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Abstract

The asymptotic variance of the sample mean of a homogeneous Poisson marked point
process has been studied in the literature, but confusion has arisen as to the correct
expression due to some technical intricacies. This note sets the record straight with
regards to the variance of the sample mean. In addition, a central limit theorem in the
general d-dimensional case is also established.
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1. Introduction

Let {X (¢) for t € R} be a strictly stationary random field in the continuous, d-dimensional
parameter ¢; define u = EX (¢) and R(#) = cov(X(s), X(s + 1)) = cov(X(0), X(¢)), which
is assumed finite. Also, let {N () for t € R?} be a homogeneous Poisson point process with
rate A. The point process {N (¢)} is assumed to be independent of the random field {X (¢)}. Let
71, T2, . . ., TN(k) denote the points generated by {N (¢)} inside the set K.

The observation region K will be assumed to be a compact, convex subset of R?. Let |K |
denote the volume of K, and let diam(K) denote the supremum of the diameters of all /4,
balls contained in K; so if K is a rectangle, diam(K) is its smallest dimension. All asymptotic
results to be discussed in this paper will be taken under the condition diam(K) — oo. To avoid
possible pitfalls, we will also assume that the observation region K expands in a nested way as
diam(K) — 00, i.e. that diam(K) < diam(K") has as a necessary implication that K C K'.

The pairs (X (7;), N(t;)) fori = 1,..., N(K) constitute the data from a homogeneous
marked point process. Here N(K) denotes the number of available observations; define
A(K) = E[N(K)] = A|K]|. Consider the the problem of estimation of the mean u based
on the above marked point process data. A natural estimator is

N(K)

- 1
Xk = W/KX(I)N(dZ) =NK) 2. X (%),

which is nothing other than the sample mean of the av_ailable X data, the so-calle(_i marks.
A simple conditioning (on N (K)) argument shows that X g is unbiased for u, i.e. EXg = W.
The issue to be resolved in this note is a correct expression for the asymptotic variance of Xg;
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such an expression is needed for the construction of confidence intervals and hypothesis tests
for the parameter . We also establish a central limit theorem for the sample mean in the
general d-dimensional case under weak assumptions.

2. A critical review of existing results

The setup of data from a marked point process is still at the forefront of active research;
see, for example, Ballani et al. (2012) and the references therein. Nevertheless, the subject has
been under investigation for several decades; see Masry (1983) or Kutoyants (1984a), (1984b).
Going even further back, the pioneering paper of Brillinger (1973) provided an indepth study
of the asymptotic distribution of X g in the one-dimensional case (d = 1). Under a condition of
(absolute) summability of all cumulants of the random field {X (¢)}, Brillinger (1973) showed
that /TK[(Xx — w) is asymptotically normal with mean 0 and variance given by

/ R(u)du—l—@. 2.1

—00

Nevertheless, the assumption of summability of all cumulants can be quite restrictive. For
example, it excludes all random fields that have a certain degree of heavy tails, e.g. those that
do not have all moments finite. Brillinger (1973) mentioned that assumptions involving mixing
coefficients could be used instead.

This more general approach was undertaken by Karr (1986) in the d-dimensional case. In
order to prove his results, Karr (1986) introduced the auxiliary random variable

1
Xk = m/K}((r)N(dt). (2.2)

Recall that A(K) = A|K|; thus, X g is not a bona fide estimator as it depends on the unknown
rate A. However, X k 1s easier to work with since it is devoid of the random denominator
inherent in X K-

Karr (1986) worked under the minimal assumptions that

/ [R(t)|dt < oo (2.3)
R4

and

1 £
W/K X)) —ndt = N(O, Ad R(1) dt). 2.4)

In view of the f R(t) dt term appearing in (2.1), condition (2.3) is a sine qua non. Furthermore,
condition (2.4) follows immediately from assuming that E|X () |28 < o0 for some § > 0 and
a corresponding mixing condition; see Ivanov and Leonenko (1986) or Lemma 2 of Politis et
al. (1999) for examples of such mixing conditions.

Theore~m 2.1. (Kagr (1986).) Assume that (2.3) and (2.4) hold. Then, as diam(K) — o0,
VIK[(Xg — ) == N(0, 02), where 0% = [pa R(y)dy + (R(0) + u?)/A.

In trying to render Xk as a usable statistic, one may plug in N(K) as an estimator of the
unknown A (K) in (2.2). Not surprisingly, this operation just leads to the sample mean Xg.

Based onthe factthat N (K)/A(K) 2% 1, Karr (1986) further claimed the following (incorrect)
lemma.
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Lemma 2.1. (Karr (1986)—incorrect.) éssume tizat (2.3) and (2.4) hold. Then, as
diam(K) — oo, the random variables Xg and Xk are asymptotically equivalent, i.e.

VIKI(Xk — Xg) = op(D).
Based on the incorrect Lemma 2.1, Karr (1986) claimed the following as a corollary.

Theorem 2.2. (Karr (1?86)—incogect.) Assume that (2.3) and (2.4) hold. Then, as
diam(K) — oo, /[K[(Xk — ) == N(0, 02), where % = [pa R(y)dy + (R(0) + p?)/A.

The discrepancy between Theorem 2.2 and Brillinger’s equation (2.1) went unnoticed for a
long time, and the monograph by Karr (1991) did not shed any more light on the issue. Based
on invariance considerations, Politis et al. (1999) suggested that the correct result is

JIKI(Xkx — ) == N(0,6%), where 62 = / R(y)dy + %0), (2.5)
Rd

attributing the mistake in Theorem 2.2 to a typo. Equation (2.5) is indeed the correct equation
as will be shown in the next section.

Note, however, that Politis et al. (1999) were not aware of the error in Lemma 2.1, and
subsequently stated the incorrect fact that the auxiliary variable Xk has the same asymptotic
distribution as given in (2.5). Fortunately, as far as the estimator of interest is concerned, i.e. the
sample mean X g, all asymptotic results of Politis ez al. (1999) are correct as stated both in the
real world, e.g. (2.5), as well as in the bootstrap world that they also studied.

3. A correct expression for the asymptotic variance of the sample mean and a central
limit theorem
A correct version of Lemma 2.1 goes as follows.
Lemma 3.1. Assume that (2.3) and (2.4) hold. Then, as diam(K) — oo, it is true that
(i) if u = 0 then JIK[(Xg — Xg) = op(1),
(if) if i # 0 then IKI(Xx — Xx) == N(O, ?).
Proof. (i) Note that
VIKIXk — Xg) = % ) X(t)N(dt)(l - %)
But, from Theorem 2.1, it follows that «/WXK i'c> N(O, 02), so that

VKD

ANK) Jx X(H)N(dt) = Op(1).

Since N(K)/A(K) =5 1, we have (1 — A(K)/N(K)) = op(1), and the result follows.
(i) Let Y(¢) = X(t) — u, and, hence, EY (¢) = 0. Note that

X L Y(t)N(dt NE)
K—A(K)fK ()N ( )+MA(K)
and |
Xx =Wka(t)N(dt)+,u. (3.1)
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Using part (i) in connection with the mean zero random field Y (¢) gives

N(K) 1)

VIKI(Xk — Xk) = op() + VIK]| u(
Equation (3.2) together with Slutsky’s theorem and the asymptotic normality of the Poisson
completes the proof of part (ii).

We are now ready to state and prove a correct central limit theorem for the sample mean X g .
This is apparently novel in the literature, and represents an extension over Brillinger’s (1973)
result of (2.1) in two ways: relaxing the conditions of summability of all cumulants, and
addressing the setup of a marked point process in d dimensions, i.e. having r € RY.

Theorem 3.1. Assume that (2.3) and (2.4) hold. Then, as diam(K) — o0, (2.5) holds, i.e.

VIKI(Xx — 1) == N(0,6%), where 92=/ R(y)dy +ﬂ
R4

Proof. As in the proof of Lemma 3.1, we let Y (#) = X (f) — u, and also define

1 - 1
Yk = W/KY(t)N(dt) and Yg = WK)/KYO)N((”)'

Noting that Y (¢) has mean 0 but the same covariance structure as X (¢), the (correct) Theorem 2.1
1mphes tha}c VIK| Y K => N(O, 02) But, part (i) of Lemma 3.1 as applied to Y (z) implies that
VIK[Yxk = N(0, 6%). Finally, (3.1) implies that Yx = Xk — 11, and the proof is completed.
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