THE REPRESENTATION OF RESIDUE CLASSES BY PRODUCTS OF SMALL INTEGERS

M. Z. GARAEV ${ }^{1}$ AND A. A. KARATSUBA ${ }^{2}$
${ }^{1}$ Instituto de Matemáticas, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 61-3 (Xangari), CP 58089, Morelia, Michoacán, Mexico (garaev@matmor.unam.mx)
${ }^{2}$ Steklov Institute of Mathematics, Russian Academy of Sciences, GSP-1, ul. Gubkina 8, Moscow, Russia (karatsuba@mi.ras.ru)

(Received 27 June 2005)

Abstract

For a large integer m, we obtain asymptotic formulae for the number of solutions of certain congruences modulo m with several variables, where the variables belong to special sets of residue classes modulo m. In particular, we obtain new information on the exceptional set of the multiplication table problem in the residue ring modulo m.

Keywords: congruences; trigonometric sums; number of solutions; asymptotic formulae
2000 Mathematics subject classification: Primary 11A07; 11B50; 11L07

1. Introduction

In this paper we continue to study the distribution properties in residue classes of the sequence consisting of products of two positive integers bounded by a certain parameter.

For a prime number p, define the set

$$
\mathcal{A}=\{x y(\bmod p): 1 \leqslant x, y \leqslant N\} .
$$

The main problem is to find a value of N, as small as possible, for which any non-zero residue class modulo p would belong to \mathcal{A}. The main conjecture is that one can take N to be as small as $p^{1 / 2+o(1)}$.

Vâjâitu and Zaharescu [6] observed that it would completely solve the pair correlation problem for sequences of fractional parts of the form $\left\{\alpha n^{2}\right\}$ (see [5] for the details) if one could deal with the case $N=\left[p^{2 / 3-\varepsilon}\right]$ for some small $\varepsilon>0$. However, it is only known that N can be taken to be of the size $O\left(p^{3 / 4}\right)$ (see $[\mathbf{2}]$ and also $\left.[\mathbf{1}, \mathbf{4}]\right)$. The exponent $\frac{3}{4}$ is the best known at the time of writing this paper.

It is shown in [1] that for almost all primes p and $N=\left[p^{1 / 2}(\log p)^{1.087}\right]$ the set \mathcal{A} contains $(1+o(1)) p$ residue classes modulo p. It is also conjectured that \mathcal{A} possesses this property for any prime p and $N=\left[p^{1 / 2+\varepsilon}\right]$. We remark that one of our results from $[\mathbf{3}]$ says that for $N=p^{5 / 8+\varepsilon}$ the set \mathcal{A} contains $(1+o(1)) p$ residue classes modulo p.

In this paper we will prove a general statement that in a particular case confirms the validity of the mentioned conjecture from [1] and improves the corresponding result of $[\mathbf{3}]$. The arguments used in $[\mathbf{1}]$ and $[\mathbf{3}]$ are based on estimates of multiplicative character sums. The approach we use here is based on trigonometric sums.

Throughout the text, the letters p and q are used to denote prime numbers, m denotes a positive integer parameter, S and L are some integers with $0<L \leqslant m$. For a given set \mathcal{Q} we use $|\mathcal{Q}|$ to denote its cardinality.

Theorem 1.1. Let $\Delta=\Delta(m) \rightarrow \infty$ as $m \rightarrow \infty$. Then the set

$$
\left\{q y(\bmod m): 1 \leqslant q \leqslant m^{1 / 2}, S+1 \leqslant y \leqslant S+\Delta m^{1 / 2} \sqrt{m / \phi(m)} \log m\right\}
$$

contains $\left(1+O\left(\Delta^{-1}\right)\right) m$ residue classes modulo m.
In particular we have the following corollary.
Corollary 1.2. Let $\Delta=\Delta(p) \rightarrow \infty$ as $p \rightarrow \infty$. Then the set

$$
\left\{q y(\bmod p): q \leqslant p^{1 / 2}, 1 \leqslant y \leqslant \Delta p^{1 / 2} \log p\right\}
$$

contains $\left(1+O\left(\Delta^{-1}\right)\right) p$ residue classes modulo p.
Since there are $O\left(p^{1 / 2}(\log p)^{-1}\right)$ primes not exceeding $p^{1 / 2}$, we see that the set

$$
\left\{q y: q \leqslant p^{1 / 2}, S+1 \leqslant y \leqslant S+\Delta p^{1 / 2} \log p\right\}
$$

contains only $O(p \Delta)$ integers. This shows that the ranges of variables in Theorem 1.1 and Corollary 1.2 are sharp.

To prove Theorem 1.1, we study the congruence

$$
v_{1}\left(x_{1}+y_{1}\right) \equiv v_{2}\left(x_{2}+y_{2}\right)(\bmod m)
$$

where v_{1}, v_{2} belong to the set of all primes not exceeding $m^{1 / 2}$ and not dividing m, and x_{i}, y_{i} run through integers of special intervals. Now we denote by \mathcal{V} any subset of prime numbers not exceeding $m^{1 / 2}$ and not dividing m. Let J be the number of solutions of the congruence

$$
v_{1} y_{1} \equiv v_{2} y_{2}(\bmod m), \quad v_{1}, v_{2} \in \mathcal{V}, S+1 \leqslant y_{1}, y_{2} \leqslant S+L
$$

Theorem 1.3. The following asymptotic formula holds:

$$
J=\frac{|\mathcal{V}|(|\mathcal{V}|-1)}{m} L^{2}+|\mathcal{V}| L+O\left(\frac{m^{2} \log ^{2} m}{\phi(m)}\right)
$$

where $\phi(m)$ is the Euler function.
As we have mentioned, our argument is based on trigonometric sums. In particular, we establish a result on a special trigonometric sum that can be useful in applications to other additive congruences.

Theorem 1.4. Let \mathcal{P} be any subset of prime numbers not exceeding $p^{1 / 2}$. Then, for any complex coefficients α_{x}, β_{y}, the formula

$$
\sum_{a=1}^{p-1}\left|\sum_{q \in \mathcal{P}} \sum_{x=1}^{p} \sum_{y=1}^{p} \alpha_{x} \beta_{y} \mathrm{e}^{2 \pi \mathrm{i} a q(x+y) / p}\right|^{2}=|\mathcal{P}| \sum_{a=1}^{p-1}\left|\sum_{x=1}^{p} \sum_{y=1}^{p} \alpha_{x} \beta_{y} \mathrm{e}^{2 \pi \mathrm{i} a(x+y) / p}\right|^{2}+\theta p^{2} I_{1} I_{2}
$$

holds, where $|\theta| \leqslant 1$ and

$$
I_{1}=\sum_{x=1}^{p}\left|\alpha_{x}\right|^{2}, \quad I_{2}=\sum_{y=1}^{p}\left|\beta_{y}\right|^{2} .
$$

From Theorem 1.4 one derives the following statement.
Corollary 1.5. Let $\mathcal{X} \subset \mathbb{Z}_{p}, \mathcal{Y} \subset \mathbb{Z}_{p}$, and let \mathcal{P} be any subset of prime numbers not exceeding $p^{1 / 2}$. If J^{\prime} denotes the number of solutions of the congruence

$$
q_{1}\left(x_{1}+y_{1}\right) \equiv q_{2}\left(x_{2}+y_{2}\right)(\bmod p), \quad q_{1}, q_{2} \in \mathcal{P}, x_{1}, x_{2} \in \mathcal{X}, y_{1}, y_{2} \in \mathcal{Y}
$$

then

$$
J^{\prime}=\frac{|\mathcal{P}|(|\mathcal{P}|-1)}{p}|\mathcal{X}|^{2}|\mathcal{Y}|^{2}+|\mathcal{P}| I+\theta p|\mathcal{X}||\mathcal{Y}|
$$

where $|\theta| \leqslant 1$ and I denotes the number of solutions of the congruence

$$
x_{1}+y_{1} \equiv x_{2}+y_{2}(\bmod p), \quad x_{1}, x_{2} \in \mathcal{X}, y_{1}, y_{2} \in \mathcal{Y}
$$

Since $I \leqslant|\mathcal{X}|^{3 / 2}|\mathcal{Y}|^{3 / 2}$, we see that if

$$
|\mathcal{P}|^{2}|\mathcal{X}||\mathcal{Y}|=p^{2} \Delta, \quad \Delta=\Delta(p) \rightarrow \infty \text { as } p \rightarrow \infty
$$

then

$$
J^{\prime}=\frac{|\mathcal{P}|^{2}|\mathcal{X}|^{2}|\mathcal{Y}|^{2}}{p}\left(1+O\left(\Delta^{-1 / 2}\right)\right)
$$

In particular, the set

$$
\{q(x+y)(\bmod p), q \in \mathcal{P}, x \in \mathcal{X}, y \in \mathcal{Y}\}
$$

contains $\left(1+O\left(\Delta^{-1 / 2}\right)\right) p$ residue classes modulo p.
Corollary 1.5 also follows from the following statement.
Theorem 1.6. Let $\mathcal{X} \subset \mathbb{Z}_{p}, \mathcal{Y} \subset \mathbb{Z}_{p}$, and let \mathcal{Z} be any subset of positive integers not exceeding $p^{1 / 2}$. If $J^{\prime \prime}$ denotes the number of solutions of the congruence

$$
z_{1}\left(x_{1}+y_{1}\right) \equiv z_{2}\left(x_{2}+y_{2}\right)(\bmod p), \quad z_{1}, z_{2} \in \mathcal{Z}, x_{1}, x_{2} \in \mathcal{X}, y_{1}, y_{2} \in \mathcal{Y}
$$

subject to the additional condition $\left(z_{1}, z_{2}\right)=1$, then

$$
J^{\prime \prime}=\frac{|\mathcal{X}|^{2}|\mathcal{Y}|^{2} T_{\mathcal{Z}}}{p}+\theta p|\mathcal{X}||\mathcal{Y}|
$$

where $|\theta| \leqslant 1$ and $T_{\mathcal{Z}}$ is the number of pairs $z_{1}, z_{2} \in \mathcal{Z}$ with $\left(z_{1}, z_{2}\right)=1$.
We will also prove the following result on the ratio of intervals modulo a prime, which improves one of the results of [1].

Theorem 1.7. Let $\Delta=\Delta(p) \rightarrow \infty$ as $p \rightarrow \infty$. Then the set

$$
\left\{x y^{-1}(\bmod p): N+1 \leqslant x \leqslant N+\Delta p^{1 / 2}, S+1 \leqslant y \leqslant S+\Delta p^{1 / 2}\right\}
$$

contains $\left(1+O\left(\Delta^{-2}\right)\right) p$ residue classes modulo p.
Note, however, that when $N=S=0$ and $\Delta<\frac{1}{2} p^{1 / 2}$ the set described in Theorem 1.7 misses more than $c p^{1 / 2} \Delta^{-1}$ residue classes modulo p for some positive constant c (see [1]).

The rest of the paper is organized as follows. In $\S 2$ we prove Theorem 1.3. In $\S 3$ we combine the method of $\S 2$ with that described in [2] and establish Theorem 1.1. The rest of the results are proved in $\S \S 4-6$.

In what follows, we use the abbreviation

$$
\boldsymbol{e}_{k}(z)=\mathrm{e}^{2 \pi \mathrm{i} z / k}
$$

2. Proof of Theorem 1.3

Recall that J denotes the number of solutions to the congruence

$$
v_{1} y_{1} \equiv v_{2} y_{2}(\bmod m), \quad v_{1}, v_{2} \in \mathcal{V}, S+1 \leqslant y_{1}, y_{2} \leqslant S+L
$$

We express J in terms of trigonometric sums. Since

$$
v_{1} v_{2}^{-1} y_{1} \equiv y_{2}(\bmod m)
$$

we have

$$
J=\frac{1}{m} \sum_{a=0}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1} y_{1}-y_{2}\right)\right)
$$

where \mathcal{I} denotes the interval $[S+1, S+L]$. Picking up the term corresponding to $a=0$, we obtain

$$
J=\frac{|\mathcal{V}|^{2} L^{2}}{m}+\frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1} y_{1}-y_{2}\right)\right)
$$

Furthermore,

$$
\begin{aligned}
& \frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1} y_{1}-y_{2}\right)\right) \\
& =\frac{1}{m} \sum_{a=1}^{m-1} \sum_{v \in \mathcal{V}} \sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(y_{1}-y_{2}\right)\right) \\
& \quad+\frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{\substack{v_{2} \in \mathcal{V} \\
v_{2} \neq v_{1}}} \sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1} y_{1}-y_{2}\right)\right) \\
& =|\mathcal{V}| L-\frac{|\mathcal{V}| L^{2}}{m}+\frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{\substack{v_{2} \in \mathcal{V} \\
v_{2} \neq v_{1}}} \sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1} y_{1}-y_{2}\right)\right) .
\end{aligned}
$$

Therefore,

$$
J=\frac{|\mathcal{V}|^{2} L^{2}}{m}+|\mathcal{V}| L-\frac{|\mathcal{V}| L^{2}}{m}+\frac{\theta_{1}}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{\substack{v_{2} \in \mathcal{V} \\ v_{2} \neq v_{1}}}\left|\sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1} y_{1}-y_{2}\right)\right)\right|
$$

Here and everywhere below, θ_{j} denotes a function with $\left|\theta_{j}\right| \leqslant 1$.
For a given n, let $r(n):=r_{\mathcal{V}}(n)$ be the number of solutions of the congruence

$$
v_{1} v_{2}^{-1} \equiv n(\bmod m), \quad v_{1}, v_{2} \in \mathcal{V}, \quad v_{1} \neq v_{2}
$$

In particular, $r(1)=0$, and if $(n, m)>1$, then $r(n)=0$. Therefore, the above formula takes the form

$$
J=\frac{|\mathcal{V}|^{2} L^{2}}{m}+|\mathcal{V}| L-\frac{|\mathcal{V}| L^{2}}{m}+\frac{\theta_{1}}{m} \sum_{a=1}^{m-1} \sum_{\substack{1 \leqslant n \leqslant m \\(n, m)=1}} r(n)\left|\sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(n y_{1}-y_{2}\right)\right)\right|
$$

It is important to note that $v^{2} \leqslant m$ for any $v \in \mathcal{V}$. For this reason, we have $r(n) \leqslant 1$ for any $n, 1 \leqslant n \leqslant m$. Indeed, if

$$
v_{1} v_{2}^{-1} \equiv v_{3} v_{4}^{-1}(\bmod m)
$$

for some $v_{1}, v_{2}, v_{3}, v_{4} \in \mathcal{V}$ and if $v_{1} \neq v_{2}$, then

$$
v_{1} v_{4} \equiv v_{3} v_{2}(\bmod m)
$$

Since $v^{2} \leqslant m$ for any $v \in \mathcal{V}$, we derive that $v_{1} v_{4}=v_{3} v_{2}$. The elements of \mathcal{V} are prime numbers and $v_{1} \neq v_{2}$. Hence, $v_{1}=v_{3}, v_{2}=v_{4}$.

Thus,

$$
\begin{equation*}
J=\frac{|\mathcal{V}|^{2} L^{2}}{m}+|\mathcal{V}| L-\frac{|\mathcal{V}| L^{2}}{m}+\frac{\theta_{2}}{m} \sum_{a=1}^{m-1} \sum_{\substack{1 \leqslant n \leqslant m \\(n, m)=1}}\left|\sum_{y_{1} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(n y_{1}-y_{2}\right)\right)\right| \tag{2.1}
\end{equation*}
$$

It is now useful to recall the bound

$$
\left|\sum_{y \in \mathcal{I}} e_{m}(b y)\right| \leqslant \frac{1}{|\sin (\pi b / m)|}
$$

which, applied to (2.1), yields

$$
\begin{equation*}
J=\frac{|\mathcal{V}|^{2} L^{2}}{m}+|\mathcal{V}| L-\frac{|\mathcal{V}| L^{2}}{m}+\frac{\theta_{3}}{m} \sum_{a=1}^{m-1} \sum_{\substack{1 \leqslant n \leqslant m \\(n, m)=1}} \frac{1}{|\sin (\pi a n / m)|} \frac{1}{|\sin (\pi a / m)|} \tag{2.2}
\end{equation*}
$$

For each divisor $s \mid m$ we collect together the values of a with $(a, m)=s$. Then

$$
\begin{aligned}
& \sum_{a=1}^{m-1} \sum_{\substack{1 \leqslant n \leqslant m \\
(n, m)=1}} \frac{1}{|\sin (\pi a n / m)|} \frac{1}{|\sin (\pi a / m)|} \\
&=\sum_{\substack{s \mid m \\
s<m}} \sum_{\substack{1 \leqslant a \leqslant m-1 \\
(a, m)=s}} \sum_{\substack{1 \leqslant n \leqslant m \\
(n, m)=1}} \frac{1}{|\sin (\pi a n / m)|} \frac{1}{|\sin (\pi a / m)|} \\
& \leqslant \sum_{\substack{s \mid m \\
s<m}} s \sum_{\substack{1 \leqslant b \leqslant m / s-1 \\
(b, m / s)=1}} \sum_{\substack{(n, m / s)=1}} \frac{1}{|\sin (\pi b n /(m / s))|} \frac{1}{|\sin (\pi b /(m / s))|} \\
& \leqslant \sum_{\substack{s \mid m \\
s<m}} s\left(\sum_{\substack{1 \leqslant b \leqslant m / s \\
(b, m / s)=1}} \frac{1}{|\sin (\pi b /(m / s))|}\right)^{2} \\
& \ll \sum_{\substack{s \mid m \\
s<m}} s\left(\sum_{1 \leqslant b \leqslant m / 2 s} \frac{m}{b s}\right)^{2} \\
& \leqslant \frac{m^{3} \log ^{2} m}{\phi(m)}
\end{aligned}
$$

where we have used the inequality

$$
\sum_{s \mid m} \frac{1}{s} \leqslant \prod_{p \mid m} \frac{1}{1-p^{-1}}=\frac{m}{\phi(m)}
$$

Inserting this bound into (2.2), we obtain the required estimate.

3. Proof of Theorem 1.1

Without loss of generality, we may assume that

$$
\Delta m^{1 / 2} \sqrt{m / \phi(m)} \log m<m
$$

as otherwise the statement of Theorem 1.1 is trivial.

We take \mathcal{V} to be the set of all prime numbers coprime to m and not exceeding $m^{1 / 2}$. Let J_{1} denote the number of solutions to the congruence

$$
v_{1}\left(y_{1}+z_{1}\right) \equiv v_{2}\left(y_{2}+z_{2}\right)(\bmod m)
$$

subject to the conditions

$$
v_{1}, v_{2} \in \mathcal{V}, \quad y_{1}, y_{2}, z_{1}, z_{2} \in \mathcal{I},
$$

where \mathcal{I} denotes the set of integers $x,[S / 2]+1 \leqslant x \leqslant[S / 2]+L$, and

$$
L=\left[\frac{\Delta m^{1 / 2} \sqrt{m / \phi(m)} \log m}{2}\right]
$$

It is obvious that

$$
S+1 \leqslant y_{i}+z_{i} \leqslant S+\Delta m^{1 / 2} \sqrt{m / \phi(m)} \log m, \quad i=1,2 .
$$

Following the lines of the proof of Theorem 1.3, we express J_{1} in terms of trigonometric sums. Since

$$
v_{1} v_{2}^{-1}\left(y_{1}+z_{1}\right) \equiv y_{2}+z_{2}(\bmod m),
$$

we have

$$
J_{1}=\frac{1}{m} \sum_{a=0}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1}\left(y_{1}+z_{1}\right)-y_{2}-z_{2}\right)\right) .
$$

Picking up the term corresponding to $a=0$, we obtain

$$
J_{1}=\frac{|\mathcal{V}|^{2} L^{4}}{m}+\frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1}\left(y_{1}+z_{1}\right)-y_{2}-z_{2}\right)\right) .
$$

Since the number of solutions of the congruence

$$
y_{1}+z_{1} \equiv y_{2}+z_{2}(\bmod m), \quad y_{1}, z_{1}, y_{2}, z_{2} \in \mathcal{I},
$$

is $O\left(L^{3}\right)$, we obtain

$$
\frac{1}{m}\left|\sum_{a=1}^{m-1} \sum_{v \in \mathcal{V}} \sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(y_{1}+z_{1}-y_{2}-z_{2}\right)\right)\right| \leqslant \frac{|\mathcal{V}|}{m} \sum_{a=0}^{m-1}\left|\sum_{y \in \mathcal{I}} \boldsymbol{e}_{m}\left(a y_{1}\right)\right|^{4} \ll|\mathcal{V}| L^{3} .
$$

Therefore,

$$
\begin{aligned}
& \frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1}\left(y_{1}+z_{1}\right)-y_{2}-z_{2}\right)\right) \\
& \quad=O\left(|\mathcal{V}| L^{3}\right)+\frac{1}{m} \sum_{a=1}^{m-1} \sum_{v_{1} \in \mathcal{V}} \sum_{v_{2} \in \mathcal{V}} \sum_{y_{2} \in \mathcal{I}} \sum_{y_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(v_{1} v_{2}^{-1}\left(y_{1}+z_{1}\right)-y_{2}-z_{2}\right)\right) .
\end{aligned}
$$

Using exactly the same argument that we used in the proof of Theorem 1.3 , we derive the formula

$$
J_{1}=\frac{|\mathcal{V}|^{2} L^{4}}{m}+O\left(|\mathcal{V}| L^{3}\right)+O(R)
$$

where

$$
R=\frac{1}{m} \sum_{a=1}^{m-1} \sum_{\substack{1 \leqslant n \leqslant m \\(n, m)=1}}\left|\sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m}\left(a\left(n\left(y_{1}+z_{1}\right)-y_{2}-z_{2}\right)\right)\right|
$$

Next, introducing $s=(a, m)$, we obtain

$$
\begin{aligned}
R & \left.=\frac{1}{m} \sum_{\substack{s \mid m \\
s<m}} \sum_{\substack{b \leqslant m / s-1 \\
(b, m / s)=1}} \sum_{\substack{1 \leqslant n \leqslant m \\
(n, m)=1}} \sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m / s}\left(b\left(n\left(y_{1}+z_{1}\right)-y_{2}-z_{2}\right)\right) \right\rvert\, \\
& \leqslant \frac{1}{m} \sum_{\substack{s \mid m \\
s<m}} s \sum_{\substack{b \leqslant m / s-1 \\
(b, m / s)=1}} \sum_{\substack{1 \leqslant n \leqslant m / s \\
(n, m / s)=1}}\left|\sum_{y_{1}, z_{1} \in \mathcal{I}} \sum_{y_{2}, z_{2} \in \mathcal{I}} \boldsymbol{e}_{m / s}\left(b n\left(y_{1}+z_{1}\right)-b\left(y_{2}+z_{2}\right)\right)\right| \\
& \leqslant \frac{1}{m} \sum_{\substack{s \mid m \\
s<m}} s\left(\sum_{\substack{1 \leqslant n \leqslant m / s \\
(n, m / s)=1}}\left|\sum_{y_{1}, z_{1} \in \mathcal{I}} \boldsymbol{e}_{m / s}\left(n\left(y_{1}+z_{1}\right)\right)\right|\right)^{2} \\
& =\frac{1}{m} \sum_{\substack{s \mid m \\
s<m}} s\left(\sum_{\substack{1 \leqslant n \leqslant m / s \\
(n, m / s)=1}}\left|\sum_{y \in \mathcal{I}} \boldsymbol{e}_{m / s}(n y)\right|^{2}\right)^{2}
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
J_{1}=\frac{|\mathcal{V}|^{2} L^{4}}{m}+O\left(|\mathcal{V}| L^{3}\right)+O\left(R_{1}\right)+O\left(R_{2}\right) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
& R_{1}=\frac{1}{m} \sum_{\substack{s \mid m \\
s<m / L}} s\left(\sum_{\substack{1 \leqslant n \leqslant m / s \\
(n, m / s)=1}}\left|\sum_{y \in \mathcal{I}} \boldsymbol{e}_{m / s}(n y)\right|^{2}\right)^{2} \tag{3.2}\\
& R_{2}=\frac{1}{m} \sum_{\substack{s \mid m \\
m / L \leqslant s<m}} s\left(\sum_{\substack{1 \leqslant n \leqslant m / s \\
(n, m / s)=1}}\left|\sum_{y \in \mathcal{I}} \boldsymbol{e}_{m / s}(n y)\right|^{2}\right)^{2} \tag{3.3}
\end{align*}
$$

If $s<m / L$, then $m / s>L$ and, therefore, the congruence

$$
y_{1} \equiv y_{2}(\bmod m / s), \quad y_{1}, y_{2} \in \mathcal{I}
$$

has L solutions. Hence,

$$
\sum_{1 \leqslant n \leqslant m / s}\left|\sum_{y \in \mathcal{I}} \boldsymbol{e}_{m / s}(n y)\right|^{2}=\frac{m L}{s}
$$

whence, using (3.2),

$$
\begin{aligned}
R_{1} & \leqslant \frac{1}{m} \sum_{\substack{s \mid m \\
s<m / L}} s\left(\sum_{1 \leqslant n \leqslant m / s}\left|\sum_{y \in \mathcal{I}} e_{m / s}(n y)\right|^{2}\right)^{2} \\
& =m L^{2} \sum_{\substack{s \mid m \\
s<m / L}} s^{-1} \\
& \leqslant m L^{2} \sum_{s \mid m} s^{-1} \\
& \leqslant \frac{m^{2} L^{2}}{\phi(m)} .
\end{aligned}
$$

Inserting this bound into (3.1), we deduce that

$$
\begin{equation*}
J=\frac{|\mathcal{V}|^{2} L^{4}}{m}+O\left(|\mathcal{V}| L^{3}\right)+O\left(m^{2} L^{2} / \phi(m)\right)+O\left(R_{2}\right) \tag{3.4}
\end{equation*}
$$

We now proceed to estimate R_{2}. Note that in (3.3) we have $(n, m / s)=1$. Therefore, for any integer K,

$$
\sum_{y=K+1}^{K+m / s} e_{m / s}(n y)=0
$$

whence we deduce that there exist integers A and B with $0<B \leqslant m / s$ such that

$$
\sum_{y \in \mathcal{I}} e_{m / s}(n y)=\sum_{A<y \leqslant A+B} e_{m / s}(n y) .
$$

Hence

$$
\begin{aligned}
\sum_{\substack{1 \leqslant n \leqslant m / s \\
(n, m / s)=1}}\left|\sum_{y \in \mathcal{I}} \boldsymbol{e}_{m / s}(n y)\right|^{2} & =\sum_{\substack{1 \leqslant n \leqslant m / s \\
(n / m / s)=1}}\left|\sum_{A<y \leqslant A+B} \boldsymbol{e}_{m / s}(n y)\right|^{2} \\
& \leqslant \sum_{n=1}^{m / s}\left|\sum_{A<y \leqslant A+B} \boldsymbol{e}_{m / s}(n y)\right|^{2} \\
& =m B / s \leqslant m^{2} / s^{2} .
\end{aligned}
$$

Taking this into account, from (3.3) we deduce that

$$
R_{2} \leqslant \frac{1}{m} \sum_{s \geqslant m / L} s\left(m^{4} / s^{4}\right) \ll m L^{2} .
$$

Therefore, in view of (3.4), we obtain the asymptotic formula

$$
\begin{aligned}
J_{1} & =\frac{|\mathcal{V}|^{2} L^{4}}{m}+O\left(|\mathcal{V}| L^{3}\right)+O\left(m^{2} L^{2} / \phi(m)\right) \\
& =\frac{|\mathcal{V}|^{2} L^{4}}{m}\left(1+O\left(\frac{m}{|\mathcal{V}| L}+\frac{m^{3}}{\phi(m)|\mathcal{V}|^{2} L^{2}}\right)\right) .
\end{aligned}
$$

Recalling that $|\mathcal{V}| \gg m^{1 / 2} / \log m$ and

$$
L=\left[\frac{\Delta m^{1 / 2} \sqrt{m / \phi(m)} \log m}{2}\right]
$$

we arrive at the formula

$$
J_{1}=\frac{|\mathcal{V}|^{2} L^{4}}{m}\left(1+O\left(\Delta^{-1}\right)\right) .
$$

Next, define

$$
\mathcal{H}=\{q(y+z)(\bmod m), q \in \mathcal{V},[S / 2]+1 \leqslant y, z \leqslant[S / 2]+L\} .
$$

Obviously, $S+1 \leqslant y+z \leqslant S+\Delta m^{1 / 2} \sqrt{m / \phi(m)} \log m$. For a given $h \in \mathcal{H}$, by $I(h)$ we denote the number of solutions of the congruence

$$
q(y+z) \equiv h(\bmod m), \quad q \in \mathcal{V},[S / 2]+1 \leqslant y, z \leqslant[S / 2]+L .
$$

Then

$$
J_{1}=\sum_{h \in \mathcal{H}} I^{2}(h) \geqslant \frac{1}{|\mathcal{H}|}\left(\sum_{h \in \mathcal{H}} I(h)\right)^{2}=\frac{1}{|\mathcal{H}|}|\mathcal{V}|^{2} L^{4} .
$$

Therefore,

$$
|\mathcal{H}| \geqslant \frac{|\mathcal{V}|^{2} L^{4}}{J_{1}}=\frac{m}{1+O\left(\Delta^{-1}\right)}=\left(1+O\left(\Delta^{-1}\right)\right) m .
$$

The result now follows in view of $|\mathcal{H}| \leqslant m$.

4. Proof of Theorem 1.4

Set

$$
S=\sum_{a=1}^{p-1}\left|\sum_{q \in \mathcal{P}} \sum_{x=1}^{p} \sum_{y=1}^{p} \alpha_{x} \beta_{y} \boldsymbol{e}_{p}(a q(x+y))\right|^{2} .
$$

In the identity

$$
\sum_{a=1}^{p-1} \boldsymbol{e}_{p}(a u)= \begin{cases}-1, & \text { if } u \not \equiv 0(\bmod p), \\ p-1, & \text { if } u \equiv 0(\bmod p),\end{cases}
$$

we successively take $u=q_{1}\left(x_{1}+y_{1}\right)-q_{2}\left(x_{2}+y_{2}\right)$ and then

$$
u=q_{1} q_{2}^{-1}\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right),
$$

where q_{2}^{-1} is defined from $q_{2} q_{2}^{-1} \equiv 1(\bmod p)$, and obtain

$$
\sum_{a=1}^{p-1} e_{p}\left(a\left(q_{1}\left(x_{1}+y_{1}\right)-q_{2}\left(x_{2}+y_{2}\right)\right)\right)=\sum_{a=1}^{p-1} e_{p}\left(a\left(q_{1} q_{2}^{-1}\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right)\right) .
$$

Multiplying both sides by $\alpha_{x_{1}} \bar{\alpha}_{x_{2}} \beta_{y_{1}} \bar{\beta}_{y_{2}}$, performing the summation over

$$
q_{1}, q_{2} \in \mathcal{P}, \quad 1 \leqslant x_{1}, x_{2}, y_{1}, y_{2} \leqslant p
$$

and then changing the order of summation, we obtain

$$
S=\sum_{a=1}^{p-1} \sum_{\substack{q_{1} \in \mathcal{P} \\ q_{2} \in \mathcal{P}}} \sum_{x_{1} \in \mathbb{Z}_{p} \in \mathbb{Z}_{p}} \sum_{y_{1} \in \mathbb{Z}_{p}} \alpha_{y_{2}} \alpha_{\mathbb{Z}_{p}} \bar{\alpha}_{x_{2}} \beta_{y_{1}} \bar{\beta}_{y_{2}} e_{p}\left(a q_{1} q_{2}^{-1}\left(x_{1}+y_{1}\right)-a\left(x_{2}+y_{2}\right)\right),
$$

where $\mathbb{Z}_{p}=\{1,2 \ldots, p\}$. The contribution to S which comes from the case $q_{1}=q_{2}$ is equal to

$$
\begin{aligned}
&|\mathcal{P}| \sum_{a=1}^{p-1} \sum_{\substack{x_{1} \in \mathbb{Z}_{p} \\
x_{2} \in \mathbb{Z}_{p}}} \sum_{\substack{y_{1} \in \mathbb{Z}_{p} \\
y_{2} \in \mathbb{Z}_{p}}} \alpha_{x_{1}} \bar{\alpha}_{x_{2}} \beta_{y_{1}} \bar{\beta}_{y_{2}} \boldsymbol{e}_{p}\left(a\left(x_{1}+y_{1}-x_{2}-y_{2}\right)\right) \\
&=|\mathcal{P}| \sum_{a=1}^{p-1}\left|\sum_{x=1}^{p} \sum_{y=1}^{p} \alpha_{x} \beta_{y} \boldsymbol{e}_{p}(a(x+y))\right|^{2}
\end{aligned}
$$

Therefore,

$$
S=|\mathcal{P}| \sum_{a=1}^{p-1}\left|\sum_{x=1}^{p} \sum_{y=1}^{p} \alpha_{x} \beta_{y} \boldsymbol{e}_{p}(a(x+y))\right|^{2}+S_{1}
$$

where

$$
S_{1}=\sum_{a=1}^{p-1} \sum_{\substack{q_{1} \in \mathcal{P} \\ q_{2} \in \mathcal{P} \\ q_{1} \neq q_{2}}} \sum_{\substack{x_{1} \in \mathbb{Z}_{p} \\ x_{2} \in \mathbb{Z}_{p}}} \sum_{y_{1} \in \mathbb{Z}_{p}}^{y_{2} \in \mathbb{Z}_{p}} \mid \alpha_{x_{1}} \bar{\alpha}_{x_{2}} \beta_{y_{1}} \bar{\beta}_{y_{2}} \boldsymbol{e}_{p}\left(a q_{1} q_{2}^{-1}\left(x_{1}+y_{1}\right)-a\left(x_{2}+y_{2}\right)\right)
$$

Hence, if we prove that $\left|S_{1}\right| \leqslant p^{2} I_{1} I_{2}$, then we are done. To this end, we observe that

$$
\left|S_{1}\right| \leqslant \sum_{a=1}^{p-1} \sum_{n=1}^{p-1} r(n)\left|\sum_{\substack{x_{1} \in \mathbb{Z}_{p} \\ x_{2} \in \mathbb{Z}_{p}}} \sum_{\substack{y_{1} \in \mathbb{Z}_{p} \\ y_{2} \in \mathbb{Z}_{p}}} \alpha_{x_{1}} \bar{\alpha}_{x_{2}} \beta_{y_{1}} \bar{\beta}_{y_{2}} \boldsymbol{e}_{p}\left(\operatorname{an}\left(x_{1}+y_{1}\right)-a\left(x_{2}+y_{2}\right)\right)\right|
$$

where $r(n):=r_{\mathcal{P}}(n)$ denotes the number of solutions of the representation

$$
q_{1} q_{2}^{-1} \equiv n(\bmod p), \quad q_{1}, q_{2} \in \mathcal{P}, \quad q_{1} \neq q_{2}
$$

From the definition of the set \mathcal{P} we derive that $r(n) \leqslant 1$. Hence,

$$
\left|S_{1}\right| \leqslant \sum_{a=1}^{p-1} \sum_{n=1}^{p-1}\left|\sum_{\substack{x_{1} \in \mathbb{Z}_{p} \\ x_{2} \in \mathbb{Z}_{p}}} \sum_{\substack{y_{1} \in \mathbb{Z}_{p} \\ y_{2} \in \mathbb{Z}_{p}}} \alpha_{x_{1}} \bar{\alpha}_{x_{2}} \beta_{y_{1}} \bar{\beta}_{y_{2}} \boldsymbol{e}_{p}\left(\operatorname{an}\left(x_{1}+y_{1}\right)-a\left(x_{2}+y_{2}\right)\right)\right|
$$

When n runs through the reduced residue system modulo p, an runs through the same system for any fixed $a \not \equiv 0(\bmod p)$. Therefore,

$$
\begin{aligned}
\left|S_{1}\right| & \leqslant\left(\sum_{a=1}^{p-1}\left|\sum_{x=1}^{p} \sum_{y=1}^{p} \alpha_{x} \beta_{y} \boldsymbol{e}_{p}(a(x+y))\right|\right)^{2} \\
& =\left(\sum_{a=1}^{p-1}\left|\sum_{x=1}^{p} \alpha_{x} \boldsymbol{e}_{p}(a x)\right|\left|\sum_{y=1}^{p} \beta_{y} \boldsymbol{e}_{p}(a y)\right|\right)^{2}
\end{aligned}
$$

Applying the Cauchy inequality, we obtain

$$
\left|S_{1}\right| \leqslant\left(\sum_{a=0}^{p-1}\left|\sum_{x=1}^{p} \alpha_{x} \boldsymbol{e}_{p}(a x)\right|^{2}\right)\left(\sum_{a=0}^{p-1}\left|\sum_{y=1}^{p} \beta_{y} \boldsymbol{e}_{p}(a y)\right|^{2}\right)=p^{2} I_{1} I_{2}
$$

which concludes our proof of Theorem 1.4.

5. Proof of Theorem 1.6

The proof proceeds along exactly the same lines as that of Theorem 1.4: by remarking that, for any given residue class n, the congruence

$$
z_{1} z_{2}^{-1} \equiv n(\bmod p), \quad z_{1}, z_{2} \in \mathcal{Z},\left(z_{1}, z_{2}\right)=1
$$

has at most one solution.

6. Proof of Theorem 1.7

Without loss of generality we may suppose that

$$
0<N<N+\Delta p^{1 / 2}<p, \quad 0<M<M+\Delta p^{1 / 2}<p
$$

Define $X=\left[\Delta p^{1 / 2} / 2\right], N_{1}=[N / 2], S_{1}=[S / 2]$, and let \mathcal{H}^{*} be the set of all residue classes of the form $(x+t)(y+z)^{-1}(\bmod p)$, where

$$
N_{1}+1 \leqslant x, t \leqslant N_{1}+X, \quad S_{1}+1 \leqslant y, z \leqslant S_{1}+X
$$

Obviously,

$$
N+1 \leqslant x+t \leqslant N+\Delta p^{1 / 2}, \quad S+1 \leqslant y+z \leqslant S+\Delta p^{1 / 2}
$$

Next, let

$$
\mathcal{H}_{1}^{*}=\left\{h(\bmod p): h \notin \mathcal{H}^{*}, h \not \equiv 0(\bmod p)\right\}
$$

Then the congruence

$$
x+t-(y+z) h \equiv 0(\bmod p)
$$

has no solutions in variables h, x, t, y, z subject to the conditions

$$
h \in \mathcal{H}_{1}^{*}, \quad N_{1}+1 \leqslant x, t \leqslant N_{1}+X, \quad S_{1}+1 \leqslant y, z \leqslant S_{1}+X
$$

Therefore,

$$
\sum_{a=0}^{p-1} \sum_{h \in \mathcal{H}_{1}^{*}} \sum_{x, t \in \mathcal{I}_{1}} \sum_{y, z \in \mathcal{I}_{2}} \boldsymbol{e}_{p}(a(x+t-h(y+z)))=0
$$

where \mathcal{I}_{1} and \mathcal{I}_{2} denote the intervals $\left[N_{1}+1, N_{1}+X\right]$ and $\left[S_{1}+1, S_{1}+X\right]$, respectively.

Separating the term corresponding to $a=0$ we deduce that

$$
\left|\mathcal{H}_{1}^{*}\right| X^{4} \leqslant \sum_{a=1}^{p-1}\left|\sum_{x, t \in \mathcal{I}_{1}} \boldsymbol{e}_{p}(a(x+t))\right|\left|\sum_{y, z \in \mathcal{I}_{2}} \sum_{h \in \mathcal{H}_{1}^{*}} \boldsymbol{e}_{p}(a h(y+z))\right|
$$

On the other hand, for $(a, p)=1$, we have

$$
\begin{aligned}
\left|\sum_{y, z \in \mathcal{I}_{2}} \sum_{h \in \mathcal{H}_{1}^{*}} \boldsymbol{e}_{p}(a h(y+z))\right| & \leqslant \sum_{h \in \mathcal{H}_{1}^{*}}\left|\sum_{y, z \in \mathcal{I}_{2}} \boldsymbol{e}_{p}(a h(y+z))\right| \\
& \leqslant \sum_{h=1}^{p-1}\left|\sum_{y, z \in \mathcal{I}_{2}} \boldsymbol{e}_{p}(a h(y+z))\right| \\
& \leqslant \sum_{h=0}^{p-1}\left|\sum_{y, z \in \mathcal{I}_{2}} \boldsymbol{e}_{p}(h(y+z))\right| \\
& =p X
\end{aligned}
$$

and, similarly,

$$
\sum_{a=1}^{p-1}\left|\sum_{x, t \in \mathcal{I}_{1}} \boldsymbol{e}_{p}(a(x+t))\right| \leqslant p X
$$

Hence,

$$
\left|\mathcal{H}_{1}^{*}\right| X^{4} \leqslant p^{2} X^{2}
$$

whence

$$
\left|\mathcal{H}_{1}^{*}\right| \leqslant \frac{p^{2}}{X^{2}} \ll p \Delta^{-2}
$$

Since $|\mathcal{H}|=p-1-\left|\mathcal{H}_{1}^{*}\right|$, the result follows.
Acknowledgements. The authors are highly thankful to the anonymous referee for many useful comments.

References

1. M. Z. Garaev, Character sums in short intervals and the multiplication table modulo a prime, Monatsh. Math. 148 (2006), 127-138.
2. M. Z. Garaev, On the logarithmic factor in error term estimates in certain additive congruence problems, Acta. Arith. 124 (2006), 27-39.
3. M. Z. Garaev and A. A. Karatsuba, On character sums and the exceptional set of a congruence problem, J. Number Theory 114 (2005), 182-192.
4. M. Z. Garaev and K.-L. Kueh, Distribution of special sequences modulo a large prime, Int. J. Math. Math. Sci. 50 (2003), 3189-3194.
5. Z. Rudnik, P. Sarnak and A. Zaharescu, The distribution of spacings between the fractional parts of $n^{2} \alpha$, Invent. Math. 145(1) (2001), 37-57.
6. M. VÂJÂItu and A. Zaharescu, Differences between powers of a primitive root, Int. J. Math. Math. Sci. 29(2) (2002), 325-331.
