ON EXPLICIT ESTIMATES FOR LINEAR FORMS
IN THE VALUES OF A CLASS OF E-FUNCTIONS

Xu Guangshan and Wang Lianxiang

We apply methods of Mahler to obtain explicit lower bounds for certain combinations of E-functions satisfying systems of linear differential equations as studied by Makarov. Our results sharpen and generalise earlier results of Mahler, Shidlovskii, and Väänänen.

1. Introduction

Makarov [3] has found lower bounds for linear forms in the values of a certain class of E-functions, but the constants involved in his estimates are not given explicitly. In this note we apply the method of Mahler [7]. Firstly, we give an explicit expression for the constant appearing in the lower bound of [3], thereby obtaining an explicit result (Theorem 1). Secondly, the effective transference theorem for Corollary 1.2 is provided by Theorem 2 of the present paper. Corollaries 1.3 and 2.1 of the present paper give explicit results which sharpen those of [10] and Väänänen [9]. We also give some results which sharpen those of [3], [7], Shidlovskii [7] and Väänänen [8] by applying the results of this note to some special E-functions. We detail these applications in the last part of the section "Main results".

Received 5 August 1981. The authors are grateful to Professor A.J. van der Poorten for his kind direction and help in connection with the present work.
2. Main results

Let \(\mathbb{C} \) be the field of complex numbers, \(\mathbb{Z} \) the domain of rational integers, \(\mathbb{Q} \) the field of rational numbers, \(\mathbb{K} \) an algebraic number field (thus of finite degree over \(\mathbb{Q} \)), \(\mathbb{O}_\mathbb{K} \) the domain of integers of \(\mathbb{K} \). An entire function \(f(z) \) satisfying the following conditions is called an \(E \)-function:

(i)
\[
\frac{a_l}{l!} z^l, \quad a_l \in \mathbb{K}, \quad \frac{a_l}{l!} \leq c_l, \quad l = 0, 1, 2, \ldots ,
\]
where \(\frac{a_l}{l!} \) denotes the maximum of the absolute values of \(a_l \) and its field conjugates, and \(c_l \geq 1 \) is a positive constant;

(ii) there is a sequence of national numbers \(q_0, q_1, \ldots, q_l, \ldots \)
such that
\[
q_l a_j \in \mathbb{O}_\mathbb{K}, \quad j = 0, 1, \ldots, l, \quad l = 0, 1, \ldots ,
\]
and
\[
q_l \leq c_l, \quad l = 0, 1, \ldots .
\]

The \(E \)-functions we consider below are the class of \(E \)-functions defined over the field \(\mathbb{K} = \mathbb{Q} \). Let

\[
f_{ij}(z) = \sum_{l=0}^{\infty} \frac{a_{ijl}}{l!} z^l, \quad i = 1, \ldots, k, \quad j = 1, \ldots, n_i,
\]
be a set of \(E \)-functions satisfying conditions (i) and (ii) and the following system of the differential equations

\[
y_{ij} = Q_{ij0}(z) + \sum_{l=1}^{n_i} Q_{ijl}(z)y_{il}, \quad i = 1, \ldots, k, \quad j = 1, \ldots, n_i,
\]
where \(Q_{ijl}(z) \in \mathbb{C}(z), \quad i = 1, \ldots, k, \quad j = 1, \ldots, n_i \). We may, without loss of generality, assume that \(Q_{ijl}(z) \in \mathbb{Q}(z) \) as is pointed out by Shidlovskii [7].

First of all we introduce some notation. Let \(T(z) \in \mathbb{Z}[z] \) be the
least common denominator of the rational functions \(Q_{ij}(z) \); then
\[
T(z)Q_{ij}(z) \in \mathbb{Z}[z].
\]
Let
\[
g = \max \{ \deg T(z), \deg(T(z)Q_{ij}(z)) \}.
\]
\(T \) denotes the maximum of the absolute values of the coefficients of \(T(z) \) and the \(T(z)Q_{ij}(z) \). Set \(\alpha = a/b \in \mathbb{Q} \) such that \(\alpha T(\alpha) \neq 0 \), where \(b > 0 \). Let
\[
H = \max(|a|, b) , \quad B = 4C^2HT , \quad L = n_1 + \ldots + n_k.
\]
Denote the minimum value of the orders of the zero at \(z = 0 \) of all the functions \(f_{ij}(z) \) by \(p \), and their maximum by \(q \). We define the constants \(\sigma \) and \(\sigma_1 \) as follows:
\[
\sigma = q , \quad \sigma_1 = p \quad \text{if the set} \quad \{ f_{ij}(z) \} \quad \text{and} \quad l \quad \text{constitute an irreducible set of functions} \quad \text{(see [7], p. 389 for the definition)},
\]
\[
\sigma = q + \delta , \quad \sigma_1 = \delta \quad \text{otherwise},
\]
where \(\delta \) is a constant depending only on the functions \(\{ f_{ij}(z) \} \) and the system of differential equations \((1) \). Finally, we define two functions
\[
\sigma(r) = (L+1)^2(g+\sigma+1)(\log B)^{\frac{k}{2}}r(\log r)^{\frac{1}{2}},
\]
\[
g(r) = e^{-2\zeta(r)}r!.
\]
We obtain the following results.

Theorem 1. Let \(\{ f_{ij}(z) \} \) be a set of \(E \)-functions defined as above which with \(l \) are linearly independent over \(\mathbb{C}(z) \) and satisfy the system of differential equations \((1) \), and let \(\{ x_{ij} \} \) \(\{ i = 1, \ldots, k \} \)
\(\{ j = 1, \ldots, n_i \} \) be an arbitrary given set of integers not all zero. Put
\[
x_i' = \max_{1 \leq j \leq n_i} (|x_{ij}|) , \quad \tilde{x}_i = \max_{1 \leq i \leq k} (x_i) , \quad x = \max_{1 \leq i \leq k} (\tilde{x}_i).
\]
If \(r \) is the positive integer satisfying the inequality
\[
g(r-1) \leq x < g(r),
\]
then we have

\[r \geq B^4(L+1)^4(g+\sigma+1)^2 + 1 \]

and

\[\prod_{t=1}^{k} \prod_{i=1}^{n_t} \prod_{j=1}^{n_i} x_{ij} f_{ij}(\alpha) \geq \varepsilon^{-2(L+1)\sigma(r)} \]

where \(\|y\| \) denotes the distance of the real number \(y \) from the nearest integer.

COROLLARY 1.1. Under the assumptions of Theorem 1 we have

\[\prod_{t=1}^{k} \prod_{i=1}^{n_t} \prod_{j=1}^{n_i} x_{ij} f_{ij}(\alpha) > x^{-12(L+1)^3(g+\sigma+1)(\log B/\log \log x)^{\frac{k}{2}}} \]

if

\[x > B^6(L+1)^4(g+\sigma+1)^2 B^6(L+1)^4(g+\sigma+1)^2 \]

COROLLARY 1.2. Under the hypotheses of Theorem 1 and the conditions \(n_i = 1 \) (\(i = 1, \ldots, n \)) we have

\[r \geq B^4(k+1)^4(g+\sigma+1)^2 + 1 \]

and

\[\prod_{t=1}^{k} \prod_{i=1}^{n_t} \prod_{j=1}^{n_i} x_{ij} f_{ij}(\alpha) \geq \varepsilon^{-2(k+1)\sigma(r)} \]

COROLLARY 1.3. Under the conditions of Corollary 1.2 we have

\[\prod_{t=1}^{k} \prod_{i=1}^{n_t} \prod_{j=1}^{n_i} x_{ij} f_{ij}(\alpha) > x^{-12(k+1)^3(g+\sigma+1)(\log B/\log \log x)^{\frac{k}{2}}} \]

if

\[x > B^6(k+1)^4(g+\sigma+1)^2 B^6(k+1)^4(g+\sigma+1)^2 \]

THEOREM 2. Suppose that the functions \(f_i(a) \) (\(i = 1, \ldots, k \)), with \(l \), belong to an irreducible set of functions and let \(y \geq 2 \) be any
Linear forms in the values of \(E \)-functions

integer. Let \(r \) be the positive integer such that \(g(r-1) \leq y < g(r) \).
Under the hypotheses of Corollary 1.2 we have

\[
(4) \quad r \geq B^l(k+1)^l(g+q+1)^2 + 1
\]

and

\[
(5) \quad y \|y_{f_1}(\alpha)\| \cdots \|y_{f_k}(\alpha)\| > e^{-2(k+2)c(r)}.
\]

COROLLARY 2.1. Under the hypotheses of Theorem 2 we have

\[
y \|y_{f_1}(\alpha)\| \cdots \|y_{f_k}(\alpha)\| > y^{-12(k+2)(k+1)^2(g+q+1)(\log B/\log y)^k}
\]

if

\[
y > B^l(k+1)^l(g+q+1)^2 B_1^l(k+1)^l(g+q+1)^2.
\]

Corollaries 1.3 and 2.1 are similar to Theorems 2 and 21 in [10] and Theorems 1 and 2 of Väänänen in [9], respectively. The constants here, however, are given in explicit form.

We now mention some examples:

(i) Consider a function

\[
K_\lambda(z) = \sum_{\lambda=1}^m \frac{(-1)^h}{h! \cdots (\lambda+h)} (z/2)^{2h}.
\]

Suppose that \(\lambda_1, \ldots, \lambda_m \) are rational numbers with

\(\lambda_i \neq -1, \pm 1/2, -2, \ldots \) \((i = 1, \ldots, m)\) and that the \(\lambda_i \pm \lambda_j \)

\((1 \leq i < j \leq m)\) are not integers. Let \(\alpha_1, \ldots, \alpha_n \) be nonzero rational

integers whose squares are distinct. Then the \(2mn \) functions \(K_{\lambda_i}(\alpha_j z) \),

\(K_{\lambda_j}(\alpha_i z) \) \((1 \leq i \leq m, 1 \leq j \leq n)\) are a set of \(E \)-functions which are

linearly independent together with the identity over \(\mathbb{Q} \) (see [3], p. 8) and satisfy the following system of differential equations:

\[
\frac{d}{dz} y_{1i,j} = y_{2i,j},
\]

\[
\frac{d}{dz} y_{2i,j} = -(2\lambda_i-1)z^{-1}y_{2i,j} - \alpha_j^2 y_{1i,j}, \quad i = 1, \ldots, m, \quad j = 1, \ldots, n.
\]
Put
\[\lambda_{i} = \lambda_{i}' / d \ (d > 0) , \quad \lambda' = \max_{1 \leq i \leq m} (|\lambda_{i}'|) , \]
\[\alpha_{j} = \alpha_{j}' / \beta \ (\beta > 0) , \quad \alpha = \max_{1 \leq j \leq n} (|\alpha_{j}'|) . \]

It is easy to compute that
\[C = 2\alpha d e^6 (\lambda' + d)^m , \]
\[T = 2\alpha^2 \beta^2 d \lambda' , \]
\[H = 1 , \quad g = 1 , \quad L + 1 = 2mn + 1 , \]
\[B = 4C^2 TH . \]

From Corollary 1.1 we obtain
\[> x^{-12(2mn+1)^3(2+\sigma)}(\log B / \log log x)^{\frac{1}{2}}, \]

if
\[x > B^{16(2mn+1)^4(2+\sigma)^2} B^{16(2mn+1)^4(2+\sigma)^2} , \]

where \(x_{i,j}, y_{i,j} \ (1 \leq i \leq m, \ 1 \leq j \leq n) \) are any set of integers not all zero, \(x_{i,j} = \max(1, |x_{i,j}|, |y_{i,j}|) \), \(X = \max_{1 \leq i \leq m, 1 \leq j \leq n} (x_{i,j}) \). This result is an application of the theorem of [3], our result however explicitly provides the unspecified constants appearing in [3].

(ii) Suppose that \(a_1, \ldots, a_k \) are distinct rational integers, and that \(b > 0 \) is a rational integer such that \(\{b, a_1, \ldots, a_k\} = 1 \).

Consider a set of \(E \)-functions
\[1, e^{(a_1/b)s}, \ldots, e^{(a_k/b)s} . \]

Obviously, the hypotheses of Corollary 1.2 and Theorem 2 are satisfied, and these \(E \)-functions belong to an irreducible set of functions, so that \(g = 0 \) and \(q = 0 \). We obtain from Corollary 1.2 and Theorem 2 that
Linear forms in the values of B-functions

\[\bar{x}_1 \ldots \bar{x}_k \left\| \sum_{i=1}^{k} x_i e^{a_i/b} \right\| > e^{-2(k+1)c(r)}, \]

respectively, where

\[c(r) = (k+1)^2 (\log B)^{\frac{1}{2}} r (\log r)^{\frac{1}{2}}, \]

\[B = b \max_{1 \leq i \leq k} \{ b, |a_i| \}. \]

The two inequalities above are similar to those of Theorems 1 and 2 of [1], respectively. The exponent $-2(k+2)c(r)$ above constitutes a slight sharpening of the result obtained by Mahler in [7], Theorem 2, which has the exponent $-2k(k+1)c(r)$.

It follows from Theorem 1' of [7] that

\[
\min_{\left| x_i \right| \leq x} \left\| x_1 e^{a_1/b} + \ldots + x_k e^{a_k/b} \right\| > x^{1-k-\frac{7}{2}(\log \log x)^{\frac{1}{2}}}
\]

if

\[x > \exp \left(\exp \gamma^2 k^5 \right), \]

where γ is a constant independent of k. Our Corollary 1.3 implies: if

\[x \geq B^{16k^4} B^{16k^4}, \]

then

\[
\min_{\left| x_i \right| \leq x} \left\| x_1 e^{a_1/b} + \ldots + x_k e^{a_k/b} \right\| > x^{1-k-12k^3 (\log B / \log \log x)^{\frac{1}{2}}},
\]

again sharpening the earlier result.

(iii) Let λ be a rational number (but not a rational integer).
Consider a set of E-functions
\[
\phi_\lambda((a_1/b)z), \ldots, \phi_\lambda((a_k/b)z),
\]
where
\[
\phi_\lambda(z) = \sum_{l=0}^{\infty} \frac{z^l}{(\lambda+1)\ldots(\lambda+l)}.
\]
By [5], $\phi_\lambda((a_1/b)z), \ldots, \phi_\lambda((a_k/b)z)$, with λ, belong to an irreducible set of functions which are linearly independent over $\mathbb{C}(z)$ and satisfy the following system of differential equations:
\[
d \frac{d}{dz} \phi_\lambda((a_\xi/b)z) = \lambda/z + ((a_\xi/b)-(\lambda/z))\phi_\lambda((a_\xi/b)z), \quad \xi = 1, \ldots, k.
\]
Put $\lambda = \lambda_1/d$, $(\lambda_1, d) = 1$, $d > 0$, $\alpha = 1$. It is easy to compute that
\[
C = bd^{12}e^{12(\lambda_1+\alpha)/d} \max_{1 \leq \xi \leq k} |a_\xi| \quad \text{(by Mahler [2], p. 146)},
\]
\[
T = bd\lambda\max_{1 \leq \xi \leq k} |a_\xi|,
\]
\[
H = 1, \quad g = 1, \quad q = 0.
\]
From Corollaries 1.3 and 2.1 we obtain
\[
\bar{x}_1 \ldots \bar{x}_k \sum_{i=1}^{k} x_i \phi_\lambda(a_\xi/b) > x^{-24(k+1)(\log B/\log\log x)^{1/2}}
\]
if
\[
x > B^{64(k+1)4/5} B^{64(k+1)4/5},
\]
and
\[
y \|y \phi_\lambda(a_1/b)\| \ldots \|y \phi_\lambda(a_k/b)\| > y^{-24(k+1)^2(k+2)(\log B/\log\log y)^{1/2}}
\]
if
\[
y > B^{64(k+1)4/5} B^{64(k+1)4/5}.
\]
These results are Theorems 1 and 2 of [8], respectively; however we explicitly compute the unspecified constants that appear in [8].

3. Lemmas

Lemma 1. Let \((g_{i,j})\) \((1 \leq i \leq m, 1 \leq j \leq n)\) be a \(m \times n\) \((m < n)\) matrix of integers. Put

\[
G_i = \sum_{j=1}^{n} |g_{i,j}|, \quad i = 1, \ldots, m.
\]

Then there are integers \(x_1, \ldots, x_n\) not all zero such that

\[
\sum_{j=1}^{n} g_{i,j} x_j = 0, \quad i = 1, \ldots, m,
\]

and

\[
\max_{1 \leq i \leq n} (|x_i|) \leq (G_1 \ldots G_m)^{1/(n-m)}.
\]

This is Lemma 1 of [1].

Lemma 2. Let \(r_1, \ldots, r_k\) and \(R\) be positive integers satisfying

\[
r = r_0 = \max(r_1, \ldots, r_k) \geq 2,
\]

\[
L < R \leq \sum_{i=0}^{k} n_i r_i + L \quad \text{(where } n_0 = 1\text{)};
\]

and let

\[
m = \sum_{i=0}^{k} n_i r_i + L + 1 - R, \quad n = \sum_{i=0}^{k} n_i r_i + L + 1,
\]

\[
M = \left[\frac{(L+1)^m (2L^2)^{m(m-1)/2}}{2^n} \right]^{1/R}.
\]

Then there are polynomials \(P_{i,j}(z) \in \mathbb{Z}[z]\) \((i = 0, 1, \ldots, k, j = 1, \ldots, n_i)\) which do not all vanish identically and have the following properties:

(i) \(\deg P_{i,j}(z) \leq r\), \(\operatorname{ord} P_{i,j}(z) \geq r - r_i\), \(\left|P_{i,j}\right| \leq r_i! 2^p M\).
\[i = 0, 1, \ldots, k, \quad j = 1, \ldots, n, \] where \(\text{ord} P_{ij}(z) \)
denotes the order of the zero at \(z = 0 \) of the polynomial \(P_{ij}(z) \), and \(|P_{ij}| \) denotes the height of \(P_{ij}(z) \), that is, the maximum of the absolute values of the coefficients of \(P_{ij}(z) \);

(ii) let

\[P(z) = \sum_{i=0}^{k} \sum_{j=1}^{n} P_{ij}(z)f_{ij}(z) \quad (\text{where } f_{01}(z) \equiv 1) \]

\[= \sum_{h=m}^{\infty} r!(h!)^{-1} \rho_h z^{h} = \sum_{h=m}^{\infty} \rho_h z^h, \]

then

\[|\rho_h| \leq (l+1)r!(h!)^{-1}(1+c)^h m, \quad h \geq m. \]

Proof. Let \(S \) be the set \(S = \{(i, l) \mid 0 \leq i \leq k, r-r_i \leq l \leq r\} \), and write

\[P_{ij}(z) = r! \sum_{l=0}^{r} P_{ijl}(z!)^{-1} z^l, \quad i = 0, 1, \ldots, k, \quad j = 1, \ldots, n. \]

Property (i) implies \(p_{ijl} = 0 \) if \((i, l) \notin S \) and \(j = 1, \ldots, n \).

Property (ii) implies \(\text{ord} F(z) \geq m \). Thus the \(p_{ijl} \)'s satisfy the following system of equations

\[P_{0l} + \sum_{i=1}^{k} \sum_{j=1}^{n} \sum_{l=0}^{m} \binom{h}{l} a_{i,j,h-l} p_{ijl} = 0, \quad h = 0, 1, \ldots, m-1. \]

On multiplying these \(m \) equations by \(q_0, q_1, \ldots, q_{m-1} \), respectively, we obtain

\[q_h P_{0l} + \sum_{i=1}^{k} \sum_{j=1}^{n} \sum_{l=0}^{m} \binom{h}{l} q_h a_{i,j,h-l} p_{ijl} = 0, \quad h = 0, 1, \ldots, m-1. \]

This is a system of linear equations in the unknowns \(\{p_{ijl}\} \) and with rational integer coefficients. Put
Clearly, we have

$$G_h \leq (L+1)(2C^2)^h, \quad h = 0, 1, \ldots, m-1.$$

The number of unknowns for the system of equations (6) is equal to \(n > m \). So we see from Lemma 1 that this system of equations has a set of rational integer solutions \(\{p_{i,j,l}\} \) not all zero and satisfying

$$\max_{i,j,l} |p_{i,j,l}| \leq (G_0 \ldots G_{m-1})^{1/(n-m)} \leq [(L+1)^m(2C^2)^m(m-1)/2]^{1/R} = M.$$

Since

$$p_{i,j}(z) = r_i! \sum_{l=0}^r r!(r_i!l!)^{-1}p_{i,j,l}z^l,$$

it follows that

$$|\overline{p_{i,j}}| \leq r_i!2^m M, \quad i = 0, 1, \ldots, k, \quad j = 1, \ldots, n_i.$$

Because

$$\sigma_h = p_{01}h + \sum_{i=1}^k \sum_{j=1}^{n_i} \sum_{l=0}^h (h_j)\alpha_{i,j,h-l}p_{i,j,l},$$

we have

$$|\rho_h| = (r!/h!)|\sigma_h| \leq (L+1)r!(h!)^{-1}(1+C)^h M,$$

completing the proof of the lemma.

Let

$$F_0(z) = F(z), \quad F_\tau(z) = T(z) \frac{d}{dz} F_{\tau-1}(z),$$

\(\tau = 1, 2, \ldots \).

It follows from the system of differential equations (1) and (7) that
where \(P_{ij}(z) \) satisfy the following recurrence relations:

\[
P_{ij0}(z) = P_{ij}(z),
\]

\[
P_{01}(z) = T(z) \frac{d}{dz} P_{01,1}(z) + \sum_{i=1}^{k} \sum_{j=1}^{n_i} T(z) Q_{ij0}(z) P_{i,j,1}(z),
\]

\[
P_{ij}(z) = T(z) \frac{d}{dz} P_{i,j,1}(z) + \sum_{l=1}^{n_i} T(z) Q_{i,lj}(z) P_{i,l,j-1}(z),
\]

\[i = 1, \ldots, k, \quad j = 1, \ldots, n_i.\]

Clearly, \(P_{ij}(z) \in \mathbb{Z}[z] \). Further, put

\[
\tilde{f}_0(z) = f_{01}(z) \equiv 1, \quad \tilde{f}_{ij}(z) = f_{ij}(z),
\]

\[
\tilde{p}_{T0}(z) = P_{01}(z), \quad \tilde{p}_{TV}(z) = P_{ij}(z),
\]

where

\[
\nu = \nu(i, j) = \sum_{l=0}^{i-1} n_l + j - 1, \quad i = 1, \ldots, k, \quad j = 1, \ldots, n_i.
\]

In particular, set \(\nu = 0 \) if \(i = 0 \) (of course \(j = 1 \)). Conversely, if \(\nu \) is given, then we can determine \(i \) by the following inequality

\[
i-1\sum_{l=0}^{i-1} n_l \leq \nu \leq \sum_{l=0}^{i} n_l - 1.
\]

Let \(P(z) \) be the matrix

\[
P(z) = (\tilde{p}_{TV}(z))_{0 \leq T, \nu \leq L},
\]

and put

\[
\Delta(z) = \det P(z).
\]

Lemma 3. Let \(\{f_{ij}(z)\} \) be a set of \(E \)-functions defined as above which satisfy the system of differential equations (1) and which, with \(1 \), are linear independent over \(\mathbb{C}(z) \). Then there exists a constant
Linear forms in the values of E-functions

\[N_0 = L(L+1)(g+1)/2 + R + \sigma_1 \]

such that when \(r^* = \min(r_1, \ldots, r_k) > N_0 \) we have \(\Delta(z) \not\equiv 0 \), and

\[\Delta(z) = z^{L+1}r-R-\left[L(L+1)/2\right]-\sigma_1(z) , \]

where \(\Delta_1(z) \equiv 0 \), \(\Delta_1(z) \in \mathbb{Z}[z] \) and

\[\deg \Delta_1(z) \leq t = R + L(L+1)(g+1)/2 + \sigma . \]

Proof. Suppose that the rank of \(\Delta(z) \) is \(W+1 < L+1 \). Obviously \(W \geq 0 \). Then there is at least one non-zero minor determinant of order \(W+1 \) in \(P(z) \). Without loss of generality, we assume that it is in the left upper corner, namely that it is the principal minor determinant \(\Delta_0(z) \equiv 0 \). Then there exists a set of rational functions

\[D_{\omega \nu}(z) \in \mathbb{Q}(z) , \quad \omega = 0, 1, \ldots, W , \quad \nu = W+1, \ldots, L , \]

such that

\[\tilde{P}_{\tau \nu}(z) = \sum_{\omega=0}^{W} \tilde{P}_{\tau \omega}(z)D_{\omega \nu}(z) , \quad \tau = 0, 1, \ldots, W , \quad \nu = W+1, \ldots, L \]

(see Lemma 6 in [6]). \(P_{\tau}(z) \) can be rewritten as

\[P_{\tau}(z) = \sum_{\nu=0}^{L} \tilde{P}_{\tau \nu}(z)\tilde{f}_{\nu}(z) ; \quad (9) \]

and we have

\[P_{\tau}(z) = \sum_{\nu=0}^{W} \tilde{P}_{\tau \nu}(z)u_{\nu}(z) , \quad \tau = 0, 1, \ldots, W , \quad (10) \]

where

\[u_{\nu}(z) = \tilde{f}_{\nu}(z) + \sum_{\omega=W+1}^{L} \tilde{f}_{\omega}(z)D_{\omega \nu}(z) . \]

Let \(T_{1}(z) \) be the least common denominator of the \(D_{\omega \nu}(z) \). Put

\[u_{\nu}(z) = T_{1}(z)u_{\nu}(z) , \quad \nu = 0, 1, \ldots, W . \]

From Lemma 6 in [6] and Lemma 4 in [5] we find that
In view of (10), we get

\begin{equation}
\Delta_0(z)U_\upsilon(z) = \sum_{\omega=0}^{\omega} T_{1}(z)\Delta_{\omega\upsilon}(z)F_{\omega}(z),
\end{equation}

where \(\Delta_{\omega\upsilon}(z) \) is the cofactor of the element \(\tilde{P}_{\omega\upsilon}(z) \) of the matrix corresponding to \(\Delta_0(z) \). It is easy to compute that

\[
\text{ord} \{ \Delta_0(z)U_\upsilon(z) \} \leq \text{deg} \Delta_0(z) + \text{ord} U_\upsilon(z) \\
\leq (W+1)r + L(L+1)g/2 + \sigma_1,
\]

\[
\text{ord} \tilde{P}_{\tau\upsilon}(z) > r - r_{i(\upsilon)} - \tau,
\]

\[
\text{ord} F_{\tau}(z) > \text{ord} F_0(z) - L \geq m - L,
\]

\[
\text{ord} \Delta_{\omega\upsilon}(z) \geq W' - \sum_{0 \leq \tau \leq W \atop \tau \neq \upsilon} r_{i(\tau)} - L(L+1)/2,
\]

where \(i = i(\tau) \) satisfies (8). It follows from (11) that

\[
(W+1)r + L(L+1)g/2 + \sigma_1 > W' - \sum_{0 \leq \tau \leq W \atop \tau \neq \upsilon} r_{i(\tau)} - L(L+1)/2 + m - L.
\]

Since \(W < L \) this inequality implies that there exists at least one suffix \(i(\tau) \) in the interval \(0 \leq i(\tau) \leq k \) such that

\[
r_{i(\tau)} < L(L+1)(g+1)/2 + R + \sigma_1.
\]

This contradicts the assumption of the lemma. Hence we must have \(W = L \), that is, \(\Delta(z) \neq 0 \).

Without loss of generality, we suppose that

\[
\text{ord} \tilde{f}_{\upsilon_0}(z) = \text{ord} f_{i_0j_0}(z) = p
\]

for some \(\upsilon_0 = \upsilon(i_0, j_0) \). By (9) we obtain

\[
\Delta(z)\tilde{f}_{\upsilon_0}(z) = \sum_{\omega=0}^{L} F_\omega(z)\Delta_{\omega\upsilon_0}(z).
\]
Linear forms in the values of E-functions

Thus

$$\text{ord } \Delta(z) \geq \min_{0 \leq \omega \leq L} \{ \text{ord } F_{\omega}(z) + \text{ord } \Delta_{\omega \nu_0}(z) \} - \text{ord } \tilde{f}_{\nu_0}(z)$$

$$\geq m - L + rL - \sum_{0 \leq \tau \leq L} r_{i(\tau)} - L(L+1)/2 - p$$

$$\geq (L+1)r - R - L(L+1)/2 - p ,$$

and therefore

$$\text{deg } \Delta_1(z) \leq \text{deg } \Delta(z) - \text{ord } \Delta(z)$$

$$\leq (L+1)r + L(L+1)g/2 - (L+1)r + R + L(L+1)/2 + p$$

$$= R + L(L+1)(g+1)/2 + p = t ,$$

completing the proof of the lemma.

Lemma 4. Under the assumptions of Lemma 3 there exist $L + 1$ suffixes $J(\tau)$ $(0 \leq \tau \leq L)$ such that

$$0 \leq J(0) < J(1) < ... < J(L) \leq L + t$$

and

$$\det [\tilde{P}_{J(\tau)}, \nu(\alpha)]_{0 \leq \tau, \nu \leq L} \neq 0 .$$

The proof of this lemma is similar to Lemma 7 of [6].

Lemma 5. Under the hypotheses of Lemma 4 there exist $(L+1)^2$ rational integers $q_{\tau \nu}$ $(0 \leq \tau, \nu \leq L)$ with the following properties:

(i) $\det (q_{\tau \nu})_{0 \leq \tau, \nu \leq L} \neq 0$;

(ii) for each pair (τ, ν) we have

$$|q_{\tau \nu}| \leq C_1 r_i(\nu)^1 ,$$

where $i = i(\nu)$ satisfies (8) and

$$C_1 = 2^n [(L+t)g+r+L]^{L+t} T^{L+t} (2H)^{r+(L+t)g} ;$$

(iii) for $\tau = 0, 1, ..., L$, we have

$$\left| \sum_{\nu=0}^L q_{\tau \nu} \tilde{f}_{\nu}(\alpha) \right| \leq C_2 \left(\prod_{i=1}^k \left[\frac{r_{i(\nu)}}{\nu(\alpha)} \right]^{n_{i(\nu)}} \right)^{-1} ,$$
where

\[C_2 = (L+1)((L+t)g)_{L+t}^{2(L+t)}g_H^{(L+2)r}(2H)_{L+t}^t[[L+1]r]^{2t}(1+t)^{(L+1)r}2CHM. \]

Proof. Clearly

\[\deg \bar{P}_{\mathcal{J}(\tau),v}(s) \leq r + J(\tau)g \leq r + (L+t)g. \]

Put

\[q_{TV} = b^{r+(L+t)}g_{\bar{P}_{\mathcal{J}(\tau),v}(s)}. \]

Thus all the \(q_{TV} \) are rational integers. It follows from Lemma 4 that

\[\det(q_{TV})_{0 \leq r, v \leq L} \neq 0. \]

Now consider two power series

\[U(z) = \sum_{l=0}^{\infty} u_\ell z^l \quad \text{and} \quad V(z) = \sum_{l=0}^{\infty} v_\ell z^l. \]

\(V(z) \) is said to majorize the series \(U(z) \) if

\[v_\ell \geq 0, \quad |u_\ell| \leq v_\ell, \quad \ell = 0, 1, \ldots. \]

We write \(U(z) \ll V(z) \).

It is not difficult to verify by induction that

\[\bar{P}_{\mathcal{J}(\tau),v}(s) \ll r^{J(\tau)} \left[\frac{|P_{ij}|}{J(\tau)-1} \right] \sum_{l=0}^{J(\tau)-1} \left((L+r+L)(1+z)J(\tau)g+r \right), \]

where \((i, j)\) corresponds to the suffix \(v \). Thus

\[|q_{TV}| \leq b^{r+(L+t)}g_{\bar{P}_{ij}}^{(J(\tau)-1)g+r+L} \left((J(\tau)-1)g+r+L \right)^{J(\tau)}(1+|a/b|)^{J(\tau)g+r} \]

\[\leq t^{L+t} |P_{ij}| \left((L+t)g+r+L \right)^{L+t} (2H)^{L+t}(L+t)g+r \]

\[\leq C_1 r^{J(\tau)} |v|! \]

In view of (9), we see, again by induction, that
\[F_{J(\tau)}(z) \ll t^{J(\tau)(1+\varepsilon)} J(\tau)^{J(\tau)-1} \prod_{l=0}^{\infty} \left(l g + (d/dz) F_{0}(z) \right) \]

\[\ll t^{J(\tau)} \left[J(\tau) g \right]^{J(\tau)(1+\varepsilon)} g \left[1 + (d/dz) \right]^{J(\tau)} F_{0}(z) \]

\[\ll (2T)^{J(\tau)} \left[J(\tau) g \right]^{J(\tau)(1+\varepsilon)} J(\tau) g \sum_{h=m}^{\infty} \frac{r_{h}}{\left(h-J(\tau) \right)! \cdot z^{h-J(\tau)}}. \]

Hence

\[\left| \sum_{\nu=0}^{L} q_{\nu} \tilde{f}_{\nu}(a) \right| \]

\[\leq b^{r_{\nu}(L+t)} g \left| F_{J(\tau)}(a/b) \right| \]

\[\leq r! (2T)^{J(\tau)} \left[J(\tau) g \right]^{J(\tau)} b^{r_{\nu}(L+t)} g \left(1 + |a|/b \right)^{J(\tau)} g \sum_{h=m}^{\infty} \frac{|a|}{b^{h-J(\tau)}} \left(|a|/b \right)^{h-J(\tau)} \]

\[\leq (L+1) r! (2T)^{L+t} \left[(L+t) g \right]^{L+t} \left(1 + O \right)^{m_{b}^{r_{\nu}(L+t)} g \left(1 + |a|/b \right)^{L+t} g} \]

\[\cdot (|a|/b)^{m_{b}^{r_{\nu}(L+t)} g \left(1 + |a|/b \right)^{-J(\tau)} e^{2C|a|/b \left[(m-J(\tau))! \right]^{-1}} \]

\[\leq (L+1) r! \left[(L+t) g \right]^{L+t} (2T)^{L+t} g \left(L+2 \right)^{r_{\nu}(2T) L+t} \]

\[\cdot e^{2C \left(1 + C \right) (L+1) r_{M} \left[(m-J(\tau))! \right]^{-1}}. \]

On the other hand, we have

\[\left[(m-J(\tau))! \right] \geq \left[(m-(L+t))! \right] \geq \left(\sum_{i=0}^{k} n_{i} r_{i} - 2t \right)! \]

\[\geq \left(\sum_{i=0}^{k} n_{i} r_{i} \right)! \left((L+1) r \right)^{-2t}. \]

Therefore

\[\left| \sum_{\nu=0}^{L} q_{\nu} \tilde{f}_{\nu}(a) \right| \leq (L+1) \left[(L+t) g \right]^{L+t} (2T)^{L+t} g \left(L+2 \right)^{r_{\nu}(2T) L+t} \]

\[\cdot \left[((L+1) r)^{2t} (1+C) (L+1) r \right] e^{2C \left(\prod_{i=1}^{k} \left(r_{i} \right)^{n_{i}} \right)^{-1}} \]

\[\leq c_{2} \left(\prod_{i=1}^{k} \left(r_{i} \right)^{n_{i}} \right)^{-1}, \]

completing the proof.
LEMMA 6. Let
\[L_i(x) = \sum_{j=1}^{k} a_{ij} x_j, \quad i = 1, \ldots, k, \]
be \(k \) linearly independent linear forms, and let
\[M_i(y) = \sum_{j=1}^{k} \beta_{ij} y_j, \quad i = 1, \ldots, k, \]
be a further \(k \) linear forms. Suppose that
\[\sum_{i=1}^{k} L_i(x) M_i(y) = xy \]
holds identically for \(x, y \in \mathbb{R}^k \). Let \(\lambda_1, \ldots, \lambda_k \) denote the successive minima of the parallelepiped defined by \(|L_i(x)| \leq 1 \) \((1 \leq i \leq k) \). Denote by \(\nu_1, \ldots, \nu_k \) the successive minima of the parallelepiped defined by \(|M_i(y)| \leq 1 \) \((1 \leq i \leq k) \). Then we have
\[\lambda_i \nu_{k+1-i} \geq 1/k, \quad i = 1, \ldots, k. \]

See Lemma 1 of [10] for the proof of this lemma.

4. Proof of Theorem 1

Let \(r \) be a positive integer satisfying (2). From Stirling's formula
\[r! = \left(2\pi r\right)^{1/2} r^r e^{-r + \rho(r)}, \quad 0 < \rho(r) < \frac{1}{12r}, \]
we obtain that
\[\log g(r)/r = \log r - 2(L+1)^2(g+\sigma+1)(\log B)^{1/2}(\log r)^{1/2} - 1 + \sigma(r), \]
where
\[\sigma(r) = \frac{\log r}{2r} + \frac{\log 2\pi}{2r} + \frac{\rho(r)}{r}. \]

It is easily verified that \(0 < \sigma(r) < 1 \) for \(r \geq 2 \). Hence
\[\log r - 2(L+1)^2(g+\sigma+1)(\log B)^{1/2}(\log r)^{1/2} - 1 < \log g(r)/r \]
\[< \log r - 2(L+1)^2(g+\sigma+1)(\log B)^{1/2}(\log r)^{1/2}. \]
From the definition of $g(r)$ and this inequality, we can immediately verify that

$$g(1) = 1 ; \quad g(r) < 1 \text{ if } 2 \leq r \leq B^4(L+1)^4(g+\sigma+1)^2 .$$

Because $a(r)$ is a strictly increasing function of r (when $r \geq 2$) and $g(r) > x \geq 1$, it follows that r must satisfy

$$r \geq B^4(L+1)^4(g+\sigma+1)^2 + 1 ,$$

thus the inequality (3) holds. By the definition of r, we also have

$$g(r) = 1 ; \quad g(r) < 1 \text{ if } 2 \leq r < g(1) \sim L + 1 .$$

Similarly, define the integers r_1, \ldots, r_k by the inequalities

$$(r_i - 1)! \leq e^{2a(r)x_i} \leq r_i ! , \quad i = 1, \ldots, k .$$

Clearly, the inequalities (14), (15) imply $r = \max\{r_1, \ldots, r_k\}$. Now write

$$R = \left[(L+1)r(\log B/\log r) \right] + 1 ,$$

where $[y]$ denotes the integer part of y. Because of the inequality (3), and noting that $r/(\log r)^{1/2}$ is an increasing function of r, we easily verify that

$$L < R \leq \sum_{i=0}^k n_i r_i + L .$$

We now show that $r^* = \min\{r_1, \ldots, r_k\} > N_0$. We have

$$\log r > 4(L+1)^4(g+\sigma+1)^2 \log B ,$$

$$R > (L+1)r(\log B/\log r)^{1/2} ,$$

by (3) and (16). So $2R > N_0$. If we were to assume that some $r_i \leq N_0$, then we have the inequality

$$\log(r^*_i)! < r_i \log r_i < 2R \log 2R \leq 2\sigma(r) ,$$

and so $r_i! < e^{2\sigma(r)}$. This is contrary to the definition of r_i, hence...
certainly \(r^* > \text{No} \). Thus we have verified that \(r, r_1, \ldots, r_k \), and \(R \) satisfy the conditions of Lemmas 2 and 3.

By Lemma 5, we have obtained \((L+1)^2\) integers \(q_{TV} \) (\(0 \leq \tau, \nu \leq L \)) satisfying \(\det(q_{TV}) \neq 0 \). Further let \(\{x_{i,j} \} \) (\(1 \leq i \leq k, 1 \leq j \leq n_i \)) be a set of integers satisfying the hypotheses of Theorem 1, and let \(b \) be any integer. Then we can form a \((L+1) \times (L+1)\) determinant which does not vanish; without loss of generality, we may assume that, say,

\[
D = \begin{vmatrix} b & x_{11} & \cdots & x_{k,n_k} \\ q_{10} & q_{11} & \cdots & q_{1L} \\ \vdots & \vdots & \ddots & \vdots \\ q_{L0} & q_{L1} & \cdots & q_{LL} \end{vmatrix} \neq 0.
\]

Let

\[
L_0 = b + \sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{i,j} \tilde{f}_i(j)(\alpha),
\]

\[
L_{\tau} = \sum_{\nu=0}^{L} q_{TV} \tilde{f}_\nu(\alpha), \quad \tau = 1, \ldots, L.
\]

Thus \(D \) can be rewritten as

\[
D = \begin{vmatrix} L_0 & x_{11} & \cdots & x_{k,n_k} \\ L_1 & q_{11} & \cdots & q_{1L} \\ \vdots & \vdots & \ddots & \vdots \\ L_L & q_{L1} & \cdots & q_{LL} \end{vmatrix}.
\]

Decomposing this determinant according to the first column, we obtain

\[
D = L_0 M_0 + L_1 M_1 + \ldots + L_L M_L,
\]

where \(M_i \) is the cofactor of \(L_i \), \(i = 0, 1, \ldots, L \). By (12) and (13) of Lemma 5, we have

https://doi.org/10.1017/S0004972700005037 Published online by Cambridge University Press
Linear forms in the values of E-functions

\[|M_0| \leq L! C_1^L \prod_{i=1}^{k} (r_i \nu_i)^{n_i}, \]
\[|M_1| \leq (L-1)! C_1^{L-1} \prod_{i=1}^{k} (r_i \nu_i)^{n_i} \sum_{i=1}^{k} \sum_{j=1}^{n_i} \frac{|x_{ij}|}{r_i \nu_i}, \]
\[\leq (L-1)! C_1^{L-1} \prod_{i=1}^{k} (r_i \nu_i)^{n_i} \sum_{i=1}^{k} \frac{n_i \bar{x_i}}{r_i \nu_i}, \]
\[|L_1| \leq C_2 \left(\prod_{i=1}^{k} (r_i \nu_i)^{n_i} \right)^{-1}, \tau = 1, \ldots, L. \]

But D is a non-zero integer, so $|D| \geq 1$. Therefore we have
\[1 \leq |D| \leq L! C_1^L \prod_{i=1}^{k} (r_i \nu_i)^{n_i}|L_0| + L! C_1^{L-1} C_2 \sum_{i=1}^{k} \frac{n_i \bar{x_i}}{r_i \nu_i} = U + V. \]

According to the definition of $r_i \nu_i$, we have
\[\prod_{i=1}^{k} (r_i \nu_i)^{n_i} \leq r^L e^{2Lc(r)} \prod_{i=1}^{k} \bar{x_i}^{n_i}, \]
\[\sum_{i=1}^{k} \frac{n_i \bar{x_i}}{r_i \nu_i} \leq Le^{-2c(r)}. \]

Thus
\[2U \leq 2L! C_1^L r^L e^{2Lc(r)} |L_0| \prod_{i=1}^{k} \bar{x_i}^{n_i}, \]
\[2V \leq 2(L+1)! C_1^{L-1} C_2 e^{-2c(r)}. \]

We shall next establish upper estimates for (18) and (19). By using (3) and the definition of R, we can easily obtain the following inequalities:
\[L + t = L + R + L(L+1)(g+1)/2 + p \leq R + L(L+1)(g+1) + \sigma, \]
\[(L+t)g + r + L = g[R+L(L+1)(g+1)+\sigma] + r + L \leq (g+2)r, \]
\[(L+t)g \leq (g+1)r. \]
Moreover

\[C_1 \leq 2^nT^{R+L(L+1)(g+1)+\sigma}[(g+2)r]^{R+L(L+1)(g+1)+\sigma} \]
\[\cdot (2H)^{r+g[R+L(L+1)(g+1)+\sigma]}(L+r)(L+l)r/R \left(2C_2 \right)^2r^2/(2R). \]

It follows that

\[2L1C_1^{LrL} \leq (2C_2)^{L(L+1)^2r^2/(2R)}rL(R-1) \cdot L^L \cdot (2T)^{Lr} \cdot L^2(L+1)(g+1)+Lo \]
\[\cdot (2H)^{Lr+Lg[R+L(L+1)(g+1)+\sigma]}(g+2)L^2(R+L(L+1)(g+1)+\sigma) \]
\[\cdot \frac{(L+L)^2+L(L+1)(g+1)+L(\sigma+2)}{(L+1)L(L+1)r/R}. \]

Clearly, we have, by (16),

\[(2C_2)^{L(L+1)^2r^2/(2R)}rL(R-1) \leq e(3/2)\sigma(r). \]

Since \(B > h, L > 1, g > 0, \sigma > 0 \), we have \(r \geq B^6h \geq 2^{128} \) by (3).

It follows that

\[(\log r)/r \leq 128(\log 2)/2^{128} < 2^{-120}, \]

since \((\log r)/r\) is a strictly decreasing function of \(r \) (when \(r \geq 2 \)).

Thus we can obtain the following inequalities by simple calculation:

\[\frac{L\log L}{c(r)} \leq \frac{L^2}{2(L+1)^4r\log B} < 2^{-7}; \]

\[\frac{Lr\log 2T}{c(r)} \leq \frac{Lr\log B}{2(L+1)^4r\log B} < 2^{-4}; \]

\[\frac{L^2(L+1)(g+1)+\sigma)\log T}{c(r)} \leq \frac{L(L+1)^2(g+\sigma+1)\log B}{2(L+1)^4(g+\sigma+1)^2r\log B} < 2^{-7}; \]

\[\frac{Lr+Lg[R+L(L+1)(g+1)+\sigma)]\log 2H}{c(r)} \]
\[\leq \frac{Lr\log B}{2(L+1)^4r\log B} + \frac{Lq(L+1)\log B}{(L+1)^2(g+\sigma+1)\log r} + \frac{L\log B}{(L+1)^2(\log B)^2r(\log r)^2} \]
\[+ \frac{L^2g(L+1)^2(g+1)+\log]\log B}{2(L+1)^4(g+\sigma+1)^2r\log B} \]
\[\leq 2^{-4} + 2^{-6} + 2^{-132} + 2^{-130} \leq 2^{-3}; \]
Linear forms in the values of E-functions

\[
\frac{L[R+L(L+1)(g+1)+\sigma]\log(g+2)}{\sigma(r)} \leq \frac{L\log(g+2)}{\sigma(r)} + \frac{L(L+1)^2(g+\sigma+1)\log(g+2)}{\sigma(r)}
\]
\[
\leq \frac{LR(g+1)}{\sigma(r)} + \frac{L(L+1)^2(g+\sigma+1)^2}{\sigma(r)}
\]
\[
\leq \frac{1}{(\log r)} + \frac{1}{(2(L+1)^3r)} + \frac{1}{(2(L+1)r)}
\]
\[
\leq 2^{-7} + 2^{-132} + 2^{-130} \leq 2^{-6};
\]
\[
\frac{L[(L+1)^2(g+1)+\sigma+2]\log r}{\sigma(r)} \leq \frac{L(L+1)^2(g+\sigma+1)\log r}{\sigma(r)} + \frac{2L\log r}{\sigma(r)}
\]
\[
\leq \frac{L}{2(L+1)^2\log B} \frac{\log r}{r} + \frac{2L}{2(L+1)^4\log B} \frac{\log r}{r}
\]
\[
\leq 2^{-132} + 2^{-133} \leq 2^{-7};
\]
\[
\frac{L(L+1)r\log(L+1)}{R\sigma(r)} \leq \frac{1}{r} \leq 2^{-7}.
\]

It follows from the above relations that
\[
2L_{11}^L \leq e^{\left(\frac{3}{2}+2^{-7}+2^{-4}+2^{-7}+2^{-3}+2^{-6}+2^{-7}+2^{-7}\right)}\sigma(r) \leq e^{2\sigma(r)}.
\]

Substituting this inequality in (18), we obtain
\[
(20) \quad 2U < e^{2(L+1)\sigma(r)} \prod_{i=1}^{k} \frac{n_{i}}{x_{i}} |L_{0}|.
\]

Similarly, we can also deduce that
\[
2(L+1)!C_{1}^{-1}C_{2} \leq r^{LR+2R-(L+2)(2\sigma+2)(L+1)^2r^2/(2R)}
\]
\[
\cdot (L+1)^2[R+L(L+1)(g+1)+\sigma]+L+2+L(L+1)r/R \cdot (\text{HTC})^{(2L+1)r}
\]
\[
\cdot (2T)[L(L+1)(g+1)+\sigma] \cdot (2R)(L+1)g[R+L(L+1)(g+1)+\sigma]
\]
\[
\cdot (g+2)^{LR} \cdot [(g+2)r][L(L+1)(g+1)+\sigma] \cdot e^{B}
\]
\[
\cdot r^{2[\sigma+L(L+1)(g+1)]+L+2}.
\]

Much as in the above calculations, we can also obtain the following inequalities:
\[
r^{(L+2)(R-1)(2\sigma+2)(L+1)^2r^2/(2R)} \leq e^{(7/4)\sigma(r)} \quad \text{(since} \ L \geq 1)\;.
\]

https://doi.org/10.1017/S0004972700005037 Published online by Cambridge University Press
\[
\frac{2[R + L(L+1)(g+1)+\sigma]+L+2+L(L+1)r/R}{o(r)} \log(L+1) \\
\leq \frac{2R\log(L+1)}{o(r)} + \frac{2[L+1](g+1)+\sigma+L+2}{o(r)} \log(L+1) + \frac{L(L+1)r\log(L+1)}{Ra(r)} \\
\leq \frac{2}{\log r} + \frac{1}{(8r)} + \frac{3}{(4r)} + \frac{(\log r)^{\frac{1}{2}}}{(8r)} \\
\leq 2^{-6} + 2^{-131} + 2^{-128} + 2^{-187} \leq 2^{-5} ; \\
\frac{(2L+1)r\log(4HCT)}{o(r)} \leq (L+1)^{-3} \leq 2^{-3} ; \\
\frac{L[L(L+1)(g+1)+\sigma]\log 2T}{o(r)} \leq \frac{1}{2(L+1)r} \leq 2^{-7} ; \\
\frac{(L+1)g[R + L(L+1)(g+1)+\sigma]\log 2r}{o(r)} \\
\leq \frac{\log B}{\log r} + \frac{1}{2(L+1)^3r} + \frac{1}{2(L+1)r} \leq 2^{-6} + 2^{-132} + 2^{-130} < 2^{-5} ; \\
\frac{L[\log(g+2)]}{o(r)} \leq \frac{1}{\log r} + \frac{1}{2(L+1)^3r} \leq 2^{-6} ; \\
\frac{L[L(L+1)(g+1)+\sigma]\log[(g+2)r]}{o(r)} \\
\leq \frac{1}{2(L+1)r} + (\log r)/(2(L+1)r) \leq (\log r)/r < 2^{-7} ; \\
\frac{B}{o(r)} \leq \frac{B}{2(L+1)^4r\log B} \leq \frac{B}{2^7B^4} < 2^{-7} ; \\
\frac{[2[\sigma+L(L+1)(g+1)]+L+2]\log r}{o(r)} \leq \frac{\log r}{r} < 2^{-7} .
\]

Substituting these inequalities in (19), we obtain

\[
(21) \quad 2V < e^{((7/4) + 2^{-5} + 2^{-3} + 2^{-7} + 2^{-5} + 2^{-6} + 2^{-7} + 2^{-7} - 2)\sigma(r)} < 1 .
\]

From (17), (20) and (21), we deduce that

\[
\prod_{i=1}^{k} \max_{x_i} n_i |L_0| > e^{-2(L+1)o(r)} .
\]

Since \(b \) is any integer, it follows that

\[
\prod_{i=1}^{k} \max_{x_i} n_i \left(\sum_{i=1}^{k} \sum_{j=1}^{n_i} x_{i,j} f_{i,j}(a) \right) > e^{-2(L+1)o(r)} .
\]

Thus Theorem 1 is proved.
The proof of Corollary 1.2 is quite similar to the proof of the corollary to Theorem 1 in [1]. Corollaries 1.2 and 1.3 plainly follow.

5. Proof of Theorem 2

From the hypotheses of Theorem 2 we know that the \(f_i(z) \) \((i = 1, \ldots, k)\) belong to an irreducible set of functions so \(\sigma = q \). As in the proof of Theorem 1, the integer \(r \) must satisfy

\[
r \geq B^k(k+1)^4(g+q+1)^2 + 1,
\]

namely, the inequality (4) holds. We shall use induction to prove the inequality (5).

Before commencing our induction, we introduce the following notation:

\[
g_i(r) = e^{-2c_i(r)} r^i ;
\]
\[
c_i(r) = (i+1)^2(g_i+q_i+1)[\log B_i]^k r (\log r)^k ;
\]
\[
H_i = 2(i+2), \quad i = 1, 2, \ldots, k .
\]

In particular, \(g = g_k \), \(q = q_k \), \(B = B_k \), \(\sigma(r) = c_k(r) \), \(g(r) = g_k(r) \).

When \(k = 1 \), it is clear that the inequality (5) follows from Corollary 1.2. We suppose (5) is true for \(k - 1 \) and prove it for \(k \) \((k \geq 2)\). Put

\[
\mu_i = \|y_i f_i(z)\| e^{H_i(k+1)^{-1}c(r)}, \quad i = 1, 2, \ldots, k ,
\]

\[
\mu_{k+1} = (\mu_1 \ldots \mu_k)^{-1} .
\]

Clearly all \(\mu_i > 0, \quad i = 1, \ldots, k \). We consider two separate cases.

(i) There exists some \(\mu_j \) \((1 \leq j \leq k)\) satisfying \(\mu_j \geq 1 \).

Without loss of generality, we assume \(\mu_k \geq 1 \). According to the induction hypotheses, the inequality (5) is true for \(k - 1 \), namely
where \(r' \) is a positive integer satisfying the condition

\[g_{k-1}(r) \leq y < g_{k-1}(r'). \]

It is obvious that \(g_l \leq g_{l+1} \), \(q_l \leq q_{l+1} \), \(B_l \leq B_{l+1} \) (\(l = 1, \ldots, k \)) from the definitions. Hence

\[c_{k-1}(r) < (k+1)^2[g_k + q_{k+1}] \left[\log B_k \right]^k r (\log r)^\frac{k}{2} = c_k(r). \]

It follows that \(g_{k-1}(r) > g_k(r) = g(r) \). This implies \(r' < r \). Because \(c(r) \) is an increasing function of \(r \), we have

\[c_{k-1}(r') < c_{k-1}(r) \leq k^2(k+1)^{-2}c_k(r). \]

Since \(\mu_k \geq 1 \) and

\[k^2(k+1)^{-1}H_k^{-1} + (k+1)^{-1} < 1 \quad \text{(when} \quad k \geq 2 \text{),} \]

we obtain by (22) that

\[
y\|yf_1(\alpha)\| \ldots \|yf_k(\alpha)\| = y\|yf_1(\alpha)\| \ldots \|yf_{k-1}(\alpha)\| \mu_k \exp[-H_k(k+1)^{-1}c(r)] \]
\[
> \exp\left[-k^2(k+1)^{-2}H_k^{-1}c_k(r) - H_k^{-1}c_k(r) \right] \]
\[
= \exp\left[-k^2(k+1)^{-2}H_k^{-1}c_k(r) + (k+1)^{-1}H_k^{-1}c_k(r) \right] \]
\[
> \exp[-H_k^{-1}c_k(r)] = e^{-2(k+2)c(r)}. \]

Thus the inequality (5) is also true for \(k \).

(ii) All the \(\mu_i \) (\(i = 1, \ldots, k \)) satisfy \(0 < \mu_i < 1 \). We suppose that the inequality (5) does not hold (when \(k \geq 2 \)). Then there exists an integer \(y \geq 2 \) such that the following inequality holds:

\[
y\|yf_1(\alpha)\| \ldots \|yf_k(\alpha)\| \leq e^{-H_k^{-1}c(r)}. \]

Now let us consider a set of linear forms.
Linear forms in the values of E-functions

$$M_i(x) = \mu_i^{-1}(x_i f_i(\alpha) x_{k+1}) \quad i = 1, \ldots, k,$$

$$M_{k+1}(x) = \mu_{k+1}^{-1} x_{k+1}.$$

Denote by ν_1 the first successive minimum of the parallelepiped defined by

$$|M_i(x)| \leq 1, \quad 1 \leq i \leq k+1.$$

Further let y_1, \ldots, y_k be a set of integers satisfying the following equalities:

$$|y_i - y f_i(\alpha)| = \|y f_i(\alpha)\| \quad i = 1, \ldots, k.$$

Since $y \geq 2$, $\{y, y_1, \ldots, y_k\}$ is a set of integers not all zero. By the definitions of μ_i's and the inequality (23), we have

$$\left|\mu_i^{-1}(y_i - y f_i(\alpha))\right| = \mu_i^{-1} \|y f_i(\alpha)\| = e^{-H_k(k+1)^{-1}c(r)} \quad 1 \leq i \leq k,$$

$$\left|\mu_{k+1}^{-1}y\right| = y \|y f_1(\alpha)\| \ldots \|y f_k(\alpha)\| e^{k(k+1)^{-1}H_k c(r)}$$

$$\leq e^{-H_k(k+1)^{-1}c(r)}.$$

According to the definition of successive minima, we have

(24)

$$\nu_1 \leq e^{-H_k(k+1)^{-1}c(r)}.$$

Let us consider the further set of linear forms

$$L_i(x) = \mu_i x_i \quad i = 1, \ldots, k,$$

$$L_{k+1}(x) = \mu_{k+1} \left(x_1 f_1(\alpha) + \ldots + x_k f_k(\alpha) + x_{k+1}\right).$$

Without loss of generality, we can suppose that

$$\mu_1^{-1} = \max\left\{\mu_1^{-1}, \ldots, \mu_k^{-1}\right\} > 1.$$

Henceforth we suppose that s is a positive integer such that

https://doi.org/10.1017/S0004972700005037 Published online by Cambridge University Press
\[g(s-1) \leq \mu_1^{-1} < g(s) \]. Likewise, \(s \) must satisfy the following inequalities

\[s \geq B^{\frac{1}{k+1}}(g+q+1)^2 + 1 \]

and

\[(s-1)! \leq e^{2g(s)} \mu_1^{-1} < s! . \]

Similarly, define the integers \(s_2, \ldots, s_k \) by the inequalities

\[(s_i-1)! \leq e^{2g(r_i)} \mu_i^{-1} < s_i! , \quad i = 2, \ldots, k . \]

It is clear that \(s = \max\{s, s_2, \ldots, s_k\} \). Finally, let

\[R(s) = \left[(k+1)s(\log B/\log s)^{\frac{1}{k}}\right] + 1 . \]

Much as in the proof of Theorem 1, we can verify that the integers \(s, s_2, \ldots, s_k \) and \(R(s) \) satisfy all the hypotheses concerning \(r, r_1, \ldots, r_k \) and \(R \) in Lemmas 3, 4 and 5, respectively. Thus, according to Lemma 5, we can obtain \(k+1 \) linearly independent integer points

\[(q_{i0}, q_{i1}, \ldots, q_{ik}) , \quad i = 0, 1, \ldots, k , \]

such that, for \(i = 0, 1, \ldots, k \),

\[|q_{ij}| \leq C_1 s_j ! \leq C_1 s e^{2g(s)} \mu_1^{-1} , \quad j = 0, 1, \ldots, k ; \]

and

\[(25) \quad \left| \sum_{j=0}^{k} q_{ij} f_j^{(s)}(\alpha) \right| \leq C_2 \left[(s_2 s_2! \ldots s_k s_k!)^{-1} \leq C_2 e^{-2k\alpha(s)} \mu_k^{-1} , \right. \]

where \(C_1 \) and \(C_2 \) are the \((k+1)\)th successive minimum of the parallel-epiped defined by

\[|L_{i}(\lambda)| \leq 1 , \quad i = 1, \ldots, k+1 . \]

Then \(\lambda_{k+1} \) satisfies

\[\text{https://doi.org/10.1017/S0004972700005037 Published online by Cambridge University Press} \]
\[\lambda_{k+1} \leq \max \left\{ C_1 s e^{2c(s)}, C_2 e^{-2kc(s)} \right\} \]

by (25). We shall prove that \(C_1 s e^{2c(s)} > C_2 e^{-2kc(s)} \). As in the calculations in the proof of Theorem 1, we can obtain the following inequalities:

\[
(2C^2_H)^{(k+1)s} < e^{(k+1)^{-3}s}(s) ;
\]

\[
(2H)^{(k+t)g} < e^{(k+1)^{-2}s}(s) ;
\]

\[
s^{2t-1} < e^{[(k+1)^{-2} + 2/(k+1)]s}(s) ;
\]

\[
(k+1)^{2t+1} < e^{[(k+1)^{-1} + 2 - 50(k+1)^{-2}]s}(s) .
\]

Thus we may deduce that

\[
\frac{C_1 s e^{2c(s)}}{C_2 e^{-2kc(s)}} = e^{2(k+1)\alpha(s) C_1 s / C_2}
\]

\[
\geq e^{2(k+1)\alpha(s)} \cdot (2C^2_H)^{(k+1)s} \cdot (2H)^{(k+t)g} \cdot (k+1)^{-2t-1} \cdot s^{-2t+1}
\]

\[
> \exp \left\{ [2(k+1)^{-3} - 2(k+1)^{-2} - 2(k+1)^{-1} - (k+1)^{-1} - 2 - 50(k+1)^{-2}]s(\alpha) \right\}
\]

\[
> 1 .
\]

Hence \(C_1 s e^{2c(s)} > C_2 e^{-2kc(s)} \). Thus

\[
\lambda_{k+1} \leq C_1 s e^{2c(s)} .
\]

We have, by Lemma 6,

\[
u_1 \geq (k+1)^{-1} \lambda_{k+1} \geq \left((k+1)C_1 s e^{2c(s)} \right)^{-1} .
\]

As in the proof of Theorem 1, we have

\[
(2C^2)^{(k+1)^{2s^2}/[2R(s)]} s^R(s) - 1 \leq e^{(3/2)(k+1)^{-1}s}(s) ,
\]

\[
[(g+2)^T]^R(s) + k(k+1)(g+1) + q^1 + 1 \leq e^{2^{-2}(k+1)^{-1}s}(s) ,
\]
We can deduce from the above relations that

\[(k+1)C_1 e^{2c(s)} \leq e^{2c(s)} \cdot \left(2c^2 \right)^{(k+1)2e^2/(2R(s))} R(s) - 1
\]
\[\cdot [(g+1)T] R(s) + k(k+1)(g+1) + q + 1 \cdot (2H) R(s) + k(k+1)(g+1) + q\]
\[\cdot \kappa^{(k+1)(g+1) + q + 2} \cdot (k+1) s / R(s) + 1
\]
\[\leq e^{2c(s)} \cdot \exp \left\{ \left(3/2 + 2^{-2} + 2^{-3} + 2^{-4} + 2^{-5} \right) (k+1)^{-1} c(s) \right\}
\]
\[= e^{(2+2(k+1)^{-1})c(s)} = e^{H_k(k+1)^{-1}c(s)}.
\]

Hence

\[\nu_1 \geq e^{H_k(k+1)^{-1}c(s)}.
\]

We shall show that

\[(26) \quad c(s) \leq c(r).
\]

By the definition of \(\nu_1 \), we have

\[y \nu_1 = y ||Y_f(a)|| e^{H_k(k+1)^{-1}c(r)}.
\]

By the definition of \(c_2(r) \), we see that

\[c_2(r) = 2^2 [g_1 + q_1 + 1] (\log B_1)^{1/2} r (\log r)^{1/2}
\]
\[\leq 4(k+1)^{-2} c(r) < c(r) \quad (k \geq 2);\]

hence

\[g_1(r) = e^{-2c_2(r)} r! > e^{-2c(r)} r! = g(r).
\]

Denote by \(r'' \) a positive integer satisfying
Linear forms in the values of E-functions

$$g_1(r''-1) \leq y < g_1(r'') .$$

Since $g_1(r) > g(r)$, it follows that $r'' < r$. This implies

$$c_1(r'') \leq c_1(r) \leq 4(k+1)^{-2} c(r) .$$

By the conclusion of Corollary 1.2 ($k = 1$) and (27), we obtain

$$y \mu_1 = y \|y f_1(\alpha)\| e^{H_k(k+1)^{-1} c(r) - 4 c_1(r''+H_k(k+1)^{-1} c(r)} \geq \exp\{-16(k+1)^{-2}+2(k+2)(k+1)^{-1} c(r)\} > 1 \quad (k \geq 2) ,$$

hence $\mu_1^{-1} < y$. It follows that $s \leq r$ by the definitions of s and r. Thus (26) is true. Finally, we obtain

$$\bar{\nu}_1 > e^{-H_k(k+1)^{-1} c(r)} .$$

This is contrary to inequality (24), hence the assumption (23) is not valid. This proves Theorem 2.

The proof of Corollary 1.2 is quite similar to the proof of the corollary to Theorem 2 of [1].

6. Remarks

If \mathbb{K} were an imaginary quadratic field ($\mathbb{K} = \mathbb{Q}(\sqrt{-d})$) in Theorem 1 and its corollaries, then we could use Lemma 31 of Schneider [4] in place of Lemma 1 here to construct the auxiliary polynomials in Lemma 2.

Further we note that the conjugate to β ($\beta \in \mathbb{K}$) is its complex conjugate $\bar{\beta}$, so $|\beta| = |\bar{\beta}|$. Thus all the details of the proofs of the theorems and corollaries are as in the case $\mathbb{K} = \mathbb{Q}$. Only the parameter B depends on d. Therefore, if \mathbb{K} were an imaginary quadratic field, we would also obtain Theorem 1 and its corollaries.

References

School of Mathematics and Physics,
Macquarie University,
North Ryde,
New South Wales 2113,
Australia.

Permanent Address:
Institute of Mathematics,
Academia Sinica,
Beijing,
China.