: 

( a ) t f | 4 i | £ n/2 then m, = |{r; MU è j } | 
(b) z/ \Ai| > w/2 Jfeen m;- = 0 i f j > n — |^4i| and m;- = \{r: \Ar\ ^ j } | if 

j ^ w — \Ai|. WT^n defined, f~(&/) is a non-zero highest weight vector with 
highest weight (wi, . . . , mM_i, — wM). 

The polynomial /(«flO is 5 0 («) -harmonic in the sense that it is annihilated 
by every SO (n)-invariant differential operator, namely VX; • V ^ / ( ^ ) = 0 for 
all j , k = 1, . . . , m. Its restriction to Sm

n is non-zero and so generates under 
the action of SO(n) an irreducible subspace of L2(Sm

n) with highest weight w. 
As s/ varies these subspaces span L2(Sm

n), but they are not linearly indepen
dent. There are two reasons why this is so. The first is that there may exist 
linear relations between the polynomials f(s$). An example of this is 

M({1, 2})M({3}) + M({2, 3})M({1}) + M({3, 1})M({2}) = 0 

for m ^ 3 (this cannot happen when m = 1 or 2). Or it may even happen 
that while a set of /(o/) ' s is linearly independent, their restrictions to Sm

n are 
not. An example of this is 

M({1, 2})2 + M({2, 3})2 + M({1, 3})2 = 0 on 53
4. 

(This does not appear to happen unless 2m > n.) In order to obtain a spanning 
linearly independent set of invariant subspace of L2(Sm

n) we restrict the set 
of sequences as in the following définition: 

A sequence se = A\, . . . , AN is Sm
n admissible if 

(1) \A,\ ^ lA^U 
(2) if Aj = {ii, . . . , ip} and Aj+Ï — {i/f . . . , iq'\ with z'i < i2 < . . . and 

i\ < ii < . . . then ik' è H for & ^ g (note g ^ p by (1)); 
(3) for any ^ ^ m we have 

|{r: r G -4i and r ^ k}\ + |{r: r € A2 and r ^ &}| ^ w + & — w 

(if<$/ = yli drop the second summand). The empty sequence is also admissible. 
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THEOREM 2. The irreducible subspaces generated by f(stf) restricted to L2(Sm
n) 

as se runs over all admissible sequences, and, when n is even, the restrictions of 
f~(s$) when se is admissible and f~(<$/) defined, are linearly independent and 
spanL*(Sm

n). 

These results are incomplete in some respects, for we do not obtain orthog
onal subspaces. While in principle all that is required is to orthogonalize the 
f(sé) corresponding to a fixed highest weight co, we have no explicit way of 
doing this (except when m = 1 or 2, or n — 4). It would also be of interest to 
verify the following conjectures: 

(1) The irreducible spaces of polynomials in Theorem 1 span all SO(n)-
harmonic polynomials. 

(2) If 2m S n then an SO (n)-harmonic polynomial is determined by its 
restriction to Sm

n. 
These conjectures were proved for the case m = 2 by Levine [6]. They are 

related to more general results of Helgason [4] and Kostant [5]. 
We will prove Theorems 1 and 2 in the next two sections. We also indicate 

the modifications necessary to deal with the case n = m, where we obtain a 
simplification in that we may always have \A\\ ^ /x. Section 4 describes some 
special cases in more detail, and Section 5 deals with the symmetric space 
SO(n)/SO(n - m) X SO{m). 

I am grateful to Professor Gelbert for interesting me in these problems, and 
to Robert Stanton for useful discussions concerning Section 5. Recently 
Tuong Ton-That [9] has announced a proof of conjecture (2) above. 

2. Proof of Theorem 1. 

LEMMA 1 . / ( J / ) andf~(&/) are SO(n)-harmonic. 

Proof. If \Ai| ^ n/2 the result is trivial, because then f($tf) is a sum of 
products of polynomials aj • xk. Applying VXr • V l s produces factors ap • aQ, all 
of which vanish. Similarly forf~(s/). 

If \A11 > n/2, then certain âj • xk and b • xk factors appear in M(Ai). But 
the condition |^4i| + \A2\ S n implies that if aj • xk occurs in M (Ai) then aj 
does not occur in M(A2), . . . , M(AN). Thus 

V „ • VXsf(£f) = 0 + [V„ • VX3M(A1)]f[ M(Aj). 

Now assuming r, s G Ai, r 9e s (otherwise VXr • VX8 M (Ai) is trivially zero) 
we expand the determinant M(Ai) by cofactors along the columns corre
sponding to r and s. Notice that a ; • xrâj • xs and âj • xraj • xs occur with the 
same cofactor but with opposite sign, so that when VXr • VXa is applied these 
terms will cancel. All the other terms are trivially zero (note that b occurs at 
most once), since aj • âk = 0 if j 9^ k. 
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Thus we observe that the invariant space of polynomials generated by 
/ ( a / ) (orf-Çs/)) consists of spherical harmonics of degree Y, M;l in the n • m 
variables, because the ordinary Laplacian is 27= i V ^ • Vxj> Now the space of 
spherical harmonics of fixed degree has an especially simple positive definite 
inner product given by (/, g) = f(D)g. Our proof of Theorem 1 consists in 
showing that/(<£/) is orthogonal, with respect to this inner product, to any 
rotation of a polynomial with the same homogeneity that is a weight vector 
with a higher weight. 

We write an arbitrary polynomial in terms of the basis 

n («>•**)"* n («y •**>"* n (* •*.)'* 
with the canonical choice for the a / s and b (if n is even the b terms do not 
occur). Each such term has homogeneity 2 2 rjk + 2 2 sok + 2 h and is a 
weight vector with weight co = (mi, . . . , mM), nij = 2 * (fjk — sjk). It is clear 
from this that/(<#/) is a weight vector with weight given by Theorem 1. We 
must show thatfÇs/) is orthogonal tog = H(a/ 'Xk)

r^kYl(â/ 'Xk)
s'kU(b' • xk)

tk 

for any choice of the a / ' s and V provided 2 2 rjk + 2 2 sjk + 2 h = 2 M r| 
and co' = (m/, . . . , m / ) , m / = 2*; (?jk ~ sjk) is a higher weight than co. 

We compute g(D)f(s/) by applying Leibniz' formula. This produces a sum 
of terms, each of which we will show to be zero. The basic observation is that 
a derivative of a determinant is the sum of the determinants obtained by differ
entiating one column of the matrix. Thus the terms comprising g(D)f(jxf) are 
obtained by replacing xks in the determinants M(Ar) by a / , â/ and b, exactly 
rjk, sjk and tk times respectively. What we shall show is that this implies that 
one of the determinants must have two identical columns, hence be zero. 

Consider first the case when \A\\ S n/2. Because co' is a higher weight than 
co we have m / ^ mi and hence 2 * ru ^ mi. Now there are 2 * ru a / s to be 
distributed over all the M(Ar)'s, which number exactly mi by (a). Thus, one 
determinant must be hit twice unless m / = mi and 2 * $n = 0, and the a / s 
are distributed one to a determinant. Next we distribute the a2"s. We have 
m2' è w2 hence 2 * r2k è nt2. But the number of M(Ar)'s left is exactly m2, 
because those with \Ar\ = 1 were used up when the a / ' s were distributed. Thus 
we must have m2' = m2, 2 * S2k = 0 and the a / ' s must be distributed one to a 
determinant with \AT\ è 2. Reasoning inductively we conclude co' = co which 
contradicts the hypothesis that a/ is a higher weight. 

Next consider the case \Ai\ > n/2, and let X = n — \A\\. We may use the 
same reasoning as before to conclude that m / = m ; for j ^ X, and that only 
\Ai\ — X = n — 2X columns of M(Ai) remain to be filled. In order to avoid 
repeating columns we must have 2 A f;* ^ 1, 2 * s # è 1 and 2 * *# ^ 1 for all 
j > X. 

Suppose n is even. Then there are only n/2 — X values of j > X, hence to 
fill n — 2X columns we must have Ykrjk = 2 * s# = 1 for 7 > X which implies 
m / = 0 for j > X hence co' = co. 
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Suppose n is odd. Then there are only (n — l ) / 2 — X values of j > X, hence 
to fill n — 2X columns we must have 2 * r;* = 2 * s # = 2 4 = 1 for 7 > X 
which again implies a/ = co. 

Finally we consider f~(s$) when w is even and |^4i| = n/2 so that mM > 0. 
Under the larger group 0{n), /(«aO generates an invariant subspace with 
highest weight co which contains f~{£#). Now f~(&/) is a weight vector with 
weight a/ = (mi, . . . , mM_i, — wM) and the weight vectors with this weight are 
one-dimensional. Thus upon splitting the representation of 0(n) into two 
irreducible representations of SO(n) with highest weights co and co', we see that 
f~(s$) must generate the space with highest weight co'. 

3. Proof of Theorem 2. We shall give an inductive proof, deriving the 
result for Sm

n assuming it for 5m_in_1. For this purpose it is more convenient 
to have an inductive criterion for admissible sequences. We define the deletion 
8(A) of A C {1, . . . , m) to be A C\ {1, . . . , m - I). 

LEMMA 2. A sequence se = A\, . . . , AN is Sm
n admissible if and only if 

(1') 1,4,1 ^ \Aj+1\, 
(2') 1^1 + \A,\ ^n, 
(3') h(stf) = « U i ) , . . . , 3(i4jf) w S^-i*-1 admissible and ô(Aj) = 0 /or 

7 > AT. (If ô(^4i) = 0 then 5(j / ) is the empty sequence.) 

Proof. A s s u m e d is Sm
n admissible. Then (1') and (2') above follow from 

(1) and (3) with k = m of the definition of admissible. Now b(Aô) = 0 if and 
only if Aj = {m\ and (2) implies such a set can only occur at the end of an 
admissible sequence. To complete the verification of (3') above we write 
Aj = {i\, . . . , ip}, Aj+i = {ii, . . . , iq'} in ascending order. By (2) we have 
ik è ik (or k S q and q ^ p. Now |ô(-4,)| ^ | ô (^+ i ) | unless q = p, iv = m 
and ip 9^ m. But this contradicts ip' ^ iv, proving (1) for h{$/). Similarly (2) 
and (3) hold for b{&/). Thus an Sm

n admissible sequence satisfies the conditions 
of the lemma. 

Conversely, assume the conditions of the lemma are satisfied. We must show 
that s/ is Sm

n admissible. By (3') we know that ô(s/) is Sm-i1"1 admissible. 
This, together with (1') and (2') easily yield conditions (1) and (3) of the 
definition of Sm

n admissible for s/. To verify (2) write Aj = {i1} . . . , iv\, 
Aj+i = {ii, . . . , iq

f}. Because b{$/) is Sm-\n~l admissible we have ik' ^ ik for 
k ^ q — 1 and also for k = q unless iq' = m. But in that case ig

f ^ q trivially. 

We now give the induction step in the proof of Theorem 2. 
Let co be a dominant weight for SO (n) and co' a dominant weight for SO (n — 1). 

We say co intertwines co' if: 
(a) n = 2/x, co = (mi, . . . , mM), co' = (m/, . . . , % _ / ) , Wi ^ m / ^ m2 

^ m2' ^ . . . è % - / ^ |wM|; 
(b) w = 2/x + 1, co = (mi, . . . , m^), co' = (m/, . . . , m / ) , mi ^ m / ^ m2 

^ m2
r ^ . . . ^ raM ^ |w/ | . 

Now the representation of SO{n) on L2(SO(n)/SO(n — m)) is the induced 
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representation from the trivial representation of SO (n — m). By the composi
tion theorem for induced representations it may also be regarded as the in
duced representation from the representation of SO(n — 1) on L2(SO-
(n — l)/SO(n — ra)). In our induction argument we assume that the repre
sentation of SO(n — 1) on L2(SO(n — l)/(SO(n — ra)) is already decomposed 
into irreducibles by Theorem 2. By the Frobenius reciprocity theorem and the 
branching theorem we know that each irreducible subrepresentation of S0-
(n — 1) with highest weight to' induces on SO(n) a representation which 
decomposes into a direct sum of irreducible representations with highest 
weight co, where each co intertwines co' and occurs with multiplicity one. This 
gives us, inductively, an exact formula for the multiplicity of any abstract 
representation in the decomposition of L2 (SO (n) / SO (n — m)). The next 
lemma will enable us to show that Theorem 2 gives the same multiplicity. 

LEMMA 3. (a) Lets/ be Sm
n admissible. Iff(s/) has weight co and f(b(s/)) has 

weight co', then co intertwines co'. 
(b) Let se' be 5m_iw_1 admissible, let f (<$/') have weight co', and let co intertwine 

co', with raM ^ 0. Then there exists a unique Sm
n admissible sequences/ satisfying 

ô(s/) = s/' and such that f(s/) has weight co, unless n is odd and w / > 0. 
In that case there are exactly two such admissible sequences. 

Proof, (a) Lets/ = Au . . . , AN, b(s/) = b(Ax), . . . , b(AM) with Aj = {m} 
forj > M. Because \A\ ^ \d(A)\ we have ra;- ^ m/. Because \A\ ^ \à(A)\ + 1 
we have m/ ^ ffij+u Thus co intertwines co'. 

(b) First assume 2m ^ n. Writes/' = A\ , . . . , AM'. Theorem 1 implies 
that Amj+1>+i', . . . , Amj>' are sets with cardinality j . Lemma 2 implies that for 
s/ to be Sm

n admissible and satisfy b(s/) = srf' it must be of the forms / = 
Au . . . , AN with Aj = {m} for j > M and ô(Aj) = A- for j ^ M. In order 
to guarantee 1̂4*1 ^ L4*+i| we must adjoin {m} to some initial subsequence of 
Amj+1>+i, . . . , Am/ for each j . That means we must choose integers Mj+1 

satisfying mj+i S Mj+i S M/ such that Ak = Ak' \J {m) for mj+1' + 1 ^ k 
^ Mj+i and Ak = Ak for Mj+i + 1 ^ k ^ m/. This produces f(s/) with 
weight (N, M2j . . . , My) with any N ^ M = ra/, giving exactly one admis
s i b l e ^ for each weight that intertwines co'. 

The same reasoning applies if 2m > n but \Ai\ < ju. Thus assume \Ai\ ^ n 
and set X = n — 1 — \A\\. Then 4̂ 2', • • . , Amx/ have cardinality X and m/ = 0 
for j > X. Assume X < n — 1 — \Ai\. In order to have \Ai\ + \A2\ ^ n we 
may either adjoin {ra} to ^4/ and leave ^2 ' , . . . , Amy»' alone, or we may leave 
A\ alone and adjoin {m\ to an initial subsequence of A2, . . . , Amx>', but not 
both. The first option p r o d u c e s / ^ ) with weight satisfying m\ = rax', rax+i = 0. 
In the second case, if we adjoin {m\ to A<{, . . . , ^4/ we obtain rax = rax' — p 
— 1, Wx+i = p + 1. Thus once again we obtain one admissible sequence for 
every weight that intertwines co'. 

Finally, assume X = n — 1 — \A\'\. This occurs exactly in the exceptional 
case: n odd, ra/ > 0. Here A\ , . . . , Am^' have cardinality /x = (n — l ) / 2 . 
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In order to have \Ai\ + \A2\ S n we may adjoin [m] only to A\ . Whether or 
not we do so does not affect the weight oif(o/) which is already determined to 
be (N, M2, . . . , My) by the previous choices. Thus we obtain two admissible 
sequences for each co intertwining co'. 

As a consequence of the lemma it is sufficient to prove linear independence of 
thefÇs/) in order to prove that they span. To see this we reason as follows: 

Suppose n is even and co satisfies m^ ^ 0. Then L2(Sm
n) contains one ir

reducible subspace with highest weight co for each irreducible subspace of 
L2(Sm-\n~l) with highest weight co' such that co intertwines co'. By the induction 
hypotheses these subspaces of L2(5m_iw_1) are in one-to-one correspondence 
with 5m_iw_1 admissible sequences J^/' such tha t / ( t ^

r / ) has highest weight co'. 
By the lemma the m a p p i n g ^ —>5(j/) puts into one-to-one correspondence 
the Sm

n admissible sequences s/ such t h a t / ( j / ) has highest weight co with the 
Sm-\n~l admissible s equences^ ' such that/(*a/ ') has highest weight co. This 
proves the contention in this case. 

If n is even but raM < 0 we reason as before replacing f(&/) with f~(<$/). 
Suppose n is odd. Then L2(Sm

n) contains one irreducible subspace of L2-
(5m_iw-1) with highest weight co' satisfying m / = 0, and two for each co' 
satisfying m J! > 0 (one for co' and one for (m/, . . . , wM_/, —m/)) such that 
co intertwines co'. We may thus reason as before. 

We now give the proof of linear independence. Assume s/1, s/2, . . . are 
distinct Sm

n admissible sequences, fÇs/k) has weight co, and ]T fikf(&/k) vanishes 
on Sm

n. We must show that /3i = fi2 = . • . = 0. Note that since the highest 
weight space always has dimension one, this will prove that the subspaces 
generated by the fÇs?/k) are linearly independent. 

Assume first that 2m ^ n. By Lemma 3, b(stfk) are distinct Sm-\n~l admissible 
sequences. Thus it suffices to show that J2Pkf(à(*8^k)) = 0 o n 5m_iw_1 and apply 
the induction hypotheses. 

To do this we let 

^ 0 

- m and Xj = ' for j g 

where (x/ , . . . , xm_/) Ç Sm-i""1. We do not substitute this directly in 
23 Pkf(&^k) because it usually produces zero. Instead we first perform some 
rotation of variables to obtain non-zero terms. The principle is that if 
F(xif . . . , xm) vanishes on *Sm

n, then so does F(Rxi, . . . , Rxm) for any rota
tion R. 

Consider the case n even. We set R = Re^-i, ^^_ 2 • • • Rei where R$j is a 
rotation through angle 6j in the a ; — aM plane, sending a, • xk into cos 0/z., • xk + 
sin djdn - xk and aM • xk into — sin 6 a^ • xk + cos 0,aM • xk. We divide through by 
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I I (cos 6j)mj and obtain a polynomial in tan 0i, . . . , tan 0M_i because w i is 
exactly the number of times that a ; occurs infC$/k). We then make the substi
tution for Xi, . . . , xm and equate to zero the coefficients of each monomial in 
tan 0i, . . . , tan 0M_i. We order the monomials in lexicographic order and con
sider the lowest order terms. 

Suppose m ([ A (hence \A\ < ju). Then the contribution of M {A) to the 
above is M(h(A)) + higher order terms (note 8(A) = A), since a5 • xk = 
dj - xk

f for j < n, k < m. 
Suppose m £ A and \A\ = X. Since a;- • xm = 0 for j < /x and aM • xm = i, 

the lowest order term arising from M (A) is obtained by selecting aô • xk over 
tan 0̂ aM • xk in rows 1, . . . , X — 1, and tan 0xaM • x^ in row X. The m-column 
becomes 

0 

0 
i tan 0X 

and we obtain M(b(A))i tan 6\ + higher order terms. 
Thusf(<$/) is transformed intof(ô(&/)) I l (i tan 0;)

r? + higher order terms. 
The lowest order terms arising from Z N^k) = 0 on Sm

n give rise to Z' (*)'*ftt 
f(ô(&/k)) on 5m_iw_1 (X)r denoting a sum over a restricted set of &'s). We thus 
have pk = 0 for those values of k appearing in J ] ' . These terms may be re
moved from the original sum and the argument repeated until all (tk = 0. 

The case n odd but wM = 0 may be handled by the same argument with just 
one modification: We must replace aM by 

a = 

1 

(note the condition mM = 0 implies that aM does not occur in f(&/k)). If we 
try this argument when mM > 0 we encounter a new difficulty: If m Q A but 
|̂ 41 = /x then in place of M(b(A)) we have the same determinant with a • xk 

in place of aM • xk, and 

"0 

a - xk = xk 
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We overcome this difficulty as follows: 
We perform the rotation 

T6 = 
cos 0 0 
sin 0 0 

0 1 

-sin 0 
cos 0 

0 

in the last three variables in Rw to replace aM with 

0 

0 
cos 0 
sin 0 
i _ 

In place of M(5(A)) we now have cos 0 Mf (b(A)) + sin 0 M"(b(A)), where 
M' and M" are obtained from M by replacing aM G C" -1 by 

a = 

0 

and a" = 

0 

Note that M(b(A)) = Mf(b(A)) + i M"(b(A)). 

LEMMA 4. Let P be a polynomial in two indeterminate s of degree r, and let Pr 

denote the terms of homogeneity exactly r. If P(cos 6, sin 6) = 0 for all 6 
thenPr(l} i) = 0. 

Proof. Since P(cos (0 + 7r), sin (0 + w)) = P ( —cos 0, —sin 0) we have 
i%(cos 0, sin 0) = Yl\/2 Pr-2j(cos 0, sin 0) = 0 by equating terms of equal 
parity. We multiply P r_2;(cos 0, sin 0) by (cos20 + sin20); and divide through 
by (cos 0)r to obtain 

r/2 

Pr(l, tan 0) + Z (1 + tan20)yPr_2,(l, tan 0) = 0. 
l 

We may now equate to zero the coefficients of (tan 0)* and sum them after 
multiplying by ik. The result is to substitute i for tan 0 giving P r ( l , i) = 0 
since 1 + i2 = 0. 

We apply Lemma 4 to the equation 

£ 'A IT (cos 6M'(Ô(A j*)) + sin0JkT'(ôG4/))) 
m$Ajk, \Ajk\=n 

x n M(su/)) = o 
other / s 
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on Sm-in~l to obtain J^f,pkf(ôÇ^/k)) = 0 on 5m_iw_1, the sum over those values 
of k for which {j: m (£ A / and \Ak\ = /x} has maximal cardinality. We obtain 
fik = 0 for these values of k and continue as before. 

Next we consider the case n even and 2m > n. If mM ^ 0 then the argument 
given for 2m ^ ?z may be applied without change (note that if \A \ = /x then 
M (A) is unchanged by the rotation R). If raM = 0 let X be the largest integer 
for which m\ > 0. We choose R = Rex . . . Rei- If \A \ = n — X the rotation i? 
transforms M (A ) by changing the last row from âM • xk to 

-sin 0iai • Xj — cos 0i sin 02â2 • x^ — . cos 0i . . . cos 0\aM • X,-

Now if rn d A the âM • x ; term contributes zero because it duplicates the /xth 
row since aM • Xj = aM • Xj = b • x / . The next-to-last term involving â\ • x ; 

produces if(5(^4)) after interchanging the juth and last rows. Thus M (A) 
becomes 

it M (5(A)) cos 0i . . . cos 0\-i sin 0\ + terms involving sin 6j for j < X. 

If m G ^4, on the other hand, then aM • xm = i and aM • xm = —i. Thus the 
cos 0i, . . . , cos 0\ term produces a determinant with the /xth row (b • x/, i) 
and the last row (b • 

0 
last column to 0 

x/j —i). We add the last row to the /xth row to reduce the 

and so obtain ± 2 i M (6(A)). Thus M (A) becomes 

±.2i cos 0i, . . . , cos dxM(ô(A)). 
Now we divide by (cos 0i)mi, select out the lowest power of tan 0i, then 

divide by (cos 0i)™2 and select out the lowest power of tan 02 and so forth. 
In this way the terms of lower homogeneity are discarded and we may repeat 
the previous argument. 

Finally assume that n is odd and 2w > n. Note that/(<£/) will have different 
parity under the transformation Xj —> — Xj (this preserves Sm

n even though it 
is an improper rotation) depending on whether or not \Ai\ > /x- Thus we may 
assume that in the sum J2Ptcf(&?k) either |̂ 4i*| > /x or not for all k. From the 
construction in Lemma 2 it follows that all b(s/k) are distinct. We may thus 
attempt an argument similar to those in the previous cases. 

If 1̂ 41*| S M then we may repeat the argument given for the case n odd and 
2m ^ n. Thus assume \Aik\ > /x. If \Ak\ = /x + 1 we choose R = TeRe^-i, 
. . . , Rex. Now the RBJ do not affect M(A\*), but Te replaces aM with 

0 

0 
cos 0 
sin 0 
i 

and b with 

0 

0 
— sin 0 
cos 0 
0 
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Thus if w (? Aik we obtain %iM(ô(Aik)) while if m G yli* we obtain 
=fc i ( - s i n 0 M'(b{Aik)) + cos 6 M"(8(Ai*)). We may then repeat the argument 
given for the case 2m ^ n. 

If {A^l > M + 1, let X = n - \Ax
k\ and choose R = T9Rh, . . . , R0l. The 

âM row of Aik is then transformed into —sin di ai - Xj — . . . — cos 0i, . . . , 
cos 0x <zM • JC; as in the case n even. H m & Aik then the aM term contributes 
— \ i cos 0i, . . . , cos 6\ M (ô (A Ie)). If m G ^4i* then the âM term contributes 
zero and the d\ term contributes — \i cos 0i, . . . , cos 0\-i sin 0\ M(h{Ak)). 
Thus we may repeat the argument given for the case n even and 2m > n. 

This completes the proof of the induction step. All that remains is to verify 
the theorem for the case m = 1, n arbitrary n > 1. But here we are dealing 
with the theory of spherical harmonics. The only choice for A j; is {1}, sof($/) 
must be (ai • X\)k for some k. This generates the spherical harmonics of degree 
k for n ^ 3. If n = 2 we must consider also f~{s$) = (ai • Xi)k, or, writing 

Xi = \ . J , we have (a\ • Xi)k = eike and (â\ • X\)k = e~ike. Thus the 
|_sin 0J 

theorem for m = 1 is completely elementary. 

Remark. The case m = w — 1 gives the Peter-Weyl decomposition of SO(n) 
because 50(1) is the trivial group. Nevertheless it is interesting to obtain this 
decomposition in terms of functions on SO(n) rather than on Sn-i

n. We can 
again represent SO (n) as the component of the identity in Sn

n = 0(n). Theorem 
1 remains true, since the condition m < n was not used in the proof. Theorem 2 
remains true if we add two additional conditions for se to be Sn

n admissible: 
(4) |4 i | ^ M , 
(5) 1 $ Aj for j ^ 2 and if 1 G Ax then \AX\ ^ n - 1 - /*. 
To see why this is true we reason as follows: If (xi, . . . , xn) £ SO(n) then 

(#2, • • • , xn) G Sn-i
n and Xi is completely determined by (x2, . . . , xn). Thus 

the functions /(*$/) and f~($/) on 5w_iw may be regarded as functions on 
S0(n) by replacing each k £ A jby k -\- I. Theorem 2 for Sn-\

n translates into 
the same result for 5 / with the additional condition: 

(4') 1 $ Aj for any j . 
That (4') may be replaced by (4) and (5) follows from 

LEMMA 5. For n = m we have M (A) — cM(A~) on SO(n), where A~ denotes 
the complement of A C {1, . . . , n}, and c is a non-zero constant. 

Proof. Consider the complex n X n matrix z given as follows: 
(1) If n = 2/x then 

(-*') 
\ v 2 a j ' X k { 

(V2 dj ' Xk) 
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(2) If n = 2/x + 1 then 

(± ) 
W2arXkl 

Jv2aVxn 

It is easy to check that x 6 SO(n) implies s £ SU(n). Now a generalization of 
Cramer's rule due to Jacobi [2, p. 58] states that if u is any complex n X n 
matrix with det u = 1, if u\ is any square submatrix and u2 is the comple
mentary square submatrix of he"1 (obtained by selecting from tu~1 the rows 
and columns omitted from u in obtaining u\) then det tt\ = ± det w2. We apply 
this to z, noting that det z = 1 and ^ - 1 = z. If we choose the first \A | rows of 
z (say |̂ 41 rg /x) and the columns corresponding to j £ A then det u\ = cM(A). 
But then u2 contains the last n — \A\ rows of z and the columns corresponding 
to j d A. After rearranging the rows we have the first /z rows and the last 
n — \A | — /x rows of z, hence det u2 = cfM{A~). 

Thus i fs / isSn
n admissible and 1 £ Au t hen / ( j / ) = cf(s/') on SO(n) where 

Ja/7 = Af, A 2, . . . . Thus it remains to show that s/ is Sn
n admissible if and 

only \is/" is Sn-\
n admissible, where s/" is obtained from S$' by replacing 

each k G Aj by k — 1 (note 1 G ,4 J . 
Now let £* = \Ax H {1, . . . , &}| and g* = \A2 n {1, . . . , &}|. Then (1) and 

(2) fors / says exactly qk ^ ^ , while (3) says pk + qk ^ &. On the other hand 
(1) and (2) f o r j / " says 

l ^ r n {2 , . . . , * } | è M 2 n {2 , . . . , * } | , 

in other words k — pk ^ g* or ^ + g* ^ k, while (3) says 

l ^ r n {2, . . . , * } + |^2 n {2, . . . ,&} | ^ *, 

in other words k — pk -}- qk ^ k or qk ^ £/:. 

4. Some special cases. We wish to describe two cases in which we can 
obtain orthogonal irreducible subspaces by making use of an additional group 
action on Sm

n. 

Case 1. m = 2. Let z = Xi + ix2 Ç Gn, z = Xi — zx2. The condition x Ç S2
W 

becomes z - z = 0, z - z = 2 (bilinear inner product). The group 50(2) acts 
on S2

n by sending Xi —> cos 0Xi + sin 0x2 and x2 —> —sin 0xi + cos 0x2. In 
terms of z, z coordinates it sends z\ to ei9z and z to e~i6z. We will decompose 
L2(S2

n) under the action of both S0(n) and 50(2) . 
Now each S2

n admissible sequence s/ is specified by three non-negative 
integers r, s, t giving the number of occurrences of {1, 2}, {1} and {2}, respec-
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tively. The only restriction on them is that r = 0 or 1 if n = 3. Now in place 
of f(&/) we consider g(r, s, t) = (ax • z a2 • z — a2 • zai • z) r(#i • z)s(ai • z) ' (if 
w = 3 replace a2 by 6, and if w = 4 consider also g~(r, 5, /) where a2 is replaced 
by Ô2). 

THEOREM 3. For each choice of r, s, t (with r = 0 or 1 if n = 3) the function 
g(r, s, t) is a non-zero highest weight vector of an irreducible representation of 
SO(n) of highest weight co = (r + 5 + t, r) (if n = 3 the highest weight is 
(r + s + t), and if n = 4 the highest weight for g~(r, 5, /) is (r + 5 + /, — r)). 
We also have g(eiez, e~idz) = eikeg(zf z) where k = s — t. No two distinct values 
of (r, s, t) give rise to the same values for cc and k, hence the spaces generated by the 
g(r, s, t) (and g~(r, s, t) when n = 4) are orthogonal in any invariant inner 
product; furthermore their restrictions to S2

n are non-zero and span L2(S2
n). 

Proof. The proof of Theorem 1 can be repeated almost verbatim to show that 
g(r, 5, /) is a highest weight vector with the given weight. The fact that 
g(eiez, e~i9z) = ei1c6g(z, z) is obvious from the definition of g. If (r, s, t) and 
( / , s', /') give rise to the same œ and k then we have r — r', r + s -\- t = 
r' + s' + t' and s ~ t = s' — t' from which we conclude (r, s, /) = (r\ s', t'). 
\î n = 3 we must modify the argument somewhat since we are not given r = r' 
but merely that r and r' are 0 or 1. But then if r 9^ r' they have different 
parity hence 5 + t and s' + /' have different parity which contradicts s — t = 
5' — £'. Thus r = rf and we proceed as before. 

We note in passing the permissible values of k given o>: if n = 3, —Wi ^ k ^ 
mi, and if n à 4, — Wi + |ra2| ^ ^ Wi - |m2| and & has the same parity 
as mi — \m2\. 

To show that g(r, s, t) has non-zero restriction to S2
n we evaluate it at 

Xi = and x2 

0 

where ai • z = ai • s = 1, a2 • z = 1 and a2 • z = —2'. Finally, the restrictions 
span L2(S2

n) because the multiplicities agree with those in Theorem 2. 

Remark. The case w = 3 can be further simplified using the Remark follow
ing Theorem 2. If x = (x{j) denotes a 3 X 3 rotation matrix, then the func
tions h(r, s, t) 

(x3i + ixz2)
r(xn + i%\2 + i%2i — *22)s(xn + ixu — ix2i + x22)

l 

with r = 0 or 1, generate orthogonal irreducible subspaces of L2(50(3)) with 
highest weight (s + /) which span L2(,SO(3)). 
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Case 2. n = m = 4. Here we set Si = xi + ^x2, Zi = xi — ix2, z2 = #3 + 2x4 
and z2 = #3 — i#4. We consider the maximal torus T2 in 50(4) acting by right 
multiplication. In z coordinates this action is given by Z\ —> ei6lzi, z2 —» e**2Z2. 
We decompose L2(50(4)) with respect to the action of T2 as well as 50(4) and 
obtain multiplicity one, hence orthogonality. 

Let ri, r2, ^3, Si, s2, sz, s^ be non-negative integers satisfying r\ri = s2Si = 0. 
We define 

g(r, s) = (ai • sia2 • 22 — a2 • Sia2 • Z2)ri(ai * ^ 2 • £2 — a2 • Ziai • Z2)7"2 

• (ai • Zia2 • Zi — a2 • £i#i • z2)
Tz(ai • 2i)Sl(ai * Zi)S2(#i ' ^2)S3(ai * ^2)** 

and, if r\ + r2 + r% ^ 0 we define g~(r, 5) by replacing a2 with a2 and 22 
with z2. 

THEOREM 4. TAe function g(r, s) is a non-zero highest weight vector for an 
irreducible representation of 50(4) of highest weight 00 = (mi, m2) where mi = 
^2 rj + ^2 Sj and m2 = 23 r./> and furthermore 

g(eidlzu e~i6lzu ei9*z2, e~id2z2) = é?**1 '1^*2 '2^!, 21, z2, z2) 

where k\ = r\ — r2 + S\ — s2 and k2 = ri — r2 -\- s% — s A. Similarly for 
g~(r, s), where mi = Y, rj + Jl si> w2 = — X rjt ki = rx — r2 + Si — s2 and 
k2 = — ri + r2 + s 3 — SA. Given any dominant weight to = (mi, m2), Jfte values 
of ki, k2 that arise are exactly those satisfying \k\ + k2\ ^ mi + m2, \ki — k2\ ^ 
mi — m2 and k\ + k2 has the same parity as mi + w2. The restrictions of g(r, s) 
and g~(r, s) to 50(4) are non-zero, the spaces they generate under the (left) action 
of 50(4) are orthogonal (or coincident) and span L2(50(4)). 

Proof. The fact that g(r, s) is a highest weight vector with weight œ is proved 
as before. The transformation under the action of T2 is obvious. If m2 è 0, 
the relation \ki + k2\ ^ mi + m2 follows from ki + k2 = 2ri — 2r2 + Si — 
S2 + S3 — SA and mi + m2 = 2]T rj+J^ s3. Since mi + m2 — (ki + ^2) = 
4r2 + 2r3 + 2s2 + 2s4 it follows that mi + m2 and ki + k2 have the same 
parity. Similarly we prove \ki — k2\ ^ mi - m2, and handle the case m2 < 0. 

To construct g(r, s) or g~(r, s) given to and fei, &2 we proceed by induction. 
First we consider the case m2 = 0. Here we must have r\ = r2 = r3 = 0, 
J^^i = Wi, ^i — s2 = &i, 53 — s4 = k2. If &i ^ 0 we set Si = ki, s2 = 0. If 
ki < 0 we set si = 0, ^2 = — k\. In either case we solve the remaining equations, 
obtaining s3 = \(mx -\- k2 — |&i|), s4 = i ( w i — k2 — \ki\). Next we assume 
the result true for a/ = (mi — 1, m2 — 1) with m2 — 1 ^ 0 and prove it for 
oj = (mi, m2). Let ku k2 be given. Suppose first \ki + k2\ S m\ + w2 — 2. 
Then co' and fei, ^2 satisfy the hypotheses of the theorem. Thus by the induc
tion hypothesis there exists g(r', s') with weights a/ and fei, k2. But then g(r, s) 
has weights w and kit k2 if we set r\ = r / , 2̂ = r2, r3 = r3' + 1, 5;- = 5 / . 

In the remaining cases ki + k2 = ± (mx + m2). Assume ^1 + ^ 2 = ^ 1 + W2, 
the other case being treated similarly. Then co' and ki — 1, k2 — 1 satisfy the 
hypotheses of the theorem, hence by the induction hypothesis there exists 
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g(r', sf) with weights co' and ki — 1, k2 — 1. By setting r\ = t\ + 1, r2 = 
r2, 3̂ = fY, Sj = s/ we obtain g(r, s) with weights co and fei, &2. 

Finally we assume the result for co' = (mx — 1, m2 + 1) with m2 + 1 ^ 0 
and prove it for co = (mi, m2). The argument is similar to the above. If 
|ifei — k2\ ^ mi — m2 — 2 we apply the induction hypothesis to co' and ku k2 

and then increase r3' by one. If not, say ki — k2 = m\ — m2, then we apply 
the induction hypothesis to co' and ki — 1, k2 + 1 and then increase r / by one. 

To show the restriction of g(r, s) and g~(ry s) to 50(4) is non-zero we 
evaluate at 

Here 

Zl 

1 ( 3 0 0 
0 ( 3 0 1 
0 1 0 0 ' 

.0 < 3 1 0_ 

ri" " 0 
0 

and 22 = 
i 
0 

L°_ _1 

a\ - Z\ = d\ - Z\ — —a\ ' z2 = d\ • z2 = 1, a2 • Z\ = —a2 • z\ — a2 • z2 = a2 • z2 = 
i, hence (ai • zYa2 • Z\ — a2 • ziai • Si) = — 2i, (ai • zia2 • z2 — a2 • ziai • z2) = 
2i and (a,\ • Zia2 • s2 — o>i • Zi«i • z2) = 2z, hence g(r, s) ^ 0. Also â2 • z\ = 
— â2 • z\ = —à2'Z2= —â2'Z2 = i hence (ai • Z\â2 • Z\ — d2 • ziai • Z\) = 2z, 
(ai • Z\d2 - z2 — d2 - Zidi - z2) = — 2i and (ai • Siâ2 • z2 — a2 • Zicii • s2) = —2i, 
hence g~(r, s) ^ 0. 

Now the multiplicity of the irreducible subspaces of highest weight co = 
(mi, m2) in L2(SO(4)) is equal to the dimension of the representation, which is 
known to be (mi + m2 + l)(mi — m2 + 1) (see [1]). But the number of 
pairs ki, k2 for co is exactly (mi + m2 + l)(mi — m2 -f- 1). Thus the spaces 
generated by g(r, s) and g~(r, s) span L2(50(4)) and are orthogonal or coinci
dent according as the associated weights co and k\, k2 are distinct or not. 

Remark. We could use similar ideas to decompose L2(Sm
n) with respect to 

the right action of the maximal torus in SO(m). However the known multi
plicity formulas (see [3]) indicate that we do not obtain multiplicity one 
except in the cases considered above. 

5. The symmetric space SO(n)/SO(n — m) X SO(m). The space 
SO(n)/SO(n — m) X SO(m) is a compact symmetric space, and, as is well-
known, the irreducible representations of SO(n) that appear in the Fourier 
decomposition of L2(SO(n)/SO(n — m) X SO(m)) occur with multiplicity 
one. These have been identified (see Sugiura [7] and Takeuchi [8]) as follows: 
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Without loss of generality we may assume 2 ^ m ^ JU. Then a representa
tion with highest weight co = (wi, . . . , raM) occurs if and only if 

(a) mi = 0 for all & > m; and 
(b) the integers mlf . . . , mM all have the same parity (hence they must all 

be even unless m = /x). 
Now L2(SO(n)/SO(n — w) X SO(m)) may be realized as the subspace of 

L2(Sm
n) consisting of functions invariant under the action of right multiplica

tion by matrices in SO(m). In this realization we will construct explicitly the 
highest weight vector of every irreducible representation that occurs. 

For each positive integer k satisfying k ^ m and k < fx we define 

1 m m 

\A\=k 1W ii=i tit=*i 

H m = jut we also define 

G+ = M({1 „}) 

and similarly GL by replacing aM by aM. 

LEMMA 6. Let R G SO (m). Then Fk(xR) = Fk(x) and G±(xR) = G±(x) 
when m = IJL. 

Proof. Recall that M({1, . . . , /x}) = det ({aj • xk}). Thus G+(xR) = det 
({a;- • xk}R) so G+(xR) = G+(x) since det i? = 1. Similarly G-(xR) = GL(x). 

Next we observe that 

m m 

M({n ik\){xR) = E • • • Z Run • • • Rj**MUJu .. . ,jk\)(x) 

so that 

1 m m m m m m 

F*(xR) = zn Zl • • • 2 Z • • • Z X • • • Z) Rim • • • RjkikXrm •. • 
mi il=i ik==i jl=i jk=i Tl=i Tk=i 

XRrktk-M({j1,...,jk})M([ri,...,rk)). 

Summing first over the i's and using the orthonormality of the rows of R we see 
that all terms cancel unless ji = ri, . . . , jk = rk, and for these terms the 
coefficients sum to one. Thus Fk(xR) = Rk(x). 

THEOREM 5. The sub spaces generated under the action of SO(n) by the restric
tion to Sm

n of the following functions give the orthogonal decomposition of L2-
(SO(n)/SO(n — m) X SO(m)) into irreducible subspaces: 

(i) if m < \x, Il£Li Fk
k for non-negative integers r\} . . . , rm; 

(ii) if m = /x> n^Ti1 Fk
TkG±s for non-negative integers ri} . . . , rm_i, s. 

The highest weights of these representations are given by 
(i) mj = YJk=i 2n if j S m,mj = 0 if j > m. 

(ii) mj = s + £ * - / 2r* if j ^ w - 1, mm = ±s. 
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Proof. By taking 

0 
1 " 0 
0 

, Xi = 

1 
0 

0_ 
0 

it is easy to see that these functions have non-trivial restrictions to Sm
n. By 

Lemma 6 they belong to L2(SO(n)/SO(n — m) X SO(m)) and by Theorem 1 
they are highest weight vectors for irreducible representations of SO(n) with 
the given highest weight. But it is clear that the weights given by (i) and (ii) 
above coincide with the weights satisfying (a) and (b) above, so we have the 
complete decomposition of L2 (SO (n) / SO (n — m) X SO(m)). 
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