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ON EXPLICIT ESTIMATES FOR LINEAR FORMS
IN THE VALUES OF A CLASS OF E-FUNCTIONS

Xu GUANGSHAN AND WANG LIANXIANG

We apply methods of Mahler to obtain explicit lower bounds for
certain combinations of FE-functions satisfying systems of linear
differential equations as studied by Makarov. Our results

sharpen and generalise earlier results of Mahler, Shidlovskii,

1. Introduction

Makarov [3] has found lower bounds for linear forms in the values of a
certain class of FE-functions, but the constants involved in his estimates
are not given explicitly. In this note we apply the method of Mahler [7].
Firstly, we give an explicit expression for the constant appearing in the
lower bound of [3], thereby obtaining an explicit result (Theorem 1).
Secondly, the effective transference theorem for Corollary 1.2 is provided
by Theorem 2 of the present paper. Corollaries 1.3 and 2.1 of the present
paper give explicit results which sharpen those of [10] and Vaananen [9].
We also give some results which sharpen those of [3], [71], Shidlovskii [7]
E-functions. We detail these applications in the last part of the section
"Main results".
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2. Main results

Let € be the field of complex numbers, Z the domain of rational
integers, @ +the field of rational numbers, K an algebraic number field

(thus of finite degree over 0 ), O the domain of integers of K . An

entire function f(2) satisfying the following conditions is called an

E~function:
- % 1 1
(i) flz)y = Y I e > a; €K, |aZ[50 , 1=0,1,2, ...,
=0 °

where lall denotes the maximum of the absolute values of

a; and its field conjugates, and C Z 1 1is a positive

constant;
(ii) there is a sequence of national numbers dg> dys +++» 47»
such that
qQ,a; €0y, §=0,1, , 1, 1=o0,1, ,
and

q; = CZ , L =0,1,

The E-functions we consider below are the class of FE-functions

defined over the field K =0 . Let

« %1 1 . )
f%j(z) = Zz % s 1=l ek, §=1, ang,
=0 *

be a set of E-functions satisfying conditions (i) and (ii) and the

following system of the differential equations

n.

1

', = L = | =

(1) yij Q‘I:jO(Z) + Zgl Qijl(z)yﬂ s 1 1, ..., k s d 1, ..., n?: »
where Qijl(z) €C(z) , =1, ..., k, =1, ..., n. . We may, without
loss of generality, assume that Qijl(z) € 0(z) as is pointed out by
Shidlovskii [7].

First of all we introduce some notation. Let T(z) €Z[z] be the
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least common denominator of the rational functions Qijl(z) ; then

T(Z)Qijl(z) €Z[z] . Let

g = max (deg T(2), deg(7(2)Q;;;(2))) .
lfjs"i

0<i=<n.
7

T denotes the maximum of the absolute values of the coefficients of T(=2)
and the T(Z)Qijl(z) . Set o =a/b €0 such that alf(a) # 0 , where

b >0 . Let

H=max(|a|,b) ,B=UCHT , L=n sy

1

Denote the minimum value of the orders of the zero at 2 = 0 of all the

functions fij(z) by p , and their maximum by ¢q . We define the

constants O and Ol as follows:

0=q, 0 =p if the set {féj(z)} and 1 constitute an irreducible
set of functions (see [7], p. 389 for the definition),

(o]

qg+6, 0, = § otherwise,

where 6 1is a constant depending only on the functions {féj(z)} and the

system of differential equations {1). Finally, we define two functions

e(r) = (1+41)%(g+o+1) (log B)%r(log r)% R

g(r) = e_2c(r)r!

We obtain the following results.
THEOREM 1. et {f%j(z)} be a set of E-functions defined as above

which with 1 are linearly independent over C€(z) and satisfy the system
of differential equations (1), and let {:cij} (=1, ..., k,

Jg=1, ..., ni) be an arbitrary given set of integers not all zero. Put
zl = max xijl) , Xy = max (1, xé) , ©= max (%) .
1%y En’l: 1=tk

If r is the positive integer satisfying the inequality

(2) g{r-1) =z < g(r) ,
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then we have

(3) r = Bh(L+1)h(g+c+1)2 +1

and

k

n.
1

5 e-2(L+l)c(r) ,

kK n,
[Tz.*
i=1 *

where |lyll denotes the distance of the real number y from the nearest

integer.

COROLLARY 1.1. Under the assumptions of Theorem 1 we have

kK n.,k M 3 ¥
T_T'E-L| ) x--f--(a)l N x-12(L+1) {g+0+1)(logB/loglogr)
=1 v lg=1 j= WY
if
16(2+1)™( +<:+1)21316(“1))4(9“’*1)2
x > B g
COROLLARY 1.2. Under the hypotheses of Theorem 1 and the conditions
n, = 1 (£=1, ..., n) we have
L 2
p = g (kL) (gro+l)™
and
~ -k —2(k+1)e(r)
T . xk“g xifi(a) > e .
i=1
COROLLARY 1.3. Under the conditions of Corollary 1.2 we have
= -k -12(k+l)3(g+0+l)(logB/lOglogx)%
Ty e Ty Z: xifi(a) >z
=1
if
4 2 16(k+1)"(gro+1)2
r > pL6(k+1) (g+o+1)B g

THEOREM 2. Suppose that the functions fi(Z) (£ =1, ..., k), with

1 , belong to an irreducible set of functions and let y = 2 be any
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integer. Let r be the positive integer such that g(r-1) =y < g(r) .
Under the hypotheses of Corollary 1.2 we have

h(k+1)h(g+q+l)2 +1

(2) r=B8
and
(5) yllyf (@1 .o llyfy (el > 2(k+2)e(r)
COROLLARY 2.1. Under the hypotheses of Theorem 2 we have
yllyf (@l ... lly £ ()l > y‘le(k+2)(k+1)2(g+q+1)(logB/loglOgy)%
if

b 2
y > 315(k+1)h(g+q+1)2316(k+1) (g+q+1) '

Corollaries 1.3 and 2.1 are similar to Theorems 2 and 2' in [10] and
Theorems 1 and 2 of Vadndnen in [9], respectively. The constants here,

however, are given in explicit form.
We now mention some examples:

(i) Consider a function

(-1)"

- oh
K(z) = hz& RTOwL) .. Owhy (2207

Suppose that Al’ cens Am are rational numbers with

Ai #-1, ¥1/2, -2, ... (£ =1, ..., m) and that the ki t AZ

(1 =% <1 =m) are not integers. Let a . an be nonzero rational

l,
integers whose squares are distinct. Then the 2mm functions KX (a.z) ,
Ki [ajz) (1=2=m, 124 <n) are a set of E-functions which are

7

linearly independent together with the identity over @ (see [3], p. 8)

and satisfy the following system of differential equations:
dz Y115 T Yoij »

d _ -1 2 . .
3o Yoij * -(2Ai-1)z Ypsj = gy » L= Lls cem, G=1, n
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A; =A/d (d>0), )= max ([Al]),

1=is<m

max  (Jaf]) .

a.=al/8 (B>0), o

It is easy to compute that
L
C = 2a6dme6(A +d)m R

T = 2a282dk' ,

H=1, g=1, L+1=2m+1,
B = 4CPrh .

From Corollary 1.1 we obtain

m_n

TTTT £,

=1 g=1 “J

m n
YO8 x. .k (a.)+y,. K (a]“
i1 g HA I TN

)55

b

N X-12(2mn+l)3(2+0)(logB/loglogx
if

L 2
X > 316(2mn+l)h(2+0)2316(2’"”+1) (2+0)

b

where . (1=2=m, 1=j=mn) are any set of integers not all

15> Yig

.. = . . , . X = X..) . i
zero, XiJ max(l, |ngl’ |yzgl) , 15i5:i:5j5n ( tJ) This result

is an application of the theorem of [3], our result however explicitly

provides the unspecified constants appearing in [3].

(ii) Suppose that a --» @ are distinct rational integers, and

l’
that b > 0 is a rational integer such that (b, ays wees ak) =1.

Consider a set of E-functions

Qzl/b)z (ak/b)z
e s eees @ .

>

Obviously, the hypotheses of Corollary 1.2 and Theorem 2 are satisfied, and
these E-functions belong to an irreducible set of functions, so that

g=0 and g =0 . We obtain from Corollary 1.2 and Theorem 2 that
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k ai/b

x.e
1

Ty oee. Ty 6_2(k+1)c(r)

> k4

=1

a /b a /b
ylye ¥ I ... llge K| > e~2(k¥2)e(@)

kl

respectively, where

e(r) (k+l)2(log B)%P(log P)é s

B =4 mx (b, |a;]) .
1=i<k

43

The two inequalities above are similar to those of Theorems 1 and 2 of [1],

respectively.. The exponent -2(k+2)c(r) above constitutes a slight

sharpening of the result obtained by Mahler in [!], Theorem 2, which has

the exponent -2k(k+l)e(r) .
It follows from Theorem 1' of [7] that

a./b a, /b
min x. e 1 + .+ e k

7 1
_k-vyk3 z
X B z, ul k-Yk2(loglogx)
ERE

>

x.€Z
if
x > exp(exp szs) s
vhere Y 1is a constant independent of k . Our Corollary 1.3 implies:
4
L 16k
x> Bl6k B ,
then
a,/b a, /b 3 3
min el 4. tae k N xl—k—le (10gB/1loglogz)?
1 k
z.|=x
7
2 2
xl+...+xk>0
x.€Z

again sharpening the earlier result.

(iii) Let A Dbe a rational number (but not a rational integer).
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Consider a set of E-functions
¢A((al/b)z), cees ¢X((ak/b)z) s

where
© zZ
¢X(z) = Z% (1), .. (1)
By [51], ¢A((al/b)z], cees ¢X((ak/b)z) , with 1 , belong to an irreducible

set of functions which are linearly independent over €(z) and satisfy the

following system of differential equations:
L 4, ((a,/b)2) = Mz + ((a/b)-(V2))e, ((a/b)z) o £ =1, oovy K
Put A=A /d, (Al, d =1, d>0, oa=1. Itis easy to compute
that
5 12(|Al|+d]

C = bd"e max (]a.l) (vy Mahler [2], p. 1k6)},
1=k ¢

3
"

bdr, max (la.|) ,
i 7

H=19 g=1, q=0'

From Corollaries 1.3 and 2.1 we obtain

k 3 3
- - -24(k+1)~(logB/loglogx)?
Z ... 5| Y ¢, (a./B)| > 2
1 kil;o "E7ANE ”
if
6l (a5 P
x > B E}
and
2 1
yllydy (3, /B - llys, (a/B) 1 > 2 (k31" (ks2) (dogB/Loglogy )2
if
L
L_6h(k+1)
y > B6h(k+l) B )
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These results are Thegrems 1 and 2 of [&], respectively; however we

explicitly compute the unspecified constants that appear in [§].

3. Lemmas
LEMMA 1. Let (gij) (1<i=m, 1=j5=n) bea mxn (m<n)

matrix of integers. Put

R
5
g..x. = , =1, > mo,
jo I
and
1/(n-m)
max [lxil) = (Gl ces Gm) .
1=i=n
This is Lemma 1 of [1].
LEMMA 2. Let Pls s Py and R be positive integers satisfying
p = rO = max(rl, ooy rk) =22,

L <R$i§0 n,r. + L (where n0=l);

and let

k k
= + + - = .r. +

1=0 1=0

[(L+l )m(202)m(m—l)/2] 1/R )

Then there are polynomials Pij(z) €zZ(z] (¢=0,1, ..., k,

M

J=1, ..., ni) which do not all vanish identically and have the following

properties:

: < > -
(i) deg Pij(Z) Sr, ord Pij(z) zr-r., iPzI < ri!ZrM R
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1=0,1, ..., k, j=1, cees M, where ordPiJ.(z)

denotes the order of the zero at z = 0 of the polynomial
Pij(Z) , and ]Pijl denotes the height of Pij(z) , that

is, the maximum of the absolute values of the coefficients

of Pi,j(z) K
(t1) let
k —
F(z) = 720 gg:l P. (Z)fij(z) (where f'01(z) =1)
= z rio, (n1)7 1tz - Y thh R
h=m =m
then

lo, | = )ty Hase) U, oz

Proof. Let &S be the set S:{(i, Z)|05i§k, r-rislsr} .

and write

_ -1, A . _
Pij(z)-r! Z pwz(l') » 1=0,1, ..k, J=1, .o,y
Property (i) implies Pii1 = 0 if (Z, 1) €5 and j=1, ..., n, .
Property (i%) implies ord F(2) = m . ‘Thus the leZ s satisfy the
following system of equations
Y% e,
p + P 0, h=0,1, ..., m1 .
0lh =1 j=1 1=0 V%,5,n-1Pi51 ©

On multiplying these m equations by qo, ql’ cees Qg s respectively, we

obtain

(6) a;py 5 * Z Z Z Baya, 0 priy =0, B=0,1, oo, ml .
h¥01lh e 2R 1,J,h-1F131

This is a system of linear equations in the unknowns {pijl} and with

rational integer coefficients. Put
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§ ¥ ?Z ] I
G, =q, + q;,a. . .
= R = I R
Clearly, we have

G, = (L+1)(2C2)h , h=0,1, ..., m-1 .

The number of unknowns for the system of equations (6) is equal to n > m .
So we see from Lemma 1 that this system of equations has a set of rational

integer solutions {pijl} not all zero and satisfying

max_|p; il 5 (6 - g, )M

1,4,
[(o+1)"(2c?)mm=1)/291/R _

1A

Since

. r -1 1
Pij(z) =71 Zgg r!(ri!Z!) Pii1®

it follows that
[P..] sra12’M, i=0,1 k j =
i = Tit s 7 s 1y ceny » 4 =1, ..., n
Because
h

%%Z(h)
0, = Pnaq t . - 1 Prcq s
h 01p - .o i=1 1=0 V71,4,h-17451

we have
lo,| = (rt/mt) oy | < (L41)rt (1) 2 (140) ,

completing the proof of the lemma.

Let

(1) F(z) =Fz) , Flz) =T £F (), 1=1,2, ....

E}-l

It follows from the system of differential equations (1) and (7) that
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kK M
F’[(z) = iz:o jgl P‘I:JT(z)fij(z) s

where Pij‘r(z) satisfy the following recurrence relations:

Pijo(z) = P‘l:,](z) ’
4 k 4
Popr(8) = (@) Zm Py ) o (2) + ié& jéi T(2)Q;;4(2)P; o o 1 (2)
n.
d &
Pijr(z) = I(2) Pi,j,T-l(z) + T(Z)QiZj(z)Pi,Z,r_l(z) ,

1=1

Clearly, Pij‘r(z) €Z[z] . Further, put

Folz) = £ (2) 21, fi(2) = £:(2)

1
0
—
e
-
-
Ny
~~
N
-
I
—
t
—
-

ﬁro(z)

where

-1
v = vz, j) = Z nz+j-l, 1=1, ..., k, =1, ..., n
1=0

In particular, set v =0 if Z =0 (of course j =1 ). Conversely, if

v 1is given, then we can determine % by the following inequality

-1 i
(8) nzi\)SZnZ—l.
1=0 1=0

1t

‘Let P(z) be the matrix

Plz) = (ﬁrv(z))OST,vSL g

and put
A(z) = det P(z) .
LEMMA 3. [et {fij(z)} be a set of E-functions defined as above

which satisfy the system of differential equations (1) and which, with 1 ,
are linear independent over C€(z) . Then there exists a constant
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N, = L(L+1)(g+1)/2 + R + o

such that when r* = min(r - rk) > N, we have Mz) $0, and

l,

Az) = z(L+1)r—R-(L(L+l)/2)—pAl(z) ,

where Al(z) $o0, Al(z) €Z[z] and
deg Al(z) <t =R+ L(L+1)(g+1)/2 + p .

Proof, Suppose that the rank of A(2) is W+ 1 <L + 1 . Obviously
W = 0 . Then there is at least one non-zero minor determinant of order
W+ 1 in P(2) . Without loss of generality, we assume that it is in the
left upper corner, namely that it is the principal minor determinant
Ao(z) # 0 . Then there exists a set of rational functions

Duw(z) €0(z), w=0,1, ..., ¥, v

W1, ..., L,

such that

W ~ .
PTv(z) =w=zo Pw(z)z)wv(z) , T=0,1, ..., W, v=Ww, ..., L

(see Lemma 6 in [6]). E}(z) can be rewritten as
L . -
(9) F}(Z) =y P}v(z)fb(z) 5
v=0
and we have
W ~
(10) F (z) = vég PTv(z)uv(z) , T=0,1, ..., W,

where

- L .
u,(z) = £ (2) + Y fw(z)Dw(z) .

W=+l

Let Tl(z) be the least common denominator of the Dwv(z) . Put
Uv(z) = Tl(z)uv(z) , Vv=20,1, ..., K.

From Lemma 6 in [6] and Lemma 4 in [5] we find that
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ord U(z) = o, .

In view of (10), we get

W
(11) B (2)0,(2) = T T (2)8(2)F (3) ,
w=0
where va(z) is the cofactor of the element ?@V(z) of the matrix
corresponding to Ao(z) . It is easy to compute that

ord[Ao(z)U\)(z)) < deg B (2) + ora U (2)

IA

(W1)r + L(I41)g/2 + cl .

~

ord PT\)(Z) >r - ri(\)) -1,

ord FT(z) > ord Fo(z) ~-Lzm-1L ,

v

ord Aw(z) Wr - osgsw iy - L(L+1)/2 ,

T#V

where € = 2(t) satisfies (8). It follows from (11) that

(We1)r + L(L+1)g/2 + o, > Wr - ) - L(I+1)/2 + m - L .
1 O=T<W

T#V

Ti(t)

Since W < L this inequality implies that there exists at least one suffix
2(T) in the interval O =< 2(T) =k such that

. < .
P L(I+1)(g+1)/2 + R + o
This contradicts the assumption of the lemma. Hence we must have W = L

that is, A(z) 0 .

s

Without loss of generality, we suppose that

ord }bo(z) = ord f%ojo(z) =p

for some Vv, = v(io, jo) . By (9) we obtain

L
A(z)fbo(z) = mé; E@(z)vao(z)
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Thus
ord A(z) =z min (ord F (2) + ord & (z)) - ord fb (2)
O=w=l 0 0]
>m-L+rL- ) r - L(L+1)/2 - p
ost=r (T
T#V,

v

(L+1)r - R - L(L+1)/2 - p ,
and therefore

deg Al(z) < deg A(z) - ord A(z)

IA

(L+1)r + L(L+1)g/2 - (L+L)r + R + L(L+1)/2 + p
R+ L(L+1)(g+1)/2 + p = ¢t ,

)

completing the proof of the lemma.

LEMMA 4. Under the assumptions of Lemma 3 there exist L + 1
suffizes J(1t) (0 =T = L) such that

0 =J(0) <J(1) < ... <J(L) =L + ¢t

det(PJ(T),V(a))OST,vEL £0.

The proof of this lemma is similar to Lemma 7 of [6].

LEMMA 5. Under the hypotheses of Lemma 4 there exist (L+l)2

rational integers dry (0 =1, v <=L) with the following properties:

(i) det(q #0;

rv)osr,vEL

(iZ) for each pair (T, V) we have

(12) la | = Crrs oyt s
where 1 = 1{(v) satisfies (8) and
¢, = (Lot )garss PP (o) T+ (E4E)gy
(i) for 1 =0,1, ..., L , we have
L . k )™
(13) 2 qrpfp(@)] = 02[I:I (ri!) } ,
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where

c, = (L+1)[(L+t)g]L+t(2H)2(L+t)gH(L+2)r(2T)L+t[(L+1)r]2t(1+C)(L+l)re20HM )
Proof. Clearly
deg ZDJ(T) v(Z) =r+ J(1)g = r + (L+t)g .
Put
_ r(I+t) gy
Apy = b Fb(T),v(a) :

Thus all the 4., Bare rational integers. It follows from Lemma 4 that

det (qrv) 0=t,vsL #0.
Now consider two power series
- © ©
U(z) = Zg uzzZ and V(z) = g vzzZ .
=0 1=0

V(z) 1is said to majorize the series U(z) if

v, 20, |uZ|st, 1=0,1, ...

We write U(z) < V(z) .

It is not difficult to verify by induction that

J(t)-1
P (T)[ J(T)g+r
PJ(T),V(Z) <77 Pij £=é (Lg+r+L)(1+3) ,
where (%, j) corresponds to the suffix Vv . Thus

]qu| < br+(L+t)gTJ(T)Fﬁ;}T[GI(T)—l]g+r+L]J(T)(l+|a|/b)J(T)g+r

1A

TL+t|—|Pij [(Mt)g+p+L]L+t(2H)(L+t)g+r

clri(V)!

1A

In view of (9), we see, again by induction, that
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J(1)-1
y(2) « P a9 T (1g0(a7a2))Fo(2)

F
J(t 1=0

< Z‘I(T) (J(T)g)J(T)(1+z)J(T)g(l+(d/dz))J(T)Fo(z)

J(1) 2y, g 2 ol s
« (271) (7(1)g) (1+z) hé; (=) 2 .

Hence

L

I oy

< r+(L+t)g

<b |22y (a/b)]

ol
= P!§2T)J(T)(J(T)g)J(T)br+(L*t)g(1+IaI/b)J(T)g hzg lh-J{;))z'(lal/b)h'J(T)
< (L)1 (2D () g1 P (1e0) BT BB (14 | 0| ) (EHE)E
< (lalp)"Jal ) (D2l P LG g (2y) ] u

< (Le1)rt[(Det)g) P (om) 2B GR{L42)7 oy Lt

27T)
e 2% (140) DTy L [(mea(1)) 1)L
On the other hand, we have

k
(m-J(T)]! > [m=(L+t)]1 2 [Z niri—Qt]!
=0

k
> [Z niri]![(Ml)r]'zt .
1=0
Therefore
L
L ap (@] = @) ze)g1 (a2 )0y D201 o) Lot
v=0
2t (z+1)r_2cH |-X n )™
« [(Z+1)r}°7(1+C) e M;!:l]' (ri!) t

IA

k A
CQ[I:I (ri!) 1J >

completing the proof.
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LEMMA 6. Let

aijxj , =1, ..., k,

s

£, (0 =
d

be k linearly independent linear forms, and let
§
M.(Y) = B..y., =1, ..., k,
i g 3

be a further k Llinear forms. Suppose that
k

iéi Li(X)Mi(Y) = XY

holds identically for X, Y € Rk . Let Xl, cens Ak denote the successive
minima of the parellelepiped defined by ILi(X)[ <1 (1<1%<=<k). Denote
by Vis wees Vg the successive minima of the parallelepiped defined by

IMi(Y)l =1 (1= =k). Then ve have

A

> ;=
Vrapg Sk, D=1, o, k.

See Lemma 1 of [10] for the proof of this lemma.

4. Proof of Theorem 1
Let r be a positive integer satisfying (2). From Stirling's formula

r! = (2"r)%rre-r+p(r) , 0 <p(r) <1/(12r) ,

we obtain that

log g(r)/r = log r - 2(L+l)2(g+0+1)(log B)%(log r)% -1+ 0alr),

where
_ logr , logem . p(r)
o(r) = 2r T or Y p ¢
It is easily verified that 0 < o(r) <1 for r = 2 . Hence

1 1
log r - 2(L+1)°(g+o+1)(1log B)Z(log )2 - 1 < log g(r)/r

1 1
<logr - 2(L+l)2(g+0+l)(log B)Z(log r)Z .
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From the definition of g(») and this inequality, we can immediately

verify that

L 2
g(1) =1 ; g(r) <1 ir 2 =1 =g ) (grov)™

Because c(r) is a strictly increasing function of r (when »r =2 ) and

(r) >x =21, it follows that r must satisfy
g

14(L+1)h(g+c+1)2 .

r 2B l’

thus the inequality (3) holds. By the definition of r , we also have

(1%) (r-1)1 = 20z <
Similarly, define the integers rl, ey rk by the inegqualities
(15) (r.-l)' = e2c(r)§. =r.! 1 =1 k
2 1 = ;S rpts s eees .
Clearly, the inequalities (14), (15) imply r = max(r s eees rk) . Now
write
1
(16) R = [(L+1)r(log B/log r)2] + 1 ,

where [y] denotes the integer part of Yy . Because of the inequality

1
(3), and noting that r/(log r)Z is an increasing function of »r , we

easily verify that

k
L<R=s Y nr. + L.
=0
We now show that r* = min(r s eens rk) > NO . We have

log r > l»(L+l)h(g+o+l)2 log B ,

1
R > (L+1)r(log B/log r)Z ,
by (3) and (16). So 2R > Ny . 1If we were to assume that some r. = NO ,

then we have the inequality
>

log[ri!) <r, log r, < 2R log 2R = 2¢(r)

2e(r)

and so ri! <e . This is contrary to the definition of ri , hence
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certainly r* > NO . Thus we have verified that r, Tis wees Ty and R
satisfy the conditions of Lemmas 2 and 3.

By Lemma 5, we have obtained (L+1)2 integers q., (o<1, Vv=1IL)
satisfying det (q_w) # 0 . Further let {xij} (1si=<sk, 1s4< ni)

be a set of integers satisfying the hypotheses of Theorem 1, and let b be
any integer. Then we can form a (L+1) X (L+l) determinant which does not

vanish; without loss of generality, we may assume that, say,

bz, . Ky,
po B0 o |
90 1 U
Let
kK
Ly=Db+ iéﬁ jéﬁ mijféj(a) s

L -
L Y q (@), T=1, ..., L.
T V=0 T\)f\)

Thus D can be rewritten as

Ly = xknk

L. q q
p= |1 1L

Ly ap qrr

Decomposing this determinant according to the first column, we obtain

D= LOMO + LlMl + ...+ LLML R

where Mi is the cofactor of Li , 1 =0,1, ..., L . By (12) and (13)

of Lemma S5, we have
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L'cLﬁ (1) "

i=1

=
A

(L—l)'Cf'lﬁ (o) § Z Lyl

=1 i=1 j=1 i’

x
In

(@ TT ()% 5 St

1 i=1 1=1 L

tA

-1

k n.
2l =TT ()" 5 ©t=1, ..., L.
=1

But D is a non-zero integer, so IDI > 1 . Therefore we have

k n, k n.x.
-1
chf l=l (7,1) “lz,l + L!Cf c, ¥ —==*

=1 "1

tA

(17) 1 = |D|

U+ V.

According to the definition of ri , we have

k n. k n.
-I—I— (ri!) 1 < r’Lech(r) TTE’,L’L ,
=1 =1
E % -2e(r)
i Tt
Thus
k n;
(18) 2U < 21 lrLeeLc(” T‘I i
(19) ov < 2(L+1)!cf'102e‘2c(r)

We shall next establish upper estimates for (18) and (19). By using
(3) and the definition of R , we can easily obtain the following

inequalities:
L+t=L+R+LII+)(g+1)/2 + p = R + L(L+1)(g+L) + 0 ,
(I+t)g + ¢ + [ = g[R+L(L+1)(g+l)+c] + » + L = (g+2)r ,

(L+t)g = (g+l)r .
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Moreover

o = 2rTR+L(L+l)(9+1)+0

1 [(g+2)r]

R+L(L+1)(g+l)+0

 (ony™IURE(IAL) (g01)+0) 1 ) (141) 2/ R 2y (1+41)°7°/ (2R) .

It follows that

enich < [202)L(L+1)2r2/(2R)rL(EL1) S (141 (g41) +Lo

* (2H)

Clearly, we have, by (16),

Lr+Lg[ R+L(L+1) (g+1)+0]

. rLz(L+l)(g+l)+L(0+2)

. (g+2)L[R+L(L+1)(g+l)+0]

. (L+1)L(L+l)r/R )

(2c?) M B P%/(2R) L(R-1) _ (3/2)e(r) |

Since B =4 ,

It follows that

L=21, g=o0

(log r)/r = 128(1og 2)/

since (log r)/r

020, we have

is a strictly decreasing function of r

6h 128

r>RB =22 by (3).

2128 < »—120

2

(when » = 2)

Thus we can obtain the following inequalities by simple calculation:

LlogL 2 -7
e(r) ~ <275
2(L+1) "rlogB
Liiﬁ%fT < LrlZgB < 2-h ;
2(L+1) rlogB
(2°(+1) (g+1)+I0)10gT _ _L(E+1)%(g+1+0)10gB  _ ,-T
e(r) 2(L+1)h(g+o+l)2rlogB
{Lr+Lg[R+L(L+1)(g+1)+0]} log2H
e(r)
LriogB Lg(L+1)liogB + LglogB
= % z
2(2+41)*r10g8  (1+1)2(gto+1)logr  (L+1)2(10B)Er(10gr)?

-k -6

=2 + 2 + 2

-132 2—130 < 2—3 .

o [22a(1+1)%(g+1) +1g0 11068
2(L+l)h(g+o+l)2rlogB

3
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L{R+L(L+1)(g+1)+c]log(g+2) _ LRlog(g+2) | L(L+1)2(g+o+1)1og(q+2)
e(r) e(r) e(r)

2

IA

IR(g+1) |, L(#1)°(g+o+1)
e(r) e(r)

tA

= 1/(log r) + 1/(2(L+1)3r) + 1/ (2(z+1)r)
ST, o132, =130 _ -6

b

=2

L[(L+l)2(g+l)+0+2]logr L(L+1)2(g+o+1)1qu , 2Llogr

<

e(r) - e(r) c(r)
< L logr + Zi logr
2(+1)%10g8 T 2(L+1) '10g8 T
<7132 57123 L T
L{L+1)rlog(L+1) -7
Re(r) =1/r =2 .
It follows from the above relations that
“Ton=t =T, 3,56, =T, =T
2L!cer < (r2)27leeT 2™ 2242742 427 e(p) < g2elr)

Substituting this inequality in (18), we obtain

kK n,
(20) 2y < AU Tz typ |
=1

Similarly, we can also deduce that

22
2(L+1)!cf—102 < rLR+2R-(L+2)(202)L(L+1) r"/(2R)

2[R+L(L+1) (g+1)+0]4L+2+L(L+1)r/R )(2L+l)r

« (kHTC
(L+1)g[R+L(L+1) (g+1)+0]

« (L+1)

LIL(L+1)(g+1)+0] | (28)

. (ge2) B . [(ge2)p)PLE(LHL) (g41)40] | B

. (27)

. p2lotL(I+1)(g+1) J+L+2 )

Much as in the above calculations, we can also obtain the following

inequalities:

2.2
AR (B1) (o2 HI)PrP 2R) | (T/e(e) (o
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{2[R+L(L+1) (g+1)+0 )+ [+2+L(I+1)r/R}1og( L+1)

elr
< 2Rlog(L+1)  {2[L(I+1)(g+1)+0]+L+2}1og(L+1) , L(L+1)rlog(L+1)
= e(r) e(r) Re(r)

2/10g 7 + 1/(8r) + 3/(kr) + (log »)¥/(8r)

A

<070 4 7131, 7128 | -18T -5
(2L+1)rlog(LHCT) < (L+l)_3 <53 ,
e(r)
LIL(L+1)(g+1)+0]logeT _ __ 1 _ _ ,-T
c(r) ~ 2(L+1l)r ~ >
(L+1)g[R+L(L+1) (g+1)+0]1log2H
e(r)
< logB | 1 1 < 2-6 s p-132 | 57130 -5
logr 2(L+1) 2(L+l)
LRlog(g+2) . 1 + 1 - 2-6 .
C(I’) lOgI' 2(L+1)3P ]

LIL(L+1)(g+1)+0]log[(g+2)r]
e(r)

< 1/(2(2+1)r) + (log r)/(2(Z+1)r) < (log r)/r < 277

B B < B _ T

e(r) = 5 re ) ri0gs 2780

2

{2[o+L(L+1) (g+1) ]+I+2}1ogr _ < logr o -7
e(r) r :

Substituting these inequalities in (19), we obtain

6, -1

((T/h)+2_5+2’3+2'7+2'5+2' +2 ol

w2 2 2)e(r) N

(21) 2V < e
From (17), (20) and (21), we deduce that
i » s
=1 °© |

Since b 1is any integer, it follows that

—2(L+l)c(r)

T_Tl

i jo G

Thus Theorem 1 is proved.
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The proof of Corollary 1.2 is quite similar to the proof of the
corollary to Theorem 1 in [7]. Corollaries 1.2 and 1.3 plainly follow.

5. Proof of Theorem 2
From the hypotheses of Theorem 2 we know that the f;(z)

(£ =1, ..., k) belong to an irreducible set of functions so O =¢q . As

in the proof of Theorem 1, the integer r must satisfy

2
L{g+q+1)
r=z= Bh(k+l) + 1,

namely, the inequality (4) holds. We shall use induction to prove the
inequality (5).

Before commencing our induction, we introduce the following notation:

-Ecz(r)
gz(r) =e rt o
E3 %
e (r) = (Z+1)2(gl+qz+l)(l°g Bz)zr(log r)? ;
By =2(142) , 1=1,2, ..., k.

In particular, g = 9, > 9 =9 > B = Bk , elr) = ck(r) s

glr) = gk(r) .

When k =1 , it is clear that the inequality (5) follows from
Corollary 1.2. We suppose (5) is true for k - 1 and prove it for k
(k=22) . Pput

(k1) Ye(n)

By
w, = llyf;(@)le , 1=1,2, ..., k,
-1
Weep = (b oo 1)
Clearly all ui >0, ©2=1, ..., k. We consider two separate cases.

(i) There exists some M (L =4 =k) satisfying M =1,
Without loss of generality, we assume uk 2 1 . According to the induction

hypotheses, the inequality (5) is true for k - 1 , namely
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~H e (P')
(22) ylyf (@ ... lyfy ()l > e K2R

where r' 1is a positive integer satisfying the condition
gr1(P") =y < gy (2)
It is obvious that g; =g;,, » 4754y, » B; =B, (L=1, ..., k)
from the definitions. Hence
2 % %
¢pp(r) < (k1) (gk+qk+l)(log Bk)zr(log r)? = cplr) .

It follows that gk_l(r) > gk(r) = g(r) . This implies »r’ < » . Because

e(r) 1is an increasing function of r , we have

(r') < e, (r) < k2(k+l)'20k(r) i

k-1 2-1(

Since Hy Z 1 and
kg(k+1)”lHk_l/Hk +# (k#1) <1 (when k22),
we obtain by (22) that
sy (@ o Ir @ = ylufy ] - Ty @)y, exp{- (1) o)
> exp{—kz(k+l)_er_lck(r)-Hk(k+l)_lck(r)}

= exp{- [{P0en) 2, i) e ()

> exp{-Hep(r)} = gm2lkr2le(r)
Thus the inequality (5) is also true for k .
(ii) All the u (£ =1, ..., k) satisfy 0 < M; <1 . We suppose

that the inequality (5) does not hold (when k = 2 ). Then there exists an
integer y = 2 such that the following inequality holds:

-ch(r)
(23) yllyfy @Il -.. llyf (el = e

Now let us consider a set of linear forms
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-1 .
M (X) =y (xi-f%(a)xk+l) , 1=1, ..., k,

-1
Mk+1(x) = V1%

Denote by V. the first successive minimum of the parallelepiped defined

1
by
|Mi(X)|Sl, 1 <4 < k+l .
Further let Yys ooos Yp be a set of integers satisfying the following
equalities:
ly;-u5, ()] = lyfy(edll , 2=1, ..., k.
Since y =z 2 , {y, yl, ceny yk} is a set of integers not all zero. By

the definitions of ui's and the inequality (23), we have

N ~H, (1) He(r)
W llyf ()l = e , 1=isk,

ugl(yi-yfg(a))l

-1 k(k+l)-lch(r)
| = vlary @1 . r(ele

_ e e

According to the definition of successive minima, we have

-Hk(k+l)—lc(r)

(24) v, Se

Let us consider the further set of linear forms

Li(X) i=1, ..., kK,

n
=
8

Lean 8 =y (@ (@) + o+ zfi(a) + )

Without loss of generality, we can suppose that

-1 -1 -1
ul = max ul s eeey uk ] >1 .

Henceforth we suppose that s 1is a positive integer such that
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g(s-1) = uzl < g(s) . Likewise, & must satisfy the following
inequalities
L
(k) (grqe1)?
and
2e(r) -1

(s-1)! = ¢ W< st

Similarly, define the integers 32, e by the inequalities

,Sk

2¢(r) -1 .
(s,-2)t = e )“i <sl, =2, ..., k.

It is clear that s = max(s, 855 =t sk) . Finally, let

R(s) = [(k+1)s(log B/log s)%] +1 .

Much as in the proof of Theorem 1, we can verify that the integers

8, 855 ---, 5, and R(s) satisfy all the hypotheses concerning
Py Prs oens rk and R in Lemmas 3, 4 and 5, respectively. Thus,

according to Lemma 5, we can obtain k + 1 1linearly independent integer

points
(qio’ Qpp> v qik) , 1=0,1, ..., k,

such that, for <

)
(@]
=
X

-

2e(s) -1 . _
|qijl = Clsj! = () se uj s =01, ..., k;
and
(25) § (a) C,(stsy! N1 < ce -2ke(s) it
qufb o slsyl ... 8! = Cye T

J=0
where Ci and 02 are the (k+1)th successive minimum of the parallel-
epiped defined by

LX) =1, =1, ..., k1 .
1

Then A satisfies

k+1
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= max Clsezc(s), C.e

A 2

-2kc(s)]
k+1

2e(s) cge‘zke(s) . As in the

by (25). We shall prove that Clse

calculations in the proof of Theorem 1, we can obtain the following

inequalities:

bl

(ec2r) (e ¢ (k1) (o)

(om) (K¥t)g (k1) %e(s)

3

21 o Kt k+1)"2e2/ (k41 els)

(ks1)2E*1 < e[(k+1)—h+2'50(k+1)-2]e(s) )

Thus we may deduce that

2e(s)
Clse

c —2ke(s)
e

_ 2(k+l)e(s)
=e Cls/C2

> 2lk+l)e(s) | (202H)-(k+l)s . (2m)~(k*t)g | (k+1)~2t"1 . g-2t*l

> exp{[2(k+l)—(k+1)'3-2(k+1)'2-2(k+1)'l—(k+1)'h—2'5°(k+1)'2]c(s)}
> 1 .
Hence Clsezc(s) > Cze-ch(s) .  Thus
. < 2e(s)
Ak+l =< Clse .

We have, by Lemma 6,

-1
- -1,-1 2e(s)
v, 2 (k+1) )‘k+1 > Ekﬂ)clse ] .

As in the proof of Theorem 1, we have

(2c?) (k+1)%6%/ (2R(8)) (R(s)-1 _ (3/2) (ke1) Pe(e)

[(gr2) 1ROV #k (¥ L) (gr1)eqsr _ 272 (ke1) Te(s)

>
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(o) *9LR(8)+k(Rs1) (gH1)+q) 27 (k1) Ve(a)

J(1) (gh)egre _ 27 (k1) e(s)

<

-/ -1
(k+l)(k+l)s/R(s)+1 < 2 (k#1)7Te(s)
We can deduce from the above relations that

2e(s)

IA

(k+1)C. se g2els) | (202](k+1)282/(2R(s))SR(s)-1
1

R(s)+k(k+1)(g+1)+q+1 s+g[R(s)+k(k+1)(g+1)+q]

« (2H)
Sk(k+1)(g+1)+q+2

[(g+2)T]

. (k+l)(k+1)s/R(s)+1

2 L

e2c(s) 3

« exp{((3/2)+2™%+27>+2" +2_h)(k+l)-lc(s)}

-1
_ rate) e | (k) Tele)

Hence

-Hk(k+1)—lc(s)

v, >e
1

We shall show that
(26) els) = e(r) .
By the definition of ul , we have

Hk(k+l)-lc(r)
yuy = yliyf (adlle

By the definition of cl(r) , we see that

e, (r) = 22(gl+ql+l)(log Bl)%i(log r)¥
< W(k11)Pe(2) < elr) (k2 2) ;
hence
-2¢, (r)
gl(r) =e Y p1> e-20(r)r! = g(r) .

Denote by r"” a positive integer satisfying
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gl(r"—l) =y < gl(r") .

Since gl(r) > g(r) , it follows that »" < »r . This implies

(27) o) (r") = e () S W(ks1) Pe(z) .
By the conclusion of Corollary 1.2 (k = 1) and (27), we obtain

Hk(k+1)_lc(r) -hcl(r")+Hk(k+l)-lc(r)
yllyf) (a)lle >e

exp{ [F16(k+1)~2+2(k+2) (k+1) He(r)} > 1 (k = 2) ,

¥y

v

hence uil <y . It follows that s = »r Dby the definitions of & and

r . Thus (26) is true. Finally, we obtain

-Hk(k+l)'lc(r)

v, >e
1

This is contrary to inequality (24), hence the assumption (23) is not

valid. This proves Theorem 2.

The proof of Corollary 1.2 is quite similar to the proof of the
corollary to Theorem 2 of [1].

6. Remarks

If K were an imaginary quadratic field (K = 0(V-d)} in Theorem 1
and its corollaries, then we could use Lemma 31 of Schneider [4] in place
of Lemma 1 here to construct the auxiliary polynomials in Lemma 2,

Further we note that the conjugate to B (B € K) is its complex conjugate

B, so [8] = IE] . Thus all the details of the proofs of the theorems and
corollaries are as in the case K = @ . Only the parameter B depends on
d . Therefore, if K were an imaginary quadratic field, we would also

obtain Theorem 1 and its corollaries.
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