
BULL. AUSTRAL. MATH. SOC. I 0 F 3 5 , I OF 10

VOL. 25 ( 1 9 8 2 ) , 37 -69 .

ON EXPLICIT ESTIMATES FOR LINEAR FORMS
IN THE VALUES OF A CLASS OF E-FUNCTIONS

Xu GUANGSHAN AND WANG LlANXIANG

We apply methods of Mahler to obtain explicit lower bounds for

certain combinations of ff-functions satisfying systems of linear

differential equations as studied by Makarov. Our results

sharpen and generalise earlier results of Mahler, Shidlovskii,

and Vaananen.

1. Introduction

Makarov [3] has found lower bounds for linear forms in the values of a

certain class of E-functions, but the constants involved in his estimates

are not given explicitly. In this note we apply the method of Mahler [7].

Firstly, we give an explicit expression for the constant appearing in the

lower bound of [3], thereby obtaining an explicit result (Theorem l).

Secondly, the effective transference theorem for Corollary 1.2 is provided

by Theorem 2 of the present paper. Corollaries 1.3 and 2.1 of the present

paper give explicit results which sharpen those of [70] and Vaananen [9].

We also give some results which sharpen those of [3], [7], Shidlovskii [7]

and Vaananen [S] by applying the results of this note to some special

E-functions. We detail these applications in the last part of the section

"Main results".
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2. Main results

Let C he the field of complex numbers, Z the domain of rational

integers, t> the field of rational numbers, IK an algebraic number field

(thus of finite degree over Q ), 0^ the domain of integers of IK . An

entire function f(z) satisfying the following conditions is called an

E—function:

(i) /(a) = I yf *l , ay € IK , [i7[ 5 Cl , I = 0, 1, 2, ... ,

where W-A denotes the maximum of the absolute values of

a* and its field conjugates, and C i 1 is a positive

constant;

(ii) there is a sequence of national numbers q_, <?. , ..., q,-,, ...

such that

qla3 € ° IK ' 0 = 0, 1 I , I• = 0, 1, .. . ,

and

qt± Cl , I = 0, 1, ... .

The ^-functions we consider below are the class of ^-functions

defined over the field IK = 4? . Let

f;Az>> = Z ~ T T ~ 3 > i = 1, ..., k , j = 1, ... , n. ,

te a set of E-functions satisfying conditions (i) and (ii) and the

following system of the differential equations

n.

where Q..Az) € C ( s ) , i = l , . . . , f c , j = 1, . . . , n . . We may, without

lo s s of gene ra l i t y , assume tha t Q. .As) € Q(s) as i s pointed out by

Shidlovski i [ 7 ] .

F i r s t of a l l we introduce some nota t ion . Let T{z) £2Z.[z] he the
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least common denominator of the rational functions Q..y(z) ; then

) €Z[a] . Let

g = max (deg T(z), deg(r(2)§. .As))) .

T denotes the maximum of the absolute values of the coefficients of T(z)

and the T{z)Q^.^z) . Set a = a/b € <? such that aT(a) + 0 , where

b > 0 . Let

# = max( \a\ , b) , B = i»C2^ , L = n± + . .. + nR .

Denote the minimum value of the orders of the zero at 3 = 0 of all the

functions f..(z) by p , and their maximum by q . We define the
13

constants O and a as follows:

a = q , a= p if the set {/..(2)} and 1 constitute an irreducible
J- 13

set of functions (see [7], p. 389 for the definition),

o = q + 6 , 0 = 6 otherwise,

where 6 is a constant depending only on the functions {/. .(2)} and the
13

system of differential equations (l). Finally, we define two functions

a(r) = 2 * *

g(r) = e~2oMn .

We obtain the following results .

THEOREM 1. Let {f..(z)} be a set of E-funotions defined as above
13

which with 1 are linearly independent over C(z) and satisfy the system
of differential equations ( l ) , and let {x..} [i = 1, . . . , k }

13
,7=1, ..., n.) be an arbitrary given set of integers not all zero. Put

1

\x. A) , x. = max(l, x'.) J x = max (x.) .

If r is the positive integer satisfying the inequality

(2) g(r-l) < x < g(r) ,
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then we have

(3)

and

k n.<

r

, k

> B

where | | j/ | | denotes the distance of the real number y from the nearest

integer.

COROLLARY 1.1. Under the assumptions of Theorem 1 we have

x..f..M

*C

COROLLARY 1.2. Under the hypotheses of Theorem 1 and the conditions

n . = 1 (•£ = 1 , . . . , n) we have

r >

and

COROLLARY 1.3. Under the conditions of Corollary 1.2 we have

\3,x f (a)\\ > a.-12(fc+ir(s?+a+l)(logB/loglogx)-
i T i II

THEOREM 2 . Suppose that the functions f.{z) {i = 1, . . . , k), with

y belong to an irreducible set of functions and let y > 2 be any
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integer. Let r be the positive integer such that g(r-l) 2 y < g(r) .

Under the hypotheses of Corollary 1.2 we have

(k) r > B l ' < * + l > 1 W l > 2
 + i

and

(5) 2/112̂ (0011 . . . \\yfk(a)\\ >

COROLLARY 2 .1 . Under the hypotheses of Theorem 2 we have

if

Corollaries 1.3 and 2.1 are similar to Theorems 2 and 21 in [70] and

Theorems 1 and 2 of Vaananen in [9], respectively. The constants here,

however, are given in explicit form.

We now mention some examples:

(i) Consider a function

h=l

Suppose that X , ..., X are rational numbers with

X. * -1, ±1/2, -2, ... (i = 1, ..., m) and that the X. ± X7

(l — i < I 5 m) are not integers. Let ex. , ..., a be nonzero rational

integers whose squares are distinct. Then the 2rrm functions K-, [a .z) ,

K^ [a.z] (l < i < m , 1 5 3 5 n) are a set of ^-functions which are

linearly independent together with the identity over {) (see [3], p. 8)

and satisfy the following system of differential equations:

d
dz ali3 £^«7 '
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Put

Ai = \i/d (d > 0) , A' = max (|A^|) ,

o . = a'./B (6 > 0) , a = max ( |a ' . | ) .

It is easy to compute that

T = 2a2g2dA' ,

H = 1 , g = 1 , L + l =

B = kC2TH .

From Corollary 1.1 we obtain

m n || m n

TTTT*2, I Z **A.W^v.^{ («,•:

> x~12(2rm+l)D(2+o)(logB/loglog,xV

i f

where a;..,z/.. (l £ i S m , 1 < j 5 n) are any set of integers not all
•Z-J I'd

zero, X.. = max(l, |x..|, \y • A) , X= max (/. .) . This result
%3 %0 V3 ij ^

is an application of the theorem of [3], our result however explicitly

provides the unspecified constants appearing in [3].

(ii) Suppose that a,, ... , a, are distinct rational integers, and

that b > 0 is a rational integer such that [b, a. , ..., a,J = 1 .

Consider a set of ff-functions

1, e
{ak/b)z

Obviously, the hypotheses of Corollary 1.2 and Theorem 2 are satisfied, and

these £-functions belong to an irreducible set of functions, so that

g = 0 and £ 7 = 0 . We obtain from Corollary 1.2 and Theorem 2 that
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k a./b
y

> -2(k+i)c(r)

» . - « * « ' " "

respectively, where

B = hb max [b, \a-\) •

The two inequalities above are similar to those of Theorems 1 and 2 of [I

respectively.1 The exponent -2(k+2)e(r) above constitutes a slight

sharpening of the result obtained by Mahler in ['], Theorem 2, which has

the exponent -2k(k+l)a(r) .

It follows from Theorem 1' of [7] that

a, b a.
min

la;.|5
1 ^l

x e + ... + x, e

2 2xN-.. .+xf>

x.dTL

if

x > exp(exp y2k5) ,

where Y is a constant independent of k . Our Corollary 1.3 implies: if

then

a Ib
x, e + ...

ajb l-fe-12/c3(logS/loglogx)2
x ,

x. Sx

x.€Z

again sharpening the earlier result.

( i i i ) Let X be a rational number (but not a rational integer).

https://doi.org/10.1017/S0004972700005037 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005037


44 Xu Guangshan and Wang L i a n x i a n g

Consider a se t of ^ - func t ions

A _L A K.

where

I

By C5], <(>̂  ((aJb) z) , ..., 4>̂  ( [a^/b] z) , with 1 , belong to an irreducible

set of functions which are linearly independent over (C(H) and satisfy the

following system of differential equations :

jfc <i,x{{ai/b)z) = X/a + ((a i /fcJ-(X/3)J<)>x((a i /fcj2j , i = i , . . . , k .

P u t X = X I d , (X , < f j = l , d > 0 , a = l . I t i s e a s y t o c o m p u t e

t h a t

1 2 ( | A \+d)
C = bd e x max ( |a . | ) (by Mahler [2 ] , p. lU6),

= bd\ max ( | a . | ) ,

H = 1 , g = 1 , q = 0 .

From Corollaries 1.3 and 2.1 we obtain

i f

and

i f
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These results are Theorems 1 and 2 of [S], respectively; however we

explicitly compute the unspecified constants that appear in [£].

3 . Lemmas

LEMMA 1. Let [g..) (1 2 i 5 m , 1 < j < n) be a m x n (m < n)

matrix of integers. Put

n
G^ = Z Is^-I > i = 1, .. •, m .

27zen there are integers x., . . . , x no t aZZ- ze ro sweTz t / w t

n
Y, gt-x. = 0 , £ = 1 , . . . , m ,

and

max f | x . I) — \G, •. .

This is Lemma 1 of CH.

LEMMA 2. Let r , ..., r. and R be positive integers satisfying

r = rQ = max(rl S . . . , rfe) > 2 ,

J n.r.+L (uTzere « = 1 );
i=0 ^ 1

k k

£=0 ^ ^ £=0 t'

M =

there are polynomials P. .(s) €2[s] (£=0,1, ..., k ,

j = 1, ..., n.) which do not all vanish identically and have the following

properties:

(i) deg P. .(2) £ r , ord P. .(3) > r - r. , \P. .1 < r.!
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£ = 0 , 1 , . . . , k , j = 1, ..., n. , where ord P. . (z)

denotes the order of the zero at 2 = 0 of the polynomial

P..(z) , and \P. .| denotes the height of P. .(s) , that

is, the maximum of the absolute values of the coefficients

of P..(z) ;

(ii) let

i n.
k ^

Hz) = I I P..(z)f..(z) [where f.Az) = 1 )
i=0 j=l %3 %3 U i

00 00

= Z rloAhl)'1^1 = Z Phz
h ,

h=m h=m

then

\ph\ £ (L+l)r!(7z!r
1(l+C)/V , h > m .

Proof. Let S be the set S = {(i, 1) \ 0 £ i 5 k, r-r^ : 1 <

and write

r 1 7
= ri I Piil(U) z ' * = 0, 1, .... fc , J = 1, ...,».

Property (i) implies p..7 = 0 if (i, 1) € S and 3=1, ..., n. .

Property (ii) implies ord F(z) > m . Thus the Pv--7?s satisfy the

following system of equations

k ^ h ,

E Z Z (»)<*£ ,• t vPi7-7 = 0 , h = 0, 1, ..., m-l .

On multiplying these m equations by «?„, ̂. , . .. , q . , respectively, we

obtain

, n. ,

(6) %?01h + X± ̂  ZJO ty*h
aitj,lL.lPijl

 = ° • »« = 0, 1, .... m-l .

This is a system of linear equations in the unknowns {p. .,} and with

rational integer coefficients. Put

https://doi.org/10.1017/S0004972700005037 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700005037


Linear forms in the values of ^-functions 47

k ni h u

h n i=l ,7=1 1=0 L n ^^'/^-i

Clearly, we have

Gh 2 (L+l){2C
2)h , h = 0, 1, ..., m-1 .

The number of unknowns for the system of equations (6) is equal to n > m .

So we see from Lemma 1 that this system of equations has a set of rational

integer solutions {p--i} not all zero and satisfying

T I, I s („„ ...
5 [(I+l)m{2C2)m{m-l)/2]l/E = M

Since

V3) = v
it follows that

Because

TH < r !2rM , i = 0 , 1, . . . , k , j = l , ...,n.

/c ni h

we have

completing the proof of the lemma.

Let

(7) FQ(B) = F(B) , fT(a) = 2-(s) £FT_X(Z) , T = 1, 2, ....

It follows from the system of differential equations (l) and (7) that
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, n.

T i=0 j=l %3X %0

where P.. (z) satisfy the following recurrence relations:

U—JL Q—J_

n.

1=1

^ = 1, ..., k , g = l, ..., n.

Clearly, P.-_(a) € Z[s] . Fa ther , put

= P O 1 T ( 2 ) •

where

v = v(i, g) = D n, + j - 1 , i = 1, ..., k , j = 1, ..., n. .
1=0 L x

In particular, set v = 0 if i = 0 (of course g = 1 ). Conversely, if

V is given, then we can determine i by the following inequality

(8) t ny £V 5 I n - 1 .

Let P(z) he the matrix

and put

A(s) = det P(a) .

LEMMA 3. Let {f..(z)\ be a set of E-funations defined as above

which satisfy the system of differential equations (l) and which, with 1
are linear independent over C(s) . Then there exists a constant
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NQ = L(L+l)(g+l)/2 + R + Ox

such that when r* = min(r , . . . , r.A > NQ we have A(z) ^ 0 , and

where h^z) % 0 , k±(z) <i7Z.[z] and

deg A1(s) < t = R + L{L+l)(g+l)/2 + p .

Proof. Suppose that the rank of A(s) is W + 1 < L + 1 . Obviously

W > 0 . Then there is at least one non-zero minor determinant of order

W + 1 in P(s) . Without loss of generality, we assume that it is in the

left upper corner, namely that it is the principal minor determinant

AAz) | 0 . Then there exists a set of rational functions

Dm(z) € Q(a) , to = 0, 1, ..., W , V = W+l, .. . , L ,

such that

W

?TV(a) = I KJ
Z)D^Z) ' T = 0, 1, .... 1/ , V =

W=0

( s e e Lemma 6 i n [ 6 ] ) . F (z) c a n b e r e w r i t t e n a s

(9) FT(a) = I PTV(s)/v(a) ;
v=0

and we have

(10) F(a) = J P ( a ) M ( a ) , T = 0, 1, ....
v=0

where

Let ^(3) be the least common denominator of the D (z) . Put

v ^ ^ 2 ) , V = 0, 1, ..., W .

From Lemma 6 in [6] and Lemma k in [5] we find that
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ord UAZ) - a-, •

In view of (10), we get

U
1 1 t / u \ « J w 1 3 / •• / i 1 2 ) i i I 3 I f 1 3 )
* * rt * ' 1 1 * ' iprf T * ' M i l ' ' / . I * * '

where A (s) is the cofactor of the element ^-i/3) of the matrix

corresponding to A (3) . It is easy to compute that

ord(A0(2)£/v(3)) S deg AQ(z) + ord U^z)

2 (Wt-l)r + L(L+l)g/2 + C^ ,

PTV(s) > r . ri(v) - T ,

ord PT(z) > ord F (3) - L > m _ L ,

ord Awv(3) i f t - J^ ri(x) - L(L+l)/2 ,

where i = -i(x) satisfies (8). It follows from (ll) that

a > Wr - £ r.. , - L(£+l)/2 + m -
1 t U ;

Since W < L this inequality implies that there exists at least one suffix

i(x) in the interval 0 2 £(T) 5 k such that

This contradicts the assumption of the lemma. Hence we must have W = L ,

that is, A(s) ̂  0 .

Without loss of generality, we suppose that

ord ? (z) = ord f. . (z) = p
0 0 0

for some VQ = v(iQ, j ) . By (9) we obtain

L
(s) = Ĵ  F (s)A (s) .

0)=0 0
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Thus

ord A(s) > min (ord F (3) + ord A (3)) - ord f (z)
0) tovo v Q

> m - £ + r£ -

> (.£+i)r - R - £(L+l)/2 - p

and therefore

deg A±(3} 5 deg A(s) - ord A(s)

p = * ,

completing the proof of the lemma.

LEMMA 4. Under the assumptions of Lemma 3 there exist L + 1

suffixes J{x) (0 2 T 2 L) SMcfe t t e t

0<<7(0) <J(1) < ... < J(L) 2 L + t

and

The proof of this lemma is similar to Lemma 7 of [6].

LEMMA 5. Under the hypotheses of Lemma h there exist (£+1)

rational integers q (0 5 T, V 2 L) with the following properties:

(i) detfoTJ0S

(ii) for each pair (T, v) we have

where i = i(v) satisfies (8)

(13)

(Hi) for T = 0, 1, ...,£, ue

£

V=0
T T fr.»'1 1 v ̂  J

n.
-1

1=1
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where

Proof. Clearly

deg Pj(T) jV(s) ^ r + J(x)g 5 r

Put

Thus all the q are rational integers. It follows from Lemma h that

Now consider two power series

7
UU) = V unz and V(3) = y vn

1=0 L UQ L

V(z) is said to majorize the series U(z) if

vt 2 0 , |MJ| ; I ) J , I = 0, 1, ..

We write U{z) « V{z) .

It is not difficult to verify by induction that

where (£, j) corresponds to the suffix V . Thus

I v

In view of (9), we see, again by induction, that
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(T)
z)

Z=0
[lg+{d/dz))F{z)

I
h=m

Hence

On the other hand, we have

f k 1
i [m-(L+t)]l > y n.r.-2t\\

^=0 t' l J

j

Therefore

L

V=0 T V V

2 C

i-l

TT (-.0 *

completing the proof.
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LEMMA 6. Let

k
LAX) = Y <*.-•*,. , i = 1, .... * ,

be k linearly independent linear forms, and let

k
MM) = I B . . y . , i = 1 , . . . , k ,

v j = l l J J

£>e a further k linear forms. Suppose that

k
£ L.iX)M.(Y) = XY

1=1 * t

holds identically for X, Y € FT . Let X , . . . , X, denote the successive

minima of the parellelepiped defined by \L.(X)\ 5 1 ( i s i s f e ) . Denote

by v . . . , v, fcfce swceessiue minima of the parallelepiped defined by

| w . ( y ) | 5 1 ( l 5 i 5 k) . Then we have

- 1 / k j * = 1 ' • • • - k •

See Lemma 1 of [JO] for the proof of this lemma.

4. Proof of Theorem 1

Let r be a positive integer satisfying (2). From Stirling's formula

r! = (2irr)irre"r+p(r>) , 0 < p(r) < l/(l2r) ,

we obtain that

2 ' 1

log g(r)/r = log r - 2(i+l) (g'+a+ljdog B)2(iog r)z - 1 + o(r) ,

where

a ( r ) = 12SH+ lo£2TL + £i£l
2r 2r r

It is easily verified that 0 < o(r) < 1 for r > 2 . Hence

2 ' :

log r - 2(£+l) (g+O+l)(log S)2(iog r)5 _ i < log g{r)/r
o i i

< l o g r - ( ( ) (
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From the definition of g(r) and this inequality, we can immediately

verify that

)g(l) = 1 ; glr) < 1 if 2 5 r < g1* < L+l) V o + 1 ) 2 _

Because a(r) is a strictly increasing function of r (when v > 2 ) and

> x > 1 , i t follows that r must satisfy

thus the inequality (3) holds. By the definition of r , we also have

(HO (r-l)l 5 e2e(r)x < r\ .

Similarly, define the integers r , ..., r, by the inequalities

(15) ( V l ) ! 5 e
2e<r>xi 5 V , i = l, ..., k .

Clearly, the inequalities (lU), (15) imply v = max (r , ..., rA . Now

write

(16) i? = [(L+l)r(log S/log r)5] + 1 ,

where [i/] denotes the integer part of y . Because of the inequality
l

(3), and noting that r/(log r)2 is an increasing function of r , we

easily verify that

k
L < E £ Y n.r. + L .

We now show that r* = min(r , ..., r,) > N . We have
1 'CO

U ?
log r > h(L+l) (g+a+1) log B ,

I
R > (L+l)r(log S/log r)5 ,

ty (3) and (l6). So 2R > N If we were to assume that some r. < N ,

then we have the inequality

logfa-l) < r. log v. < 2R log 2R S 2e(r) ,

2o(i')
and so r.! < e . This is contrary to the definition of r. , hence
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certainly r* > N . Thus we have verified that r, r , ... ,

satisfy the conditions of Lemmas 2 and 3.

and

By Lemma 5, we have obtained (L+l) integers q (0 2 T , V S L)

satisfying det(q_,J + 0 . Further let {x..} (l < i < /c , 1 < j 5 n.)

be a set of integers satisfying the hypotheses of Theorem 1, and let b be

any integer. Then we can form a (L+l) x (L+l) determinant which does not

vanish; without loss of generality, we may assume that, say,

D =

11 fcn.

qLi •••

Let

k ni
= b + Y Y x..f. .(a) ,

A o=i

Thus D can be rewritten as

D =

0 .

LT = I <7TV?V(<*) , T = 1, .
V=0

., L

Decomposing this determinant according to the first column, we obtain

where M. i s the cofactor of L. , i = 0, 1, . . . , L . By (12) and (13)
If %

of Lemma 5, we have
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k

n. k i \x. .

) i ijf
i=l ,7=1 V

n.x.

£ C.
n .

- i

, T = 1 , . . . , L .

But D is a non-zero integer, so \D\ > 1 . Therefore we have

(IT) 1 5 |D| 5 L!Ĉ  TT (̂ 0 l\\ + i!^"1^ J -^i-

= U + V .

According to the definition of r • , we have

k n. T nT i x k n.

Thus

(18) 2U < 2LlCDr
1 u i=l "

We shall next establish upper estimates for (18) and (19)- By using

(3) and the definition of R , we can easily obtain the following

inequalities:

L+t=L+R+ L(L+l)(g+l)/2 + p 5 R +

(L+t)g + r + L = g[R+L(L+l)(g+l)+a] + r + L 2 (#+

+ a ,
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Moreover

C 5

It follows that

2L\CLrL < [2C2^(L+l)2r2/(2R)rL{R-l) . £ . {2f)Lr . J? (L+l) (g+

C l e a r l y , we h a v e , by ( l 6 ) ,

Since B > h , L > 1 , g > 0 , a > 0 , w e have r> > B > 2 1 2 8 by (3).

I t follows that

(log r)/r s 128(log 2) /21 2 8 < 2"1 2 0 ,

since (log r)/r is a s t r i c t ly decreasing function of r (when r > 2) .

Thus we can obtain the following inequalities by simple calculation:

kl < 2-7 .

< 2 -7

2(L+l)U(g+a+l)2rlog5

{Lr+Lg[R+L(L+l)(g+l)+o]}log2fl

() LglogB

2(L+l) (g+a+1)2rlogS

- 2"U
 + 2~6

 + 2" 1 3 2
 + 2 " 1 3 0 5 2"3 ;
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) < LRlog(g+2) 2

e(r)

r) + l (

2-130 5 2-6

2£logr
o(r) c(r)

L logr 2£ logr

2(i+l)2logB r 2(£+l) logB

5 2"1 3 2
 + 2"

12 3 5 2"T ;

I t follows from the above relations that

2£!CLrL 5 e((3/2)+2~7+2"1*+2"7+2~3+2"6+2"T+2"T)e(r)

Substituting this inequality in (l8), we obtain

(20) 2U<

Similarly, we can also deduce that

. {2T)L[L{L+l)(g+l)+o] m

- (g+2)LR •

Much as in the above calculations, we can also obtain the following

inequalities:
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{2[R+L(L+l){g+l)+o]+L+2+L(L+l)r/R}log(L+l)
5(75

«. 2Rloe(L+l) + {2[L(L+l)(g+l)+o]+L+2}loK(L+l) + L(L+l)rloK{L+l)
~ ( ) ( ) i?()

5 2/log r + l/(8r) + 3/(M + (log r)

< 2-6 + 2-131 + 2-128 + 2-l87 s 2-5 .

1 )+g]log2r < 1 .. -T
) ( + l ) r ~

2-130

2(L+l)3r

&[&(£+!)(g+l)+o]loK[(g+2)r]

5 l/(2(Z>l)r) + (log r)/(2(L+l)r) 5 (log r ) / r < 2~7 ;

B < 2 -7

{2[o+L(L+l)(g+l)]+L+2}logr < logr -7
o(r) ~ r d •

Substituting these inequali t ies in (19), we obtain

(21) 2V < g((7A)+2~5+2-3+2~7+2~5+2~6+2~7+2~7+2~7-2)e(r) K x

From (17), (20) and (21), we deduce that

Since b is any integer, i t follows that

k n.n k i ,i nt T \ i \

i=l * "f=i j= l V3 Vd »

Thus Theorem 1 i s proved.
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The proof of Corollary 1.2 is quite similar to the proof of the

corollary to Theorem 1 in [/]. Corollaries 1.2 and 1.3 plainly follow.

5. Proof of Theorem 2
From the hypotheses of Theorem 2 we know that the f .(2)

i*

(i = 1, ..., k) belong to an irreducible set of functions so a = q . As

in the proof of Theorem 1, the integer r must satisfy

namely, the inequality (k) holds. We shall use induction to prove the

inequality (5).

Before commencing our induction, we introduce the following notation:

-2cAr)
= e r! ;

Hz = 2(1+2) , I = 1, 2, ..., k .

In particular, g = g, , q = q. , B = B, , e(r) = O.(T') ,

gir) = ̂ fc(r) .

When k = 1 , it is clear that the inequality (5) follows from

Corollary 1.2. We suppose (5) is true for k - 1 and prove it for k

(k > 2) . Put

, i = 1, 2, ..., k ,

Clearly all p . > 0 , i = 1, ..., k . We consider two separate cases.

(i) There exists some \i. (l £ j S k) satisfying y. > 1 .
3 0

Without loss of generality, we assume y, > 1 . According to the induction

hypotheses, the inequality (5) is true for k - 1 , namely
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-H o. Ar')
(22) y\\yfAa)\\ . . . \\yfk_Aa)\\ > e k~1 ^

where r' is a positive integer satisfying the condition

gk_Ar>) Sy < gk_Ar') .

It is obvious that gz S gl+± , qz 5 qz+± , ^ 5 B J + 1 (1 = 1, ..., k)

from the definitions. Hence

)% = oAv) .

It follows that g, Ar) > gk(r) = g{r) . This implies r' < v . Because

a{v) is an increasing function of v , we have

ak_Ar) 2 k(k+l)cAr) .

Since y, > 1 and

k2(k+l)~1Hk_1/H]< + (fe+1)"1 < 1 (when k > 2 ) ,

we obtain by (22) that

y\\yfAa)\\ . . .

= exp{-
= e

Thus the inequality (5) is also true for k .

(ii) All the y. (i = 1, ...,fe) satisfy 0 < u. < 1 . We suppose

that the inequality (5) does not hold (when ?c > 2 ). Then there exists an

integer i/ > 2 such that the following inequality holds:

-H o(r)
(23) y\\yfAa)\\ ... \\yfAa)\\ < e k

Now let us consider a set of linear forms
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i = l, ..., k

*V
Denote by V the first successive minimum of the parallelepiped defined

\M.(X)\ £ 1 , 1 £ i £ k+1 .

Further let y , . .. , y-, be a set of integers satisfying the following

equalities:

\y.-yfAa)I = \\yfAo)\\ , i = i, ..., k .

Since y > 2 , {y, y , .. ., j / ,} i s a s e t o f in tegers not a l l zero. By

the def in i t ions of V.-'s and the inequal i ty (23) , we have

= y\\yfA_a)\\ ... \\yfAa)\\e

£ e

According to the definition of successive minima, we have

(2M V £ e

Let us consider the further set of linear forms

LAX) = \x{xi , i = l, ..., k ,

Without loss of generality, we can suppose that

- 1 f - 1 -11

Henceforth we suppose that s is a positive integer such that
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g(s-l) S u~ < g(s) . Likewise, s must satisfy the following

inequalities

and

( s - l ) ! S v ^

Similar ly , define the integers s2> . . . , s, by the inequal i t ies

( a . - l ) l Se2aMv-} < s.l , i = 2, . . . , k .

I t i s clear that s = max(s, s2, . . . , s,) . Final ly, l e t

R(s) = [(fe+l)e(log B/log s)*J + 1 .

Much as in the proof of Theorem 1, we can verify that the integers

s, s~, •••> s-, ' and R(s) satisfy all the hypotheses concerning

r, r. , ..., r, and Ft in Lemmas 3, h and 5, respectively. Thus,

according to Lemma 5, we can obtain k + 1 linearly independent integer

points

b i o ' q i r •••' « i d ' * = o , i , . . . , * ,

such t h a t , fo r i = 0 , 1 , . . . , k ,

\qid\ 5 Cxs.\ < ^ a e 2 0 ^ ^ - 1 , j = 0 , 1 , . . . , k ;

and

( 2 5 )

where C, and Cp are the (k+l)th successive minimum of the parallel-

epiped defined by

\L.(X)I < 1 , i = 1 , . . . , k+1 .
1r

Then A,+1 satisfies
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S max IĈ se
2c(s) „ -2ko(s)

by (25). We shall prove that C'1se2e(s) > C2e~2 k c ( s ) . As in the

calculations in the proof of Theorem 1, we can obtain the following

inequalities:

Thus we may deduce that

-2/ccU)e

. Thus

• xVl "

> 1 .

Hence C l S e
2 c ( s ) >

We have, by Lemma 6,

As in the proof of Theorem 1, we have

2 e ( s )

i-l
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{2H)s+g[R(s)+Hk+l)(g+l)+q] ^ g2"3(fe+l)"1e(

.. 2
— e

We can deduce from the above relations that

_

Hence

We shall show that

(26)

By the definition of \i , we have

ux = y\\yf±M\\e

By the definition of e.. (r) , we see that

?Ar) = 2 (̂7 +(7 +1J (̂log B ) r(log r)

5 k(k+l)~2a(r) < o(r) (k > 2) ;

hence

-2C;L(r) _2e(r)

Denote by r" a positive integer satisfying
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gAr"-l) < y < gAr") .

Since gAr) > g{r) , i t follows that r" < r . This implies

(27) oAr") < oAr) < k(k+l)~2c(r) .

By t h e conc lus ion of C o r o l l a r y 1.2 {k = l ) and ( 2 7 ) , we o b t a i n

HAk+\)

J/^'J/llj/^taJlle >e

> exp{[-l6(fe+l)"2+2(fe+2)(fe+l)"1]e(r)} > 1 (k > 2) ,

hence P~ < y . It follows that s 5 r by the definitions of s and

r . Thus (26) is true. Finally, we obtain

-B:(fc+l)"1e(r)
v > e *

This is contrary to inequality (2*0, hence the assumption (23) is not

valid. This proves Theorem 2.

The proof of Corollary 1.2 is quite similar to the proof of the

corollary to Theorem 2 of [/].

6. Remarks

If IK were an imaginary quadratic field (iK = Q(vCd)) in Theorem 1

and its corollaries, then we could use Lemma 31 of Schneider [4] in place

of Lemma 1 here to construct the auxiliary polynomials in Lemma 2.

Further we note that the conjugate to 3 (6 € IK) is its complex conjugate

3 , so |3| = |(3| . Thus all the details of the proofs of the theorems and

corollaries are as in the case IK = Q . Only the parameter B depends on

d . Therefore, if IK were an imaginary quadratic field, we would also

obtain Theorem 1 and its corollaries.
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