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ABSTRACT 
Data, information and knowledge are strongly involved in Engineering Design (ED) process. Despite 
the crucial role played by data in the design process, there is a lack of studies about how different data 
are used and generated by the various phases of the ED process. This study is a first attempt to fill this 
gap by mapping which data types are involved in the different ED phases from a research perspective. 
In order to achieve this objective, we used a methodology based on Text Mining. Firstly, we retrieve a 
corpus of scientific papers related to ED; then, we build two lexicons to recognize ED phases and data 
types; finally, we collect these entities within ED papers and map the relations between them. 
The methodology application allows the building of a network graph for visualizing the relations 
among data lexicon and ED lexicon. Then, we investigate the specific relations among data types and 
ED phases by building a heatmap to investigate data types from 3 different perspective. 
The insight coming from our analysis shows that ED studies have a great potential in the usage of 
many data sources, but also that there exist some gaps to be solved in order to reach a more effective 
data usage in the context of ED. 
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1 INTRODUCTION 

During the Engineering Design (ED) process, engineers make intensive use of data, information and 

knowledge (Chaudhari et al., 2020). According to the model introduced by Ackoff (1989), data are the 

building block of the knowledge pyramid and are defined as properties of observables phenomena. From 

data it is possible to move to information (i.e., the description inferred from data), and from information 

to knowledge (i.e., know-how that comes from learning). Without proper data it is hard to collect design 

knowledge, and with the widespread of information given by digitalisation, this is not a trivial task. 

Despite the crucial role played by data in the design process, there is a lack of studies about how 

different data are used and generated by the various phases of the ED process. This study is a first 

attempt to fill this gap by identifying and mapping which data types are involved in the different ED 

phases from a research perspective. The resulting map can be used by ED researchers and practitioners 

to understand potential data gaps and opportunities. It is in fact relevant to understand the relation 

between data and ED, aiming at helping ED researchers to focus on the impact that advances in 

Artificial Intelligence and Machine Learning are having on the field of ED. 

In order to achieve this objective, we used a methodology based on Text Mining (TM) and applied it to a 

corpus of scientific papers in the ED field. The method is similar to the one described by Chiarello et al. 

(2021), where the authors analyse how different techniques for data analysis are used in ED. In the 

present paper we add the building block of data, in order to offer a complete picture. Scientific 

publications are chosen as input because these are reliable and updated data sources for Engineering 

Design, as demonstrated by Chiarello et al. (2019). Text Mining is chosen as research method to have the 

possibility to mine a large quantity of documents (i.e., 17,104) in an efficient way. Furthermore, such an 

approach has proven to be more replicable with respect to expert driven approaches, as discussed by 

Chiarello et al. (2019, 2020, 2021) and Fantoni et al. (2021). For the matter of replicability, code and 

data used to carry on the present analysis are shared in an open folder on GitHub1. 

The paper is structured as follows: firstly, in Section 2 we explore the Engineering Design process and 

describe the relevant data involved. In Section 3 we show the methodology to recognize the ED phases 

and the data types in a corpus of scientific papers. Section 4 presents the main findings of the 

application of the methodology and explores the intersection between ED and data types from 

different points of view. Section 5 concludes, showing how the emerging data related gaps in the ED 

literature are driven by the lack of proper interfaces inside the ED process, between ED practitioners 

and researchers, and between ED and other disciplines. 

2 THE ROLE OF DATA IN ENGINEERING DESIGN 

Engineering Design is a complex and iterative process, the success of which strongly depends on 

existing design experience in the domain area of the design team (Zhao et al., 2020). The role of 

cumulated design expertise is crucial, given that the bulk of engineering designs is related to 

modifications of previously proven designs to accommodate new requirements (Kim et al., 2005). 

Designers must keep track of a vast amount of data while performing system analysis and synthesis 

(Krupa, 2019). This is a serious challenge that arises from the early stages of conceptual design, since 

designers must be aware and access their expertise and build up a synthesis. To this, we must add the 

huge amount of external data available to solve design problems. This process is time-consuming and 

laborious: designers must browse (mentally and manually) a large number of databases, web 

documents and scientific papers in order to access the relevant data (Liu et al., 2020). A possible 

solution to these problems is open data for design, but a complete and operational framework in this 

context is still far to be achieved by scholars or practitioners (Parraguez & Mayer, 2017). 

Deutsch (2015) made a great effort to summarize the benefits derived from systematic data usage in 

the design process: data could not only help in design and planning, but also in mitigating the 

subjectivity of decision-making process. At the same time, Deutsch (2015) points out that even if 

architects, engineers and contractors have been working with data for ages, many data sources are 

brand new and new players may be unfamiliar, even to those already established in the industry. One 

of the main issues to be faced by humans in the design of complex engineering systems is in fact 

information overload. When data exceeds a certain size threshold, a designer may become overwhelmed 

 

 
1 https://bit.ly/33rW6Y8 
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and no longer be able to recognize the underlying meaning of the design problem at hand, which 

results in premature or poor results (Bang & Selva, 2016). 

There is a clear need for a methodology to identify and map the data that are relevant in the various 

stages of ED, in order to unveil how data is used in ED process. This need becomes even more 

relevant in routine design, that makes use of existing standards, guides, procedures and design 

cookbooks to define solutions for given functional requirements. For this reason, the value of the 

proposed methodology is mostly focused on routine design activities, where ED procedures are 

known, and design variables are stable. In this context, it is desirable to synergize the designers’ 

creativity and the capacity of exploring large amount of data minimizing manual intervention to most 

value-added steps (Bi, 2019). 

3 METHODOLOGY 

This section describes the methodological steps undertaken to map the data sources of ED using Text 

Mining on scientific articles. The methodology is shown in Figure 1 and is subdivided in three macro-

tasks: (1) selecting and retrieving the scientific papers related to ED; (2) building the lexicons to 

recognize ED phases and data types by using Named Entity Recognition (NER) techniques; (3) 

applying NER for collecting the listed entities in the lexicons within the ED scientific papers and 

mapping the relationships between these entities. In the following Subsections (3.1-3.3) we describe in 

detail each step of the methodology. 

 

Figure 1. Flowchart of the methodology. 

3.1 Paper Retrieval 

The goal of this stage is collecting scientific articles covering the Engineering Design field. We 

collected all the scientific papers (both articles in journals and conference papers) published in a 20-

year time window (2001-2020) and containing the string “engineering design” in the title, abstract or 

keywords. The papers were retrieved from Scopus, a well-known database of abstracts and citations 

launched in 2004 by Elsevier. This approach, executed in November 2020, led to the collection of 

26,692 scientific papers. From this starting set, we selected only papers belonging to journals and 

conferences in the fields of Engineering, Computer Science, Business, Management and Accounting, 

Decision Sciences and Multidisciplinary (according to the All Science Journal Classification, ASJC), 

obtaining 17,104 documents. 

3.2 Lexicon Building 

The collected ED papers in Section 3.1 are analysed to automatically extract the ED phases and the 

data types using Nominal Entity Recognition (NER) techniques. NER is the process of detecting 

lexical units in a word sequence that refers to a predefined entity, thus determining what kind of entity 

the unit is referring to, such as food names, technologies, users and so on (Chiarello et al., 2018). 

The approach to NER used in this article is based on gazette or lexicon (a structured set of expressions 

belonging to a specific semantic domain), a well-known terminological-driven NER. This method aims 

to map mentions of entities within texts to terminological resources (e.g., Wikipedia) (Nadeau et al., 

2007). We start from two lists of relevant entities: (1) ED phases lexicon and (2) data types lexicon. 
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It is important to stress here the concept that the lexicons added a strong value to the corpus, since they 

enabled not only the filtering of relevant papers, but also the identification of the main use of data in 

the different ED phases. For this reason, and for reproducibility purposes, we made the lexicons and 

the dataset of scientific articles available on GitHub, as explained in Section 1. 

First of all, we need to build an Engineering Design lexicon in which each expression of the lexicon 

is associated to a specific ED phase. For this reason, we followed a hybrid top-down and bottom-up 

approach based on ED state-of-the-art. Firstly, we selected a small number of authoritative textbooks 

in the field of ED and synthetised a shared view of the main phases of the process. The books taken 

into account during this step are: (1) “Engineering Design: a systematic approach” (Pahl et al., 2007), 

(2) “Engineering Design” (Dieter & Schmidt, 2009), (3) “Product design and development” (Ulrich, 

2003) and (4) “Engineering Design process” (Haik et al., 2018). Since there is not a shared 

terminology for the ED process, we based our framework on 4 vertical phases that were independently 

identified by two of the four authors and that are shared also by the other two. They are numbered in 

order of time unfolding, from Problem definition to Conceptual, Embodiment, and Detailed design, 

respectively. Furthermore, we added 6 horizontal or transversal activities (i.e., set of activities that 

have an impact on the whole ED process) to the framework. The first column of Table 1 (see 

Subsection 4.1) shows the 10 identified ED phases. 

Following this methodology, we obtained an ED lexicon of 333 words associated to 10 ED phases. 

In order to build the data types lexicon, we referred to data mentioned in Data Science studies, since 

it has many sub-fields (e.g., Machine Learning, statistics, big data, etc.) and allows a detailed 

exploration of different kinds of data. For this reason, we merged 4 publicly available lexicons: (1) the 

Machine Learning vocabulary developed by Google, (2) the Glossary of common Machine Learning, 

Statistics and Data Science terms by Analytics Vidhya, (3) the Data Science Glossary by Kaggle and 

(4) the Outline on Machine Learning by Wikipedia. We then used a word2vec approach based on 

Glove (Pennington et al., 2014) to find words and n-grams (contiguous sequences of n words) similar 

to those contained within the two lexicons. For each entry of the two lexicons, we extracted the top-30 

similar (in terms of cosine similarity) words contained in the corpus of scientific articles of ED, and 

manually selected the relevant ones. Moreover, we manually associated each word of the lexicon to 

one of 27 different classes. These classes were designed following 4 different classification criteria, in 

order to explore data types from different perspectives. The first and second columns of Table 2 show 

the 4 classification criteria and the 27 data types classes, respectively (see Subsection 4.1). 

Following this methodology, we obtained a data types lexicon of 201 words associated to 27 data type 

classes. 

3.3 Nominal Entity Recognition 

The approach to NER used in this article is based on gazette approach that maps entities of the 

previously defined lexicons within texts. We start from the two lists of relevant entities developed in 

Subsection 3.2: (1) ED phases lexicon and (2) data types lexicon. Then the occurrences of all these 

entries are identified in paper corpus, using the trie based search (Chu & Culbert, 1997). 

The lexicons were used in order to filter the papers, i.e., only the papers containing at least one term 

for each lexicon (in the title, abstract or keywords) were selected. Out of our original references, 6,337 

were selected for the analysis. 

We examine the corpus in two steps. First, we focus separately on the phases of the ED process and on 

data types. Second, we identify the intersections between the two dimensions of ED phases and data 

types by building co-occurrence matrices from the lexicons. 

4 RESULTS 

We present the key findings in two main subsections: (1) the Engineering Design phases and data 

types, results of NER (Subsection 4.1) and (2) the ED map of data types (Subsection 4.2). 

4.1 Engineering Design phases and data types 

The application of the methodology leads to the identification of: (1) 219 unique entries of ED lexicon 

that are referred to the Engineering Design phases, grouped in 10 macro phases, and: (2) 177 unique 

entries of data types lexicon, structured in 27 classes, following 4 different classification criteria. 
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Table 1 shows a breakdown of the number and the percentage of papers that deal with the various 

phases and activities of the ED process. The papers analysed are those containing at least one entry of 

the data types lexicon. Since every paper is associated with one (or more) ED phases and uses one (or 

more) data types, the table shows a distribution of the actual usage of data in the different ED phases. 

Table 1. Number of papers that contain at least one entry in the data types lexicon, by 
phase and activity of the Engineering Design process 

 

Engineering design phases 

Number of 

papers 

% of total number of 

papers 

Vertical ED 

Phases 

1 - Problem Definition 632 9.97 % 

2 - Conceptual Design 918 14.49 % 

3 - Embodiment Design 642 10.13 % 

4 - Detailed Design 878 13.86 % 

 

Horizontal 

ED Phases 

Design Education 2904 45.83 % 

Design for X 108 1.7 % 

Innovation & IP Management 1561 24.63 % 

Project Management 1529 24.13 % 

Prototyping 811 12.8 % 

Sustainability 311 4.91 % 

 

From Table 1, it is evident that the 4 vertical phases of ED are almost equally distributed among data 

sources (about 10 % each). This is an evidence of the fact that the whole process of ED is data driven, 

and that a large literature (6,337 scientific papers) talking about these data sources exists. 

Moving to horizontal ED phases, it is evident that a large fraction of scientific papers under analysis 

mention Design Education-related data sources (45.83 % of papers). This was an expected result. In 

fact, many scientific works in ED use surveys and interviews to analyse the human (student)-

behaviour in Engineering Design or to assess the learning outcomes of the classroom from an 

Engineering Design perspective (Bartholomew et al. 2017). The extent to which the use of data in 

Design Education translates into an intense use of data in the practice of design is an open question, 

which points to some weaknesses, to be discussed below. 

Second, the next horizontal ED phase which make intensive use of data is Innovation & IP Management. 

This result is led by the fact that a large stream of literature uses data coming from patent, a large and 

open repository of information about designs and innovations (Moehrle & Caferoglu, 2019). Very close 

in terms of percentage of papers there is Project Management, where data are produced by the team 

interaction phases. This is an interesting result, considering the COVID-19 breakdown. Since the 

pandemic is already shaping technological changes and the way people work (Melluso et al, 2020), the 

go-remote process is increasing the amount of data that are generated during the interaction between 

workers. This is another opportunity to collect data on how people perform design activities. 

In general, by looking at Table 1, we are led to conclude that the most intensive use of data is not 

made in the central pipeline of design, from problem definition to detailed design, but in 

infrastructural and transversal activities, such as Project Management and Innovation Management, as 

well as in the remote preparation of students and practitioners. 

Table 2 shows a summary of data types and their distribution in the context of ED scientific papers. In 

particular, it shows 27 data classes identified on the basis of 4 different logical criteria, in order to 

observe Engineering Design data from several points of view. 

First, not surprisingly the business functions that exchange the larger amount of data with ED 

processes are Design (22.44 %), Intellectual Property (19.66 %) and Planning and Control (15.21 %), 

all data-intensive activities by nature. On the contrary, much less use of data is found in a business 

function such as Production (6.82 %), that in theory should be prepared to the high levels of data 

exchange and processing associated to the Industry 4.0 revolution. Even lower use of data is found in 

other business functions such as Accounting, Marketing and Sales, and Purchasing. Since these 

activities do make intensive use of data, we interpret these findings as suggesting a distinction between 

internal and structured data (e.g., CRM, or vendor rating systems) and the whole range of structured 

and unstructured data that are made available to firms by advanced data-driven methods. Going further 

https://doi.org/10.1017/pds.2021.82 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2021.82


826  ICED21 

in the interpretation of these findings, it can be said that the inter-functional collaboration between 

design and market-oriented business functions, such as purchasing (upstream), and marketing 

(downstream) is still in a poorly developed stage. 

Table 2. Number of papers that cite data types, by classification criteria  

Classification criteria 

Data types classes  Number of papers  

% of total number 

of papers 

Business Function Design 1422 22.44 % 

Intellectual Property 1246 19.66 % 

Planning and Control 964 15.21 % 

Production 432 6.82 % 

Accounting 14 0.22 % 

Inspection 8 0.13 % 

Marketing and Sales 8 0.13 % 

Purchasing 1 0.02 % 

Data Format Image and Video 737 11.63 % 

Textual 434 6.85 % 

Audio 92 1.45 % 

Numerical 11 0.17 % 

Data Element Structure 648 10.23 % 

Feature 411 6.49 % 

Format 37 0.58 % 

Sources Human Interactions 1469 23.18 % 

Simulation 1064 16.79 % 

Web 448 7.07 % 

Machines 205 3.23 % 

Empirical Evidence 134 2.11 % 

Software 23 0.36 % 

Literature 18 0.28 % 

Historical 12 0.19 % 

Digital World 11 0.17 % 

Machine Learning 9 0.14 % 

Open Sources 3 0.05 % 

 

Second, it is rather surprising to observe that Image and Video type of data outperform Textual data. It 

remains to be seen whether this result is driven by the importance of Design Education, in which these 

kinds of data are regularly used in the classroom and in the field (e.g., recording of ethnographic 

observations). 

Third, Human interaction dominates the ranking of data sources, followed by Simulation. At the 

bottom of this ranking, we find an interesting entry: “Open Sources”. Despite the clear advantage 

linked to open data, our findings suggest that they are poorly adopted in ED (0.05 %). This evidence, 

linked with the large amount of data coming from Education, is another evidence of the fact that there 

exists a lack of open industrial data in the context of ED. This creates limitations in terms of the 

phenomena that can be studied and in terms of the overall reproducibility of research in ED. 

Researchers should strive to identify other data sources to study ED principles and tools. We 

acknowledge that this process requires trust-building and a deep connection to industrial settings that 

are traditionally hesitant to share design data. 
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4.2 The ED map of Data Types 

This subsection discusses the relationship among data types and ED phases. In this analysis we use the 

classification criteria of Table 2 that hold the best promise in terms of analysis: we excluded the 

entries with very small number of observations (e.g., Digital World, Machine Learning and Open 

Sources) and those with limited internal variability (e.g., entries in Data Element). 

Figure 2 shows the graph where each node is an entry of our two lexicons; an edge between two nodes 

exists if there is at least one scientific paper that mentions both nodes in the title, abstracts or 

keywords; the thickness of the edge depends on the co-occurrences between the nodes (i.e., number of 

papers in which they co-occur); the size of the nodes depends on the node degree; and the colour of the 

nodes represents the group that contains the entry, as shown in the legend panel. 

The graph allows us to observe the ED literature from a data-based point of view. A detailed 

investigation of Figure 2 gives three key insights: 

1. the Innovation & IP Management (in yellow) and the Project Management (in light blue) are the 

bridge phases that allow to connect the data types lexicon entries (in teal), such as simulation, 

copyright, requirement, procedure and sensor data, and the Design Education phase (in lilac). 

The central role of these horizontal phases can be seen as an opportunity to bring together ED 

research and ED practice: we have here the evidence that ED research is largely using Intellectual 

Property related data to carry out research, and that companies can take great advantage of that. 

With the proper technological transfer, scholars can disseminate innovative approaches towards 

companies, and companies can share their data to scholars. ED will struggle taking advantage of 

the new opportunities brought by Machine Learning if this is not going to happen; 

2. the web and survey data play a central role. This can represent a switch in the paradigm: it is well 

known that surveys are an important tool to mine customers point of view, but this has drawbacks. 

In the last years, research is moving towards the substitution of questionnaires with more effective 

data sources in terms of quantity and quality of data, such as social media and blogs. This shift is 

having an important impact on ED, considering that this data is open and easily collectable; 

3. conceptual Design phase (in red) has a few relationships with Innovation & IP Management, 

Project Management and Design Education, but it is more linked with the data types of lexicon 

and is peripherical with respect to the layout of the graph. This shows that conceptual design is 

one of the most internal phases of ED, where stronger relations exist only inside the design team. 

In this phase the team need to synthetize the problem towards feasible solutions, taking into 

consideration the needs of the users. It is interesting to notice that this part of the graph is the 

opposite to the education side. To carry out scientifically sounding experiments on conceptual 

design, there is the need of ED expertise, and students cannot be easily used for this purpose. 

From a data perspective, this is the reason why knowledge bases are the closer data type to this 

phase. This open up to another possible solution to the lack of open data in the context of ED, 

that is the disclosure of ED knowledge bases. Again, this is not a trivial process given the value 

of knowledge bases both for companies and universities. 

 

Figure 2. Graph of ED and data types lexicons and their relationships in analysed articles. 
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Moving to Figure 3, we can see the 3 heatmaps of the co-occurrences among each ED phase and the 

data types. In particular, 3 heatmaps were built according to the 3 different data types classification 

criteria taken into consideration (see Subsection 4.1). In particular moving from left to right, the 

heatmaps shows co-occurrences among ED phases and (i) data provided by different Business 

Functions (on the left), (ii) data in a certain Data Format (in the centre) and (iii) data provided by 

different Sources (on the right). Each heatmap gives evidence of the cardinality of an intersection by 

using colours: large numbers of scientific articles, intersecting an ED phase and a data type, are shown 

in white, while small numbers are shown in darker purple. In addition, heatmaps make gaps and blind 

spots explicit, identifying the empty regions of the matrices. In each cell, we also report the number of 

papers mentioning both types of entities (data types and a given ED phase). The x-axis shows the 

different data types divided in the 3 areas we want to investigate (Business Function Data, Data 

Format, Source of Data). The y-axis reports the ED phases that are divided into two main groups: 

vertical phases and horizontal phases, as explained in Subsection 3.2. 

 

Figure 3. Number of papers in the dataset mentioning (i) data provided by different Business 
Functions (on the left), (ii) data in a certain Data Format (in the centre) and (iii) data 

provided by different Sources (on the right), by ED phase. 

As expected, the first heatmap of Figure 3 highlights that data coming from the design function are the 

most used within ED process. Furthermore, the high transversality of data belonging to Intellectual 

Property, Planning and Control and Production functions confirms the relevance of previously proven 

designs, coming from patents, operational plans and product databases in each step of ED. 

Data coming from Marketing and Sales and Purchasing functions seem to be less used in ED, even if 

they are relevant especially in the translation of customer requirements into technical specifications. 

Probably this is due to the fact that the importance of data integration in ED has only recently been 

recognised (Yu et al., 2018). This is an evidence of the fact that a stronger integration is needed not 

only among ED research and practice, but also between different functions that deal with ED in order 

to properly exploit different data sources. 

The heatmap on Data Format (the central one) shows what kind of data ED researchers are asked to 

process in the different ED phases, but also what are the technologies needed to process data (i.e., 

Optical Character Recognition for images, speech to text software for audios). In particular, we found 

that image and video are the most used in ED and in particular in Design Education, followed by 

textual data, confirming the growing need of Text Mining applications in ED in recent years (Zhao et 

al., 2020). For what concerns blind spots, it is evident a lack of usage of numerical data. This is 

because rarely data from the design phase comes in a structured format (tidy tables to be analysed), but 

rather has to be pre-processed in order to become numbers. A stronger focus on structuring ED related 

unstructured data (i.e., video, images, text and sounds), and sharing the results of the structuring phase, 

can help ED researchers to the use a larger quantity of data of different type. Here, the interface should 

be between ED scholars and researchers in other disciplines (e.g., computational linguistics, Virtual 

Reality experts), since structuring this kind of data require specific computation skills to be integrated 

with Design Expertise. 
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Finally, analysing the third heatmap, we can state that many ED phases make great use of web data 

(e.g., forums and social networks), as already evident from the analysis of Figure 2. Just a few ED 

phases (such as Conceptual Design) involve historical data, and this is again linked to the fact that 

historical data on ED are rarely available for research. 

All ED phases use data from human interactions (e.g., interviews or experts), while only a few specific 

phases (in particular Design Education and Project Management) make more massive use of machine-

generated data or data coming from software (e.g., Enterprise Resource Planning and Manufacturing 

Execution System). This may show that ED struggle in becoming digital or 4.0, using data coming 

from machines to design better product and processes. Anyway, this can be a bias in our data set, since 

the significant impact of technologies 4.0 on ED in industrial context. For this reason, we explore how 

simulation (one of the enabling technologies of Industry 4.0 more focused on data) impacts on the 

different ED phases. Contrary to what noted above with respect to Machine Learning, data from 

simulations seem to be quite widespread in ED, evidence that simulation technologies are well 

established in this field. This is an interesting finding, suggesting that the adoption of Industry 4.0 

technologies does not start with more ambitious but less understood Machine Learning techniques, but 

mainly after the well-known practices associated to simulation, which takes place in CAD suites and 

in Virtual Reality Environments. 

With respect to blind spots, all the data sources have low values for sustainability, except for human 

interactions: these insights confirm the hypothesis that sustainability is a new challenge for most 

manufacturing companies (Lin et al., 2018) and for this reason there are few historical and empirical 

data available. 

5 CONCLUSION 

The present paper maps data sources in the context of ED studies. The map comes from automatic text 

analysis and shows an efficient and reproducible method for analysing scientific literature. The insight 

coming from our analysis shows that ED studies have a great potential in the usage of many data 

sources, but also that there exist some gaps to be solved in order to reach a more effective data usage 

in the context of ED. These gaps can all be linked to problems of interfaces of ED. 

First, interface between ED research and industrial practices. Data Science tools have already been used 

in ED by companies, but a little evidence of transfer of the outcomes of data-driven design research into 

practice exist, as well as standard approaches for the successful transfer of research into practice. 

Second, interface between ED and other disciplines. ED embraces competences of several scientific 

sectors and several disciplines of study. A proper use of data coming from ED should bring together 

multidisciplinary teams, with experts on the data and experts in the approaches to process this data. 

Finally, interaction between ED related business functions. Data are created within and across phases 

of ED and this aspect is not visible in the literature. The reason why the academic papers of the present 

analysis do not address this issue, is that localized studies are easier from research perspective. 

Scholars should challenge themself finding a way to bridge different business functions, unveiling the 

value of ED related data. 
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