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CONVERGENCE AND MONOTONICITY
FOR A MODEL OF SPONTANEOUS
INFECTION AND TRANSMISSION
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Abstract

A version of the contact process (effectively an SIS model) on a finite set of sites is
considered in which there is the possibility of spontaneous infection. A companion
process is also considered in which spontaneous infection does not occur from the disease-
free state. Monotonicity with respect to parameters and initial data is established, and
conditions for irreducibility and exponential convergence of the processes are given. For
the spontaneous process, a set of approximating equations is derived, and its properties
investigated.
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1. Introduction

The contact process is a continuous-time Markov process that was first introduced by
Harris [3] in 1974. In Harris’s original paper, the setting for the process is the d-dimensional
lattice Z

d , and each site is either in state 0 or 1, so that the state space is the set of configurations
{0, 1}Z

d
. Each site x has a set of neighbours N (x): for example, we might have N (x) = {y ∈

Z
d : ‖y − x‖ = 1} for some norm ‖ · ‖. At site x, transition from state 0 to state 1 occurs at rate

λn1(x), where n1(x) is the number of neighbours of x in state 1 and λ > 0 is a parameter, and
transition from state 1 to state 0 occurs at rate 1. The state of the process at time t is typically
denoted by ξt , which is a configuration. For each t ≥ 0, ξt ∈ {0, 1}Z

d
, and ξt (x) specifies the

state of site x at time t . Then (ξt )t≥0 specifies a realization of the process. The contact process
can be thought of as a model of the spread of an infection: sites in state 1 are infected, and sites
in state 0 are healthy.

In this paper we consider a version of the contact process in which the set of sites S is
finite, transition rates are allowed to depend on sites, and there is the additional possibility of
spontaneous infection. In agreement with the epidemiology literature, the following notation
is used. For a site x, αx is the rate of spontaneous infection (spontaneous transition from state
0 to state 1) at x and γx is the rate of recovery (transition from state 1 to state 0). For a pair
of sites x �= y, βxy is the rate of transmission from x to y. For this process, the notation ξt is
used to specify the state of the process at time t . In this case the set of neighbours N (y) of a
site y ∈ S is the set {x ∈ S : βxy > 0}. Therefore, at site y at time t , transition from state 0 to
state 1 occurs at rate

αy +
∑

{x∈N (y) : ξt (x)=1}
βxy
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Convergence and monotonicity 561

and transition from state 1 to state 0 occurs at rate γy . The basic contact process on the infinite
lattice S = Z

d is obtained by taking αx = 0, γx = 1, and βxy = β1{y ∈ N (x)}; this ensures
that the process looks the same from any site in S (i.e. is translation invariant), and reflects
the fact that the recovery rate can be made equal to 1 by rescaling time, provided the recovery
rate is not equal to 0 (if the recovery rate is equal to 0 then we have an essentially different
process, in which infected sites remain infected for all time). The parameter values αx , βxy ,
and γx are nonnegative, but are not in general required to be positive, and it is not required that
βxy = βyx . We call a Markov process of this type a spontaneous process—terminology also
used by Harris. By disallowing infection when all sites are healthy, we obtain what we call an
absorbing process.

One of the main results of this paper is Theorem 4, whose statement we include here. Suppose
that we have an irreducible spontaneous process (see Section 1.2 of [8] for the definition of an
irreducible process), and let π denote its unique stationary distribution. Define

λ = min
x∈S

(
αx + γx −

∑
y �=x

βxy

)
,

and suppose that λ > 0. Let P t denote the transition semigroup for the spontaneous process.
Then, for 0 ≤ s ≤ t ,

ρ(μP t , π) ≤ e−λ(t−s) ρ(μP s, π).

Therefore, λ gives a lower bound on the exponential rate of convergence of the process to its
unique stationary distribution. Corollary 2 gives an analogous result for the absorbing process,
and indeed much of Section 5 (namely, Theorem 2, Proposition 3, and Theorem 3) is devoted
to adapting previously known convergence results to the setting of a conditional distribution.

A summary of the paper is now provided. In Section 2 we describe the graphical construction
of any spontaneous (and absorbing) process, and use this construction to prove monotonicity
with respect to parameters and initial data. In Section 3 we describe the forward equation for the
spontaneous process, and re-express it at the level of individual sites, anticipating the derivation
of the reduced equations. In Section 4 we provide a necessary and sufficient condition for
irreducibility (or ‘conditional irreducibility’, defined in that section) in terms of the associated
rates, since an irreducibility assumption is required for the results that follow. In Section 5
we use a notion called the transportation distance in order to obtain conditions for exponential
convergence of an irreducible (or conditionally irreducible) process to its unique stationary (or
quasistationary) distribution. In Section 6 we apply these results to the spontaneous process and
absorbing process, to obtain conditions for exponential convergence. In Section 7 we derive the
reduced equations as an approximation to the time evolution of the spontaneous process, and we
give two proofs of monotonicity, one for monotonicity of the unique steady state with respect to
parameters in the case of small interactions, and one for monotonicity of solutions with respect
to parameters and initial data. The first proof relies on the implicit function theorem. The
second proof involves a characterization of the coefficients in the Taylor series expansion of the
reduced equations, in terms of infection paths on the directed graph consisting of the set of sites
together with the set of directed transmission links between sites. In Section 8 we consider an
example of a spontaneous process on a star graph, and we compute some relevant statistics of
the reduced equations, from the perspective of the central site.
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2. Graphical construction and monotonicity

Fix a set of sites S and a set of parameters

	 = ((αx)x∈S, (βxy)xy∈
, (−γx)x∈S),

where 
 = {xy ∈ S × S : x �= y}; the use of (−γx) rather than (γx) should become clear
in Proposition 1. The state space for the process is the set of configurations � = {0, 1}S .
A configuration is a function that assigns a 0 to a healthy site and a 1 to an infected site. Note
that each configuration can be specified by its set of infected sites, and this gives a natural
bijection between � and the powerset of S. To obtain the spontaneous process, we proceed as
follows. To each site x attach a Poisson random variable (Ut (x))t≥0 of rate αx and a Poisson
random variable (Wt (x))t≥0 of rate γx , and to each ordered pair of distinct sites xy attach a
Poisson random variable (Vt (xy))t≥0 of rate βxy , and let the variables all be independent. Now
construct a random graph living on S × R

+ as follows (an example is given in Figure 1). If
Ut(x) has a jump at time t then draw a circle at (x, t) to denote infection. If Wt(x) has a jump
at time t then draw a cross to denote recovery. If Vt (xy) has a jump at time t then draw an arrow
from (x, t) to (y, t) to denote transmission. Given the configuration at time 0, draw bold lines
moving upwards from all initially infected sites, and from all locations where there is a circle,
terminating the line if a cross is encountered. If an arrow juts out from a bold line, continue the
bold line along the arrow and then vertically upwards. Continue in this way, all the way up the
graph; note that not necessarily all transmission, spontaneous infection, and recovery events
are ‘used’. Then site x is infected at time t if and only if there is a bold line passing through the
point (x, t). This defines, on the same probability space, a family (ξA

t )t≥0 of �-valued Markov
processes, one for each subset A of initially infected sites. To obtain the absorbing process,
we make the following additional modification: if T is any time such that all sites are healthy

Sites
1 2 3 4 5 6

T
im

e

Figure 1: An illustration of the graphical construction for the spontaneous process. There are six sites, and
time evolves in the upward direction; here, only site 3 is initially infected. Circles denote opportunities
for spontaneous infection, crosses denote opportunities for recovery, and arrows denote opportunities
for transmission. Infected sites and transmission events are denoted by the bold lines and bold arrows,

respectively.
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then, for t > T , all the bold lines that have been drawn are erased, since the state remains the
same after T .

This construction is called the graphical construction, and is due to Harris [4]; see also [5]
or [7] for examples of the graphical construction for other variants of the contact process.

One property is immediate from the graphical construction. For configurations ξ and ξ ′, use
ξ ∨ ξ ′ to denote the configuration for which (ξ ∨ ξ ′)(x) = max(ξ(x), ξ ′(x)) for each x ∈ S.
If A = {x : ξ(x) = 1}, and A′ = {x : ξ ′(x) = 1}, then A ∪ A′ = {x : (ξ ∨ ξ ′)(x) = 1}. Then
the process is additive in the sense that, for any sets A and A′ of sites, for the above family of
processes, we have ξA

t ∨ ξA′
t = ξA∪A′

t for each t ≥ 0.
There is another useful property, called monotonicity, which is not hard to prove using the

graphical construction. For configurations ξ (1) and ξ (2) and parameters 	1 and 	2, say that
ξ (1) ≤ ξ (2) and that 	1 ≤ 	2 if an inequality holds entrywise. Intuitively, ξ (1) ≤ ξ (2) if all
sites that are infected in configuration ξ (1) are infected in configuration ξ (2), and 	1 ≤ 	2 if
the parameters in 	2 lead to a process in which infection is more rapid, and recovery slower,
than the process obtained using parameters in 	1.

Proposition 1. Let (ξ (1)
t )t≥0 and (ξ

(2)
t )t≥0 be two realizations of either the spontaneous process

or of the absorbing process, with respective parameters 	1 ≤ 	2. If ξ
(1)
0 ≤ ξ

(2)
0 , there is a

common probability space for (ξ
(1)
t )t≥0 and (ξ

(2)
t )t≥0 on which ξ

(1)
t ≤ ξ

(2)
t for all t ≥ 0.

Proof. Parameters are labelled so that 	i = ((αx,i)x∈S, (βxy,i)xy∈
, (−γx,i)x∈S) for i =
1, 2. Define independent Poisson processes (Ut (x)) of rate αx,1, (Wt (x)) of rate γx,2, (Vt (xy))

of rate βxy,1, (U
(2)
t (x)) of rate αx,2 − αx,1 ≥ 0, (W

(1)
t (x)) of rate γx,1 − γx,2 ≥ 0, and

(V
(2)
t (xy)) of rate βxy,2 − βxy,1 ≥ 0. Construct a random graph as before, now using black

circles for (Ut (x)), red circles for U
(2)
t (x), black crosses for (Wt (x)), red crosses for W

(1)
t (x),

black arrows for (Vt (xy)), and red arrows for (V
(2)
t (xy)) (the colour change is just to be able

to tell them apart). Run the first process using the initial configuration ξ
(1)
0 , and using the

black circles for spontaneous infection, the black and red crosses for recovery, and the black
arrows for transmission. Run the second process using the initial configuration ξ

(2)
0 , and using

the black and red circles for spontaneous infection, the black crosses for recovery, and the
black and red arrows for transmission. Note that if Xt and Yt are independent Poisson random
variables of rates λ1 and λ2, then Xt + Yt is a Poisson random variable of rate λ1 + λ2 (see
Section 2.4 of [8]), which guarantees that the processes have the correct rates of infection,
transmission, and recovery. Now suppose that ξ

(1)
0 ≤ ξ

(2)
0 . Drawing in the bold lines for each

process, we observe that every bold line drawn from t = 0 in the first process is also a bold line
from t = 0 in the second process. Also, every spontaneous infection event for the first process
is a spontaneous infection event for the second process, every transmission event for the first
process is a transmission event for the second process, and every recovery event for the second
process is a recovery event for the first process. From this, it follows easily that every bold line
for the first process is a bold line for the second process. In other words, ξ

(1)
t ≤ ξ

(2)
t for all

t ≥ 0.

3. Forward equation

There is an equivalent description of the spontaneous process, directly in terms of transition
rates on the state space �, that gives a differential equation for the distribution over time. First,
associate to each set A ⊂ S the unique element of � that is equal to 1 on A and equal to 0
on Ac; this gives a bijection between � and the powerset of S. In other words, we have the
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correspondence
ξ ↔ {x : ξ(x) = 1}

between configurations ξ and subsets of sites S. For each y ∈ A, there is a transition from
A to A \ {y} at rate γy . For each y ∈ Ac, there is a transition from A to A ∪ {y} at rate
αy + ∑

x∈A βxy . A continuous-time Markov process on a finite state space can be specified
by its Q-matrix, whose entries are given by the rate of transition from state to state (see [8,
Chapter 2] for a description). In this case the Q-matrix has entries

qAB =

⎧⎪⎪⎨
⎪⎪⎩

αy +
∑
x∈A

βxy if B = A ∪ {y},

γy if A = B ∪ {y},
0 otherwise,

for A �= B and
qAA = −

∑
{B⊂S : B �=A}

qAB.

The absorbing process can be obtained by setting the transition rates q∅{x} equal to 0 for
each x ∈ S; note that ∅ denotes the disease-free state in which there are no infected sites.
Incidentally, as shown in [8], any continuous-time Markov process that can be described in
terms of a Q-matrix can be constructed from the transition rates in the Q-matrix, which is
another way of constructing the spontaneous and absorbing processes.

For a process (ξt )t≥0 with a given Q-matrix Q on a finite state space, the transition semigroup
(P t )t≥0 for the process with entries

P t
AB = P(ξt = B | ξ0 = A)

is given by P t = eQt , a fact that is proved in [8, Chapter 2] and which will be useful later.
If (ξt )t≥0 is a realization of the spontaneous process, the distribution p(t) with entries

pA(t) = P(ξt = A) satisfies the vector differential equation

d

dt
p = pQ, (1)

which in [8] is called the forward equation. Note that 0 ≤ pA(t) ≤ 1 for A ⊂ S and t ≥ 0,
and that, for each t ≥ 0,

∑
A⊂S pA(t) = 1. For a site x, the probability px(t) = P(ξt (x) = 1)

of infection at x at time t is related to the values pA(t) through the equation

px(t) =
∑

{A⊂S : x∈A}
pA(t)

(note that px(t) �= p{x}(t), the probability that x is the only infected site). Note that 0 ≤
px(t) ≤ 1 for x ∈ S and t ≥ 0, but that the vector (px(t))x∈S is not a distribution, so that∑

x∈S px(t) is not in general equal to 1. It can be verified directly from the forward equation
and from the transition rates in the Q-matrix that, for the spontaneous process, for each site
y ∈ S, py(t) satisfies the differential equation

d

dt
py(t) = αy(1 − py(t)) +

∑
x

P(ξt (x) = 1, ξt (y) = 0)βxy − γypy(t). (2)
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Intuitively, if we consider configurations in which y is not infected, there is the spontaneous
infection rate αy , and these configurations have probability 1 −py(t). For each x �= y, consid-
ering configurations in which y is not infected but x is infected, there is the additional infection
rate βxy , and these configurations have probability P(ξt (x) = 1, ξt (y) = 0). Considering
configurations in which y is infected, y recovers at rate γy , and these configurations have
probability py(t). A formal proof of the validity of (2) uses the following fact.

Lemma 1. Let � ⊂ � be a subset of the state space. Then

d

dt

∑
A∈�

pA(t) =
∑

A∈�, B∈�c

(pB(t)qBA − pA(t)qAB).

Proof. From the forward equation, we have, for each A ⊂ S,

d

dt
pA(t) =

∑
B∈�

pB(t)qBA =
∑
B �=A

(pB(t)qBA − pA(t)qAB),

using the fact that qAA = − ∑
B �=A qAB . Then, summing over A ∈ �, note that, for A, A′ ∈

�, A′ �= A, the term pA′(t)qA′A − pA(t)qAA′ in dpA(t)/dt is cancelled by the corresponding
term pA(t)qAA′ − pA′(t)qA′A in dpA′(t)/dt , so that it suffices to sum pB(t)qBA − pA(t)qAB

over A ∈ � and B ∈ �c, whence the formula follows.

Let �y = {A ⊂ S : y ∈ A}. Then B ∈ �c
y if and only if y /∈ B. There is a nonzero rate of

transition from A ∈ �y to B ∈ �c
y , and from B ∈ �c

y to A ∈ �y , exactly when B = A \ {y}.
In this case the transition rate from A to B is γy , and the transition rate from B to A is
αy + ∑

x∈B βxy . Thus, by Lemma 1,

d

dt
py(t) =

∑
A∈�y

pA(t)

=
∑

A∈�y, B∈�c
y

(pB(t)qBA − pA(t)qAB)

= αy(1 − py(t)) +
∑
x

P(ξt (x) = 1, ξt (y) = 0)βxy − γypy(t),

since
∑

B∈�c
y
pB(t) = P(ξt (y) = 0) = (1 − py(t)),

∑
{B∈�c

y : x∈B}pB(t) = P(ξt (x) = 1,

ξt (y) = 0) and
∑

A∈�y
pA(t) = py(t), giving (2).

4. Irreducibility

Let �∗ denote the state space minus the disease-free state. Say that the absorbing process is
conditionally irreducible if �∗ is a communicating class for the absorbing process. We obtain
necessary and sufficient conditions both for the spontaneous process to be irreducible and for
the absorbing process to be conditionally irreducible (see Section 1.2 of [8] for the definitions
of irreducibility and a communicating class). We begin with a definition.

Definition 1. For sites x and y, a spontaneous infection path is a list x = x0x1 · · · xk = y such
that αx0βx0x1 · · · βxk−1xk

> 0. A site y has a spontaneous infection path if there is some x such
that there is a spontaneous infection path from x to y; this is in particular the case if αy > 0. For
sites x and y, a transmission path is a list x = x0x1 · · · xk = y such that βx0x1 · · · βxk−1xk

> 0.
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The following lemma gives necessary and sufficient conditions both for irreducibility of the
spontaneous process, and conditional irreducibility of the absorbing process.

Lemma 2. A necessary and sufficient condition for the spontaneous process to be irreducible
is that, for each site y, γy > 0 and y has a spontaneous infection path. If the absorbing
process is defined on a set of at least two sites then a necessary and sufficient condition for the
absorbing process to be conditionally irreducible is that, for each site y, γy > 0 and either y

has a spontaneous infection path or, for each x �= y, there is a transmission path from x to y.
If the spontaneous process is irreducible then it has a unique stationary distribution π . If the

absorbing process is conditionally irreducible then it has a unique quasistationary distribution
ζ supported on �∗.

Proof. Consider first the spontaneous process. If there exists y ∈ S such that γy = 0 for
some y ∈ S then state ∅ is inaccessible from state {y}. If there exists y ∈ S that has no
spontaneous infection path then state {y} is inaccessible from state ∅. If both conditions are
satisfied then, for any subset of sites A and any initial state, there is a positive probability that
first all sites become infected, and then the sites in S \ A recover; in other words, every state is
accessible from every other state, which is what it means to be irreducible.

For a finite state Markov Chain, irreducibility implies that there exists a unique stationary
distribution π given by the equation

πQ = 0.

See [8, Section 3.5] for the proof of existence and uniqueness of the stationary distribution.
Consider now the absorbing process. If there exists y ∈ S such that γy = 0 then, for x �= y,

state {x} is inaccessible from state {y}. If there exists y ∈ S that has no spontaneous infection
path, and there is x �= y such that there is no transmission path from x to y, then state {y} is
inaccessible from state {x}. If both conditions are satisfied then, for any subset of sites A, from
any state with at least one infected site there is a positive probability that first all sites become
infected, and then the sites in S \ A recover; in other words, every state in �∗ is accessible
from every other state in �∗. Since the disease-free state does not have access to any state
in �∗, it follows that �∗ is a communicating class; in other words, the absorbing process is
conditionally irreducible.

Since, for any t ≥ 0, the restriction of P t to �∗ is a primitive matrix, the Perron–Frobenius
theory [1] guarantees a unique positive eigenvector ζ of the restricted transition matrix, with
a positive eigenvalue, such that

∑
x∈�∗ ζ(x) = 1, and this is what defines a quasistationary

distribution.

5. Transportation distance

In the case where the processes are irreducible or conditionally irreducible, the material
covered in this section will help to provide sufficient conditions for the exponentially fast
convergence of the spontaneous process and the absorbing process. The convergence itself is
discussed in the next section.

Let G = (V , E) be a finite connected graph with undirected edges; here connected means
that, for any two vertices, there is a path running along the edges from one vertex to the other
vertex. For the spontaneous and absorbing processes, G corresponds to the graph with vertex
set V = � = {0, 1}S and edge set corresponding to the set of pairs of configurations that differ
in the state of exactly one site. To each path assign a length that corresponds to the number of
edges on the path. For vertices u and v, let �(u, v) be the length of any shortest path between
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u and v. Then �(u, v) is a metric on G, which is called the path metric. Let Diam(G) denote
the graph diameter of G, defined by

Diam(G) = max
(x,y)∈V ×V

�(x, y).

For a finite or countably infinite set A, P (A) is used to denote the set of probability measures
on A, that is, functions μ : A → R

+ such that μ(x) ≥ 0 for each x ∈ A and
∑

x∈A μ(x) = 1.
The words distribution and probability measure are used here interchangeably. For a pair of
distributions μ and ν on V , a coupling is a distribution η on V × V with marginals μ and ν,
that is, μ(x) = ∑

y∈V η(x, y) and ν(y) = ∑
x∈V η(x, y).

If X and Y are a pair of random variables defined on a common probability space and having
respective distributions μ and ν, then the joint distribution is a coupling of μ and ν. Conversely,
any coupling of μ and ν defines a pair of random variables X and Y , with respective distributions
μ and ν, on a common probability space. Therefore, it is possible to think of couplings either
in terms of distributions, or in terms of random variables.

A coupling η of μ and ν gives a rule that redistributes probability mass in such a way that
μ is sent to ν, the quantity η(x, y) being the amount of probability mass at x that is moved
to y. The condition

∑
y∈V η(x, y) = μ(x) says that η sends the amount μ(x) from the vertex

x to the vertices of the graph in some way, and the condition
∑

x∈V η(x, y) = ν(y) says that η

sends the amount ν(y) from the vertices of the graph to the vertex y in some way.
The expected distance Eη� for η, defined as

Eη� =
∑

(x,y)∈V ×V

η(x, y)�(x, y),

corresponds to the average distance travelled by the probability mass in sending μ to ν, assuming
that mass travels along a shortest path. A natural question to ask is what is the most efficient
way of sending μ to ν, in terms of expected distance. This is called the transportation distance
ρ(μ, ν) between μ and ν and is given by

ρ(μ, ν) = inf
η∈C

Eη�,

where C(μ, ν) is the set of couplings of μ and ν. As it turns out, ρ is a metric on the set of
distributions on V . Nonnegativity of ρ follows from the fact that the path metric is nonnegative
and from the fact that couplings are by definition nonnegative functions. Symmetry of ρ follows
from the fact that the path metric is symmetric and from the fact that θ is a coupling of μ and
ν if and only if the function η defined by η(x, y) = θ(y, x) for (x, y) ∈ V × V is a coupling
of ν and μ. For a proof of the triangle inequality for ρ, see [6, Lemma 14.3].

In the topology defined by the total variation metric (see [6] for a definition of the total
variation metric), C(μ, ν) is a compact subset of the set of distributions on V × V . Therefore,
there exists θ ∈ C(μ, ν) such that Eθ � = ρ(μ, ν). Any such θ is called an optimal coupling.

As shown in the following lemma, the transportation distance is Lipschitz continuous;
continuity of the transportation distance is used in Proposition 3 below, but Lipschitz continuity
is easier to prove.

Lemma 3. For the transportation distance ρ and distributions μ, ν, μ1, and ν1,

| ρ(μ, ν) − ρ(μ1, ν1)| ≤ C max(‖μ − μ1‖∞, ‖ν − ν1‖∞),

where C = |V |2 Diam(G) and ‖ · ‖∞ is defined on R
V by

‖u‖∞ = max
x∈V

|u(x)|.
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Proof. Let
δ = max(‖μ − μ1‖∞, ‖ν − ν1‖∞),

and let η be an optimal coupling of μ and ν. Define η on V × V by

η(x, y) = max(η(x, y) − δ, 0),

and observe that 0 ≤ η(x, y) − η(x, y) ≤ δ for each (x, y) ∈ V × V . Let ε = 1 −∑
(x,y)∈V ×V η(x, y). Then, summing the last inequality over (x, y) ∈ V × V , it follows

that 0 ≤ ε ≤ |V |2δ. Define μ and ν by

μ(x) =
∑
y∈V

η(x, y), ν(y) =
∑
x∈V

η(x, y).

Let x ∈ V . Then, if η(x, y) ≥ δ for some y ∈ V then μ(x) ≤ μ(x) − δ, and if η(x, y) < δ

for each y ∈ V then μ(x) = 0. Since |μ1(x) − μ(x)| ≤ δ and μ1(x) ≥ 0, it follows that
μ1(x) ≥ μ(x). In the same way ν1(x) ≥ ν(x).

Define θ on V × V by

θ(x, y) = η(x, y) + 1

ε
(μ1(x) − μ(x))(ν1(y) − ν(y)).

Then θ is nonnegative, and a calculation shows that θ is a coupling of μ1 and ν1. Note that
∑
x∈V

(μ1(x) − μ(x)) =
∑
y∈V

(ν1(y) − ν(y)) = 1 −
∑

(x,y)∈V ×V

η(x, y) = ε,

so that ∑
(x,y)∈V ×V

(μ1(x) − μ(x))(ν1(y) − ν(y)) = ε2.

Taking
∑

(x,y)∈V ×V θ(x, y)�(x, y) and using the fact that �(x, y) ≤ Diam(G),

Eθ � ≤ Eη� + ε Diam(G) ≤ Eη� + |V |2δ Diam(G),

recalling that ε ≤ |V |2δ and observing that η ≤ η. Since η is optimal,

ρ(μ1, ν1) ≤ Eθ � ≤ ρ(μ, ν) + |V |2δ Diam(G).

Reversing the roles of μ1, ν1 and μ, ν completes the proof.

For x ∈ V , let m(x) = min(μ(x), ν(x)). For η ∈ C(μ, ν), note that η(x, x) ≤ m(x).
As shown in the following lemma, there is an optimal coupling for which equality is achieved,
simultaneously for all x ∈ V .

Lemma 4. Let μ and ν be distributions on V . There is an optimal coupling θ so that, for each
x ∈ V , θ(x, x) = m(x).

Proof. Let η be an optimal coupling, and let x ∈ V . Set δ = m(x) − η(x, x), and suppose
that δ > 0. Set a = ∑

u�=x η(u, x) and, b = ∑
v �=x η(x, v), and define θ as follows:

• θ(x, x) = m(x) = η(x, x) + δ;

• θ(u, x) = η(u, x) − δa−1η(u, x), u �= x;
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• θ(x, v) = η(x, v) − δb−1η(x, v), v �= x;

• θ(u, v) = η(u, v) + δ(ab)−1η(u, x)η(x, v), u �= x and v �= x.

Note that ∑
v �=x

θ(x, v) =
∑
v �=x

η(x, v) − δ.

Then ∑
v∈V

θ(x, v) =
∑
v∈V

η(x, v) = μ(x)

and ∑
v �=x

θ(u, v) =
∑
v �=x

η(u, v) + δa−1η(u, x),

so ∑
v∈V

θ(u, v) =
∑
v∈V

η(u, v) = μ(u)

when u �= x. Analogous computations reveal that
∑

u∈V θ(u, x) = ν(x) and that∑
u∈V θ(u, v) = ν(v) for v �= x, which proves that θ is a coupling of μ and ν.
To show that θ is an optimal coupling, first note that �(x, x) = 0, so that θ(x, x)�(x, x) =

η(x, x)�(x, x) = 0. We consider the remaining terms of the sum in three parts. For the first
two parts, we have

∑
u�=x

θ(u, x)�(u, x) =
∑
u�=x

η(u, x)�(u, x) − δa−1
∑
u�=x

η(u, x)�(u, x)

and ∑
v �=x

θ(x, v)�(x, v) =
∑
v �=x

η(x, v)�(x, v) − δb−1
∑
v �=x

η(x, v)�(x, v).

For the remaining part, let U = V \ {x}. Then
∑

(u,v)∈U×U θ(u, v)�(u, v) is equal to

∑
(u,v)∈U×U

η(u, v)�(u, v) + δ(ab)−1
∑

(u,v)∈U×U

η(u, x)η(x, v)�(u, v).

Since �(u, v) ≤ �(u, x) + �(x, v), it follows that

∑
(u,v)∈U×U

η(u, x)η(x, v)�(u, v) ≤
∑

(u,v)∈U×U

η(u, x)η(x, v)(�(u, x) + �(x, v)).

The right-hand side is equal to

∑
v �=x

η(x, v)
∑
u�=x

η(u, x)�(u, x) +
∑
u�=x

η(u, x)
∑
v �=x

η(x, v)�(x, v),
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which is just b
∑

u�=x η(u, x)�(u, x) + a
∑

v �=x η(x, v)�(x, v), so
∑

(u,v)∈U×U

θ(u, v)�(u, v) ≤
∑

(u,v)∈U×U

η(u, v)�(u, v)

+ δ(ab)−1
(

b
∑
u�=x

η(u, x)�(u, x) + a
∑
v �=x

η(x, v)�(x, v)

)

=
∑

(u,v)∈U×U

η(u, v)�(u, v)

+ δa−1
∑
u�=x

η(u, x)�(u, x) + δb−1
∑
v �=x

η(x, v)�(x, v).

Combining the three parts, from the resulting cancellation we have

Eθ � =
∑

(u,v)∈V ×V

θ(u, v)�(u, v) ≤
∑

(u,v)∈V ×V

η(u, v)�(u, v) = ρ(μ, ν),

so θ is an optimal coupling. Note that θ(y, y) ≥ η(y, y) for all y ∈ V . Therefore, repeating
the procedure for each x ∈ V establishes the result.

In what follows, all optimal couplings are assumed to satisfy the property stated in Lemma 4.
Let P be the transition matrix of a discrete-time Markov chain with state space � that

corresponds to the vertices of G. The following theorem gives a sufficient condition for P to
contact the transportation distance.

Theorem 1. (Bubley and Dyer [2].) Suppose that there exists a λ > 0 such that

ρ(P (x, ·), P (y, ·)) ≤ e−λ

whenever �(x, y) = 1. Then, for any pair of distributions μ and ν on �,

ρ(μP, νP ) ≤ e−λ ρ(μ, ν).

A proof of this theorem is given in [6, Proof of Theorem 14.6]. A quick examination of the
proof reveals that the following slightly stronger result also holds.

Proposition 2. Let � ⊂ � be a subset of the state space such that the subgraph of G induced
by the states belonging to � is connected, and which is such that, for each x, y ∈ �, there is a
shortest path from x to y that is contained in �. Suppose that there exists a λ > 0 such that,
for all x, y ∈ �,

ρ(P (x, ·), P (y, ·)) ≤ e−λ

whenever �(x, y) = 1. Then, for any pair of distributions μ and ν supported on �,

ρ(μP, νP ) ≤ e−λ ρ(μ, ν).

For a function f : R
+ → R, define the right-hand upper derivative Df as

Df (t) = lim
h→0+

1

h
(f (t + h) − f (t)).

Suppose now that (P t )t≥0 is the transition semigroup of a continuous-time Markov chain with
state space �. The following corollary is a continuous-time version of Proposition 2.
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Corollary 1. Let � be as in Proposition 2. Suppose that there exists a λ > 0 such that, for all
x, y ∈ �,

ρ(P h(x, ·), P h(y, ·)) ≤ 1 − λh + o(h)

for small h > 0, whenever �(x, y) = 1. Then, for any pair of distributions μ and ν supported
on � and any t ≥ 0,

D ρ(μP t , νP t ) ≤ −λ ρ(μP t , νP t ).

Proof. Let ε > 0. There exists τ > 0 such that o(h) ≤ εh for h ∈ [0, τ ]. Apply
Proposition 2 to the distributions μP t and νP t on �, using the transition matrix P h, to find that

ρ(μP t+h, νP t+h) ≤ (1 − (λ − ε)h) ρ(μP t , νP t ).

Subtracting ρ(μP t , νP t ) from both sides, diving by h, and taking the lim sup as h → 0+,

D ρ(μP t , νP t ) ≤ −(λ − ε) ρ(μP t , νP t ).

Since ε > 0 is arbitrary, the result follows.

Let x∗ ∈ � be a distinguished state, and let �∗ = � \ {x∗}. For a distribution μ on � with
μ(x∗) < 1, let μ∗ be the corresponding conditional distribution on �∗, that is, the distribution
on �∗ defined by

μ∗(x) = μ(x)(1 − μ(x∗))−1

for x ∈ �∗. The following estimate relates the transportation distance of distributions and their
corresponding conditional distributions.

Theorem 2. Let μ and ν be a pair of distributions on � with μ(x∗) < 1 and ν(x∗) < 1. Then

ρ(μ∗, ν∗) ≤ 1

1 − m(x∗)
[ρ(μ, ν) + |μ(x∗) − ν(x∗)| Diam(G)].

If μ(x∗) = ν(x∗) then

ρ(μ∗, ν∗) = 1

1 − m(x∗)
ρ(μ, ν).

Proof. Set a = μ(x∗) and b = ν(x∗). Since ρ is symmetric and the map η �→ θ given by
θ(x, y) = η(y, x) is a bijection from the set of couplings of μ and ν to the set of couplings of ν

and μ, there is no loss of generality in supposing that m(x∗) = b. Let η be an optimal coupling.
By Lemma 4 we may suppose that η(x∗, x∗) = m(x∗) = b. Since b = ν(x∗) = ∑

x∈Sη(x, x∗)
and η is nonnegative with η(x∗, x∗) = b, it follows that η(x, x∗) = 0 for x ∈ �∗. Define θ on
�∗ × �∗ as follows. For (x, y) ∈ �∗ × �∗, let

θ(x, y) = (1 − b)−1η(x, y) + 1

(1 − a)(1 − b)
μ(x)η(x∗, y).

A straightforward calculation shows that θ(x, y) is a coupling of μ∗ and ν∗, and that∑
(x,y)∈�∗×�∗θ(x, y)�(x, y) is not larger than the right-hand side of the inequality in the

statement of the theorem, noting that
∑
y∈�∗

η(x∗, y) = μ(x∗) − η(x∗, x∗) = a − b

and that �(x, y) ≤ Diam(G).
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Suppose that μ(x∗) = ν(x∗) = m(x∗). Let C denote the set of couplings θ of μ and ν

that satisfy θ(x∗, x∗) = m(x∗), and let C∗ denote the set of couplings of μ∗ and ν∗. Since∑
y∈�θ(x∗, y) = μ(x∗) = m(x∗),

∑
x∈�θ(x, x∗) = ν(x∗) = m(x∗) and θ ≥ 0 for any

coupling θ of μ and ν, if θ ∈ C then θ(x∗, x) = θ(x, x∗) = 0 for x ∈ �∗. Therefore, if θ ∈ C
then the function θ∗ defined by

θ∗(x, y) = (1 − m(x∗))−1θ(x, y), (x, y) ∈ �∗ × �∗,

is a coupling of μ∗ and ν∗. Since the map from C to C∗ given by θ �→ θ∗ is 1 : 1 and onto, it
is a bijection of C with C∗. Moreover, for θ ∈ C,

Eθ∗� = cEθ �,

where c = (1 − m(x∗))−1 is a constant, which implies that θ∗ is an optimal coupling of μ∗
and ν∗ if and only if θ is an optimal coupling of μ and ν. Since η is an optimal coupling that
satisfies η(x∗, x∗) = m(x∗), the result follows.

Let (P t )t≥0 be the transition semigroup of a continuous-time Markov chain on �. Suppose
that x∗ is an absorbing state for (P t )t≥0, that is, the distribution δx∗ supported on x∗ satisfies
δx∗P t = δx∗ . Let ζ be a quasistationary distribution supported on �∗ with decay rate v ≥ 0,
that is, d log(1 − (ζP t )(x∗))/dt = −v and (ζP t )∗ = ζ for t ≥ 0. Note that

v = − 1

(ζP t )(�∗)
d

dt
(ζP t )(�∗),

so v measures the rate at which mass leaks out from �∗, starting from ζ . Also, note that the
condition (ζP t )∗ = ζ for t ≥ 0 is equivalent to having (ζP t )(x) = (1 − (ζP t )(x∗))ζ(x) for
x ∈ �∗.

For a distribution μ on �, set μt = μP t and at = μt(x
∗). Define the distribution ν0 on

� by ν0(x
∗) = a0 and ν0(x) = (1 − a0)ζ(x) for x �= x∗, and, for t ≥ 0, set νt = ν0P

t and
bt = νt (x

∗). Let s be such that (ζP s)(x∗) = a0. Then ν0(x) = (ζP s)(x) for all x, which
implies that νt = ζP t+s for t ≥ 0, and, in particular, that ν∗

t = ζ and d log(1 − bt )/dt = −v.
Set ut = −d log(1 − at )/dt ; note that

ut = − 1

μt(�∗)
d

dt
μt (�

∗),

so ut measures the rate at which mass leaks out from �∗, starting from μ. The following
estimate is used in the proof of Theorem 3.

Proposition 3. Let f (t) = ρ(μt , νt ), let g(t) = ρ(μ∗
t , ν

∗
t ) = ρ(μ∗

t , ζ ), and let ut and v be as
above. Suppose that the function t �→ (P t )t≥0 is continuous. Then

Dg(0) ≤ 1

1 − a0
[Df (0) + min(u0, v)f (0)] + |u0 − v| Diam(G).

Proof. From Theorem 2, since a0 = b0,

ρ(μ∗
0, ν

∗
0 ) = 1

1 − a0
ρ(μ0, ν0), (3)
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and, for h > 0,

ρ(μ∗
h, ν

∗
h) ≤ 1

1 − min(ah, bh)
[ρ(μh, νh) + |ah − bh| Diam(G)]. (4)

Setting

mh = 1

1 − min(ah, bh)
= min

(
1

1 − ah

,
1

1 − bh

)
,

the right-hand side of (4) can be rewritten as

1

1 − a0
ρ(μh, νh) +

(
mh − 1

1 − a0

)
ρ(μh, νh) + mh|ah − bh| Diam(G). (5)

Since at and bt are nondecreasing in t , a0 = b0, and the function 1/(1 − x) is monotone
increasing on (0, 1),

lim
h→0+

1

h

(
mh − 1

1 − a0

)
= min

(
d

dt

1

1 − at

∣∣∣∣
t=0

,
d

dt

1

1 − bt

∣∣∣∣
t=0

)
= 1

1 − a0
min(u0, v),

and, since a0 = b0,

lim
h→0+

|ah − bh|
h

=
∣∣∣∣ d

dt
(at − bt )

∣∣∣∣
∣∣∣∣
t=0

= (1 − a0)|u0 − v|.

Recall that ν∗
t = ζ for t ≥ 0. Subtract (3) from (4) (with the right-hand side as in (5)), divide

by h, and take lim suph→0+ to obtain the desired result. Note that continuity of ρ and of P t are
assumed; continuity of P t is a hypothesis, and continuity of ρ follows from Lemma 3.

Combining Corollary 1 and Proposition 3, the following estimate is obtained.

Theorem 3. Suppose that, for λ > 0, the transition semigroup (P t )t≥0 satisfies the conditions
of Corollary 1, and let μt , f (t), g(t), etc. be as in Proposition 3. Let

r(t) = λ − min(ut , v), c(t) = |ut − v| Diam(G),

and let

φ(s, t) = exp

(
−

∫ t

s

r(τ ) dτ

)
.

Then, for t ≥ 0,
Dg(t) ≤ −r(t)g(t) + c(t),

and, for 0 ≤ s ≤ t ,

g(t) ≤ φ(s, t)g(s) +
∫ t

s

φ(τ, t)c(τ ) dτ.

Proof. Applying Corollary 1, Df (0) ≤ −λf (0), and applying the second equations in
Theorem 2, f (0) = (1 − a0)g(0); so, from Proposition 3,

Dg(0) ≤ [min(u0, v) − λ]g(0) + |u0 − v| Diam(G).

Replacing μ with μt in the discussion leading up to Proposition 3 reveals that

Dg(t) ≤ [min(ut , v) − λ]g(t) + |ut − v| Diam(G) for t ≥ 0,

that is,
Dg(t) ≤ −r(t)g(t) + c(t) for t ≥ 0.
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Therefore, for 0 ≤ s ≤ t , g(t) is bounded above by the solution to the differential equation

y′ = −ry + c, y(s) = g(s),

which proves the second inequality.

In words, the result of Theorem 3 says that we have exponential convergence of g(t) at rate
λ − min(ut , v), up to the constant penalty |ut − v| Diam(G). Therefore, if the full system
converges at rate at least λ > v and mass is leaking out of �∗ at a rate that is equal to the
quasistationary rate, then we have exponential convergence at rate at least λ − v. If at and bt

are identically 0, that is, if μ∗
t = μt and ν∗

t = νt for t ≥ 0, the result simplifies to the statement
g(t) ≤ e−λ(t−s)g(s).

6. Convergence

Recall that, for the spontaneous and absorbing processes, there is a natural connected
(undirected) graph G = (V , E) with vertex set V = � = {0, 1}S and edge set E given
by the set of pairs of states that differ in the label of exactly one site. For the spontaneous
process, any sets of sites A ⊂ S and B ⊂ S, and any t ≥ 0, the graphical construction defines a
coupling of the distributions of ξA

t and ξB
t . Let � denote the path metric. We have the following

estimate for the expected distance between adjacent pairs of states after a short time, in the
coupling given by the graphical construction.

Proposition 4. Let A ⊂ B ⊂ S be such that B = A ∪ {x} for some x ∈ S, and consider the
spontaneous process. With respect to the coupling θt given by the graphical construction, for
small t > 0, the expected distance Eθt � between ξA

t and ξB
t is given by

Eθt � = 1 +
( ∑

y∈Ac

βxy

)
t − (αx + γx)t + O(t2),

where Ac denotes the complement of A.

Proof. The graphical construction defines (ξA
t )t≥0 and (ξB

t )t≥0 on the same probability
space. Let τ denote the time of the first event. If site x becomes infectious in (ξA

τ ), or recovers
in (ξB

τ ), then ξA
τ = ξB

τ ; this event occurs in the interval [0, t] with probability αxt+γxt+O(t2).
If site x causes a subsequent infection then ξA

τ and ξB
τ differ at two sites, and this event occurs

in the interval [0, t] with probability
∑

y∈Ac βxyt + O(t2). For any other event, ξA
τ and ξB

τ

differ at a single site. The probability of two or more events occurring in the interval [0, t] is
of O(t2). Let θt denote the coupling of ξA

t and ξB
t given by the joint distribution. Then

Eθt � =
∞∑

n=0

nP(� = n)

=
2∑

n=0

nP(� = n) + O(t2)

= 1[1 − (P(� = 0) + P(� = 2))] + 2P(� = 2) + O(t2)

= 1

[
1 −

( ∑
y∈Ac

βxy + αx + γx

)
t

]
+ 2

( ∑
y∈Ac

βxy

)
t + O(t2)

= 1 +
( ∑

y∈Ac

βxy

)
t − (αx + γx)t + O(t2).
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A consequence of this result is that if two copies of the process are started from states ∅ and
{x}, then, if ∑

y �=x

βxy < αx + γx,

the distributions of the two processes over a short period of time converge, and if
∑
y �=x

βxy > αx + γx,

the distributions of the two processes over a short period of time diverge. Using the results of
Section 5, the following sufficient condition is obtained for the spontaneous process to converge
exponentially quickly to its stationary distribution.

Theorem 4. Suppose that the spontaneous process is irreducible, and let π denote its unique
stationary distribution. Let

λ = min
x∈S

(
αx + γx −

∑
y �=x

βxy

)
,

and suppose that λ > 0. Let P t denote the transition semigroup for the spontaneous process.
Then, for any pair of distributions μ and ν on � and any t ≥ 0,

D ρ(μP t , νP t ) ≤ −λ ρ(μP t , νP t ),

and, in particular, for 0 ≤ s ≤ t ,

ρ(μP t , π) ≤ e−λ(t−s) ρ(μP s, π).

Proof. Vertices in V have distance 1 when the corresponding states differ at one site, which
is exactly the case considered in Proposition 4. The result follows using Corollary 1, and
integrating.

It is not hard to show that the quantity αx + γx is the rate of convergence of the state of
site x to its stationary distribution, when the influence of other vertices is disregarded. The
quantity

∑
y �=x βxy measures the effect of the state of site x on the state of other sites. Therefore,

Theorem 4 says that if at each site the rate of convergence to its stationary value of the state of
that site is larger than the total rate at which the state of that site affects the state of neighbouring
sites, then the state of the system as a whole converges exponentially to its stationary value.

Theorem 4 shows that in order to increase the rate of convergence to the stationary
distribution, it suffices to decrease transmission rates, or to increase the rate of recovery. This
reflects the intuition that, when a disturbance is introduced into a system, the system returns to
its steady state more quickly when transmission rates are reduced, or when the rate of recovery
is increased. Increasing the rate of spontaneous infection would also improve convergence, but
this is of course undesirable.

Since the absorbing process is identical to the spontaneous process except for its behaviour
at the disease-free state, Theorem 3 has the following corollary.

Corollary 2. Suppose that the absorbing process is conditionally irreducible, and let ζ denote
its unique quasistationary distribution. Let P t denote its transition semigroup, and let μ

be any distribution on �. Let λ be as in Theorem 4. Let g(t) denote ρ(μP t , ζ ), and let
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φ(s, t) = exp(−∫ t

s
r(τ ) dτ) and c(t) = |ut − v| Diam(G) be as in Theorem 3. Then, for

0 ≤ s ≤ t ,

g(t) ≤ φ(s, t)g(s) +
∫ t

s

φ(τ, t)c(τ ) dτ.

Let μt denote μP t . It follows, from the forward equation (1) for the process and from the
fact that qηη = − ∑

ξ �=η qηξ holds for each configuration η, that, for any subset � ⊂ � of the
state space,

d

dt
μt (�) =

∑
ξ∈�, η∈�c

μt(η)qηξ − μt(ξ)qξη.

Letting � = �∗, (�∗)c is the disease-free state, which is absorbing, so we have qηξ = 0 for
η ∈ (�∗)c and ξ ∈ �, and qξη �= 0 if and only if ξ = {x} for some site x, in which case the
transition rate q{x}∅ = γx . Therefore,

d

dt
μt (�

∗) = −
∑
x∈S

μt ({x})γx.

The terms ut and v are described in Section 5 and are related to the additional convergence
penalty c(t) = |ut − v| Diam(G) for the absorbing process. They are given by

ut = −1

μt(�∗)
∑
x∈S

μt ({x})γx, v = −
∑
x∈S

ζt ({x})γx.

To assess convergence, it is therefore enough to know λ and the mass at the states {x} for x ∈ S.

7. Reduced equations

Recall that px(t) = P(ξt (x) = 1). We can argue as follows to obtain differential equations
whose solutions approximate the values px(t). For convenience, the notation px(t) is also
used for the quantities in these equations. The following assumption is made. If site y is not
infectious at time t then it is infectious at time t +�t with probability (αy +∑

x px(t)βxy)�t +
O((�t)2). If site y is infectious at time t then it is infectious at time t + �t with probability
1 − γy�t + O((�t)2). Therefore,

py(t + �t) =
(

αy +
∑
x

px(t)βxy

)
�t(1 − py(t)) + (1 − γy�t)py(t) + O((�t)2),

which means that

py(t + �t) − py(t)

�t
=

(
αy +

∑
x

px(t)βxy

)
(1 − py(t)) − γypy(t) + O(�t),

and, taking the limit as �t → 0+,

d

dt
py(t) =

(
αy +

∑
x

px(t)βxy

)
(1 − py(t)) − γypy(t). (6)

These are called the reduced equations and have been studied in [9]—in that paper the equations
are referred to as ‘the n-intertwined model’. Comparing to (2), we find that the assumption is
equivalent to the assumption that

P(ξt (x) = 1, ξt (y) = 0) = px(1 − py) = P(ξt (x) = 1)P(ξt (y) = 0),
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that is, coordinates are pairwise independent. We can construct a stochastic process from the
reduced equations using the values px(t) obtained from the reduced equations, and then letting
site y have the rate of infection αy + ∑

x px(t)βxy and the rate of recovery γy .
We can solve for the steady states (π(y))y∈S of the reduced equations by setting dpy(t)/dt =

0 in (6), obtaining

π(y) = U(y)

U(y) + γy

, (7)

where
U(y) = αy +

∑
x

π(x)βxy ≥ αy

and can be interpreted as the rate of infection at y. Under this interpretation, and interpreting
π(y) as the steady state probability of infection at site y, (7) in words says that the steady state
probability of infection is given by the ratio of the infection rate at y to the sum of the infection
and recovery rates. Note that the infection rate at y depends on the neighbouring values of
π(x), so (7) indeed gives a consistency condition for the steady state values. If βxy = 0 for
every distinct ordered pair of sites xy, the above equations decouple to give

π(y) = αy

αy + γy

, (8)

which is exactly the steady-state probability of infection of a vertex for the spontaneous process,
in the absence of interaction.

It might be expected that the reduced equations have similar properties to the spontaneous
process which they approximate. For example, we might suppose that the reduced equations
are monotonic with respect to parameters and initial data, and that, when the spontaneous
process is irreducible, the corresponding reduced equations have a unique steady state which
is monotonic with respect to the parameters. These two suppositions are explored, in reverse
order, in the following two subsections.

7.1. Monotonicity of π for small interactions

Recall that 	 denotes the set of parameters

	 = ((αx)x∈S, (βxy)xy∈
, (−γx)x∈S),

where 
 = {xy ∈ S × S : x �= y}. Suppose that in some region of parameter values there
is a locally unique branch of steady states π(	), one for each value of the parameter set 	.
Rewriting the steady state equations (7) as a function of parameters,

F(	, π(	)) = π(	),

where F(	, π(	)) is the vector function with entries U(y)/(U(y) + γy). Letting

G(	, π) = F(	, π) − π,

the steady state equations become

G(	, π(	)) = 0, (9)

where the 0 on the right-hand side denotes the vector (0, 0, . . . , 0) ∈ R
S . Differentiating (9)

with respect to 	 and suppressing arguments,

dG

d	
= ∂	G + ∂πG

dπ

d	
= 0

https://doi.org/10.1239/aap/1401369707 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1401369707


578 E. FOXALL

or

∂	G = −∂πG
dπ

d	
,

which, if −∂πG is invertible gives

dπ

d	
= (−∂πG)−1∂	G.

Now,
∂πG = ∂πF − I,

where I is the identity, so ∂πG is singular if and only if 1 is an eigenvalue of ∂πF . The matrix
∂πF has entries

(∂πF )xy =
⎧⎨
⎩

∂π(x)

U(y)

U(y) + γy

, βxy �= 0,

0, otherwise,

where, using the quotient rule and the fact that ∂π(x)U(y) = βxy ,

∂π(x)

U(y)

U(y) + γy

= βxyγy

(U(y) + γy)2 .

The nonzero entries of ∂πF satisfy

0 ≤ (∂πF )xy ≤ βxy

αy + γy

,

which implies in particular that ∂πF is a nonnegative matrix. Moreover, the column sums of
∂πF satisfy the inequality

0 ≤
∑
x

(∂πF )xy ≤
∑

x βxy

αy + γy

.

If the column sums of ∂πF are less than 1, that is,∑
x

βxy < αy + γy (10)

for each y ∈ S, then the matrix −∂πG is positive on the diagonal, nonpositive on the off-
diagonal, and strictly diagonally dominant, and so it is a nonsingular M matrix (see Chapter 6
of [1] for several equivalent definitions of an M-matrix), and, in particular, (−∂πG)−1 exists
and is a nonnegative matrix.

When there is no interaction (βxy = 0 for all distinct ordered pairs of sites xy), we have the
unique steady state (8). Condition (10) is satisfied for all parameter values in a neighbourhood
of the ‘interaction-free’ values. By the implicit function theorem, we therefore have a unique
branch of steady states π(	), as hoped for, which can be continued so long as condition (10)
is satisfied. Using the fact that ∂	G has entries

(∂αx G)y = ∂αx

U(y)

U(y) + γy

= γy

(U(y) + γy)2 ≥ 0,

(∂βxy G)y = ∂βxy

U(y)

U(y) + γy

= π(x)γy

(U(y) + γy)2 ≥ 0,

(∂−γy G)y = ∂−γy

U(y)

U(y) + γy

= U(y)

(U(y) + γy)2 ≥ 0

implies that ∂	π ≥ 0; in other words, 	1 ≥ 	2 implies that π(	1) ≥ π(	2).
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7.2. Monotonicity of the reduced equations

Consider the reduced equations

d

dt
py(t) =

(
αy +

∑
{x∈S : xy∈E}

px(t)βxy

)
(1 − py(t)) − γypy(t). (11)

Let p(t, p0, 	) denote the probability of infection of sites as a function of time for a set
of parameters 	 and initial data p0 = p(0, p0, 	); in other words, p(t, p0, 	) is the flow
corresponding to the vector field defined by (11).

For fixed p0, 	, and t , let p be the vector p(t, p0, 	) with entries px . Our first goal is to
define a notion of access that depends on p. For x and y vertices, x �= y, and a positive integer
k, define

Ck(x, y) =
∑

x=x0x1···xk=y

k∏
i=1

βxi−1xi
(1 − pxi

).

Say that x → y if x = y or if there is a positive integer k such that pxCk(x, y) > 0. Since

Cj+k(x, y) =
∑

z

Cj (x, z)Ck(z, y), (12)

it follows that ‘→’ is transitive. On the set {(x, y) ∈ S ×S : x → y}, define d(x, y) as follows.
If x = y, let d(x, y) = 0. If x �= y, let d(x, y) be equal to k such that pxCk(x, y) > 0 and
pxCj (x, y) = 0 for j < k. Then d satisfies the triangle inequality. To see this, note that if x →
y → z and either x = y, x = z, or y = z, then it holds trivially thatd(x, y) ≤ d(x, z)+d(z, y).
If x, y, and z are all distinct, argue as follows. Since, for any k, x, y, Ck(x, y) is nonnegative,
then, using (12), if Cj (x, z) > 0 and Ck(z, y) > 0 then Cj+k(x, y) > 0. From the definition
of d(x, y), it then follows that d(x, y) ≤ j + k ≤ d(x, z) + d(z, y).

The following lemma uses the access notion just defined to describe the dependence of
derivatives of p(t, p0, 	) on entries and parameter values.

Lemma 5. For fixed p0 and 	, let p(t) be the function p(t, p0, 	) with entries px(t), x ∈ S.
Let x, y ∈ S, and let k be a positive integer. If d(x, y) = k then, for t ≥ 0,

∂px(t)p
(k)
y (t) > 0.

If d(x, y) = k − 1 then
∂−γx p

(k)
y (t) > 0.

If d(x, y) = k − 1 and, for some positive integer j , ∂αx p
(j) �= 0, then

∂αx p
(k)
y (t) > 0.

If d(x, y) = k − 1 then, for any z, if, for some positive integer j , ∂βzx p
(j)
y (t) �= 0, then

∂βzx p
(k)
y (t) > 0.

Proof. Since t is fixed, for convenience, denote the entries px(t) and their derivatives p
(j)
x (t)

by px and p
(j)
x . First, observe that dpy/dt depends on px such that d(x, y) ≤ 1 and on αx, β·x ,

and γx such that d(x, y) = 0. If d(x, y) = k then, by the triangle inequality, dpx/dt depends
on pz such that d(z, y) ≤ k + 1, and depends on αz, β·z, and γz such that d(z, y) ≤ k.
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Let F(p, 	; k, k′) be a blanket notation for a polynomial depending on px such that
d(x, y) ≤ k (on entries at a distance less than or equal to k) and on αx, βx , and γx such that
d(x, y) ≤ k′ (on parameters at a distance less than or equal to k′). Using the product rule and the
above fact about the derivatives of the px , it follows that dF(p, 	; k, k)/dt = F(p, 	; k+1, k).

For a positive integer k, define

Ak(y) =
∑

{x : d(x,y)=k}
pxCk(x, y).

Observe that
d

dt
py =

(
αy +

∑
x

pxβxy

)
(1 − py) − γypy

= A1(y) + αy(1 − py) − γypy

= A1(y) + F(p, 	; 0, 0).

Assume inductively that

p(k−1)
y = Ak−1(y) + F(p, 	; k − 2, k − 2).

For each k, Ck(x, y) is a polynomial in p and 	 that depends on entries and on parameters at
a distance less than or equal to k − 1. Therefore, differentiating Ak−1(y),

d

dt
Ak−1(y) =

∑
{x : d(x,y)=k−1}

d

dt
pxCk−1(x, y) + pxĊk−1(x, y)

=
∑

{x : d(x,y)=k−1}

[(
αx +

∑
{z : d(z,y)=k}

pzβzx

)
(1 − px) − γxpx

]
Ck−1(x, y)

+ F(p, 	; k − 1, k − 2). (13)

Pushing a few more terms into the polynomial F ,

d

dt
Ak−1(y) =

∑
{x : d(x,y)=k−1}

∑
{z : d(z,y)=k}

[pzβzx(1 − px)]Ck−1(x, y) + F(p, 	; k − 1, k − 1)

=
∑

{z : d(z,y)=k}

∑
{x : d(x,y)=k−1}

[pzβzx(1 − px)]Ck−1(x, y) + F(p, 	; k − 1, k − 1)

=
∑

{z : d(z,y)=k}
pzCk(z, y) + F(p, 	; k − 1, k − 1)

= Ak(y) + F(p, 	).

Then, differentiating p(k−1),

p(k)
y = Ak(y) + F(p, 	; k − 1, k − 1),

which proves the induction. If d(x, y) = k then, by definition, Ck(x, y) > 0 and so

∂px p
(k)
y = Ck(x, y) > 0.
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To assess the dependence of p
(k)
y on parameters, differentiate p

(k−1)
y and use (13) to write p

(k)
y

as

p(k)
y =

∑
{x : d(x,y)=k−1}

[(
αx +

∑
{z : d(z,y)=k}

pzβzx

)
(1 − px) − γxpx

]
Ck−1(x, y)

+ F(p, 	; k − 1, k − 2).

If d(x, y) = k − 1 then, by definition, Ck−1(x, y) > 0 and so

∂αx p
(k)
y = (1 − px)Ck−1(x, y) ≥ 0,

∂βzx p
(k)
y = pz(1 − px)Ck−1(x, y) ≥ 0,

∂−γx p
(k)
y = pxCk−1(x, y) > 0,

as claimed. If ∂αx p
(k)
y = 0 then (1 − px) = 0 and dpx/dt does not depend on αx . Since, for

any positive integer j , αx only appears in the expression for p
(j)
y as a result of differentiating

px , it follows that ∂αx p
(j)
y = 0. Similarly, if ∂βzx p

(k) = 0 then pz(1 − px) = 0 and dpx/dt

does not depend on βzx . Since, for any positive integer j , βzx only appears in the expression
for p

(j)
y as a result of differentiating px , it follows that ∂βzx p

(j)
y = 0.

Theorem 5 below establishes monotonicity of solutions to the reduced equations with respect
to p0 and 	, assuming that the flow is locally analytic. The following lemma establishes this
fact.

Lemma 6. For fixed values of p0, 	, and a, there is a neighbourhood U of a such that the
function p(t, p0, 	) is analytic for t ∈ U .

Proof. Fix 	 and p0, and let p(t) = p(t, p0, 	). Let L = ‖	‖∞; L is the least upper
bound of absolute values of parameters. Note first that, for any y ∈ S,

d

dt
py(t) = αy − (αy + γy)py +

∑
x

pxβxy −
∑
x

pxβxypy,

so ∣∣∣∣ d

dt
py(t)

∣∣∣∣ ≤ L + 2Lpy + L
∑
x

px + L
∑
x

pxpy.

Let d = maxy∈S #{x : βxy �= 0}, where # denotes cardinality. Then |dpy(t)/dt | is bounded by a
polynomial in (px(t))x∈S of degree at most 2, containing at most 1+1+d+d = 2(1+d) := C

monomial terms, each of absolute value at most 2L. Examine the monomial px1px2 · · · pxk
,

where the xi are not necessarily distinct. Differentiating,

d

dt
px1px2 · · · pxk

=
k∑

i=1

d

dt
pxi

∏
j �=i

pxi
,

so |dpx1px2 · · · pxk
/dt | is bounded above by a polynomial in (px(t))x∈S of degree at most

k + 1, containing at most kC terms, each of absolute value at most 2L. Assume inductively
that |dkpy(t)/dtk| is bounded above by at most k! Ck monomial terms, each of absolute value
at most (2L)k . Then it follows that dk+1py(t)/dtk+1 is bounded in absolute value by at
most (k + 1)C(k! Ck) = (k + 1)! Ck+1 monomial terms, each of absolute value at most
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2L(2L)k = (2L)k+1. The induction is proved. In particular, for each positive integer k and
each t ≥ 0, ∣∣∣∣ dk

dtk
py(t)

∣∣∣∣ ≤ k! (2CL)k,

which implies that, for each a ≥ 0, there is a neighbourhood of a on which py(t) can be
expressed as the convergent power series

∞∑
k=0

1

k!
dk

dtk
py(a)(t − a)k.

Theorem 5. If 	1 ≥ 	2 and p0,1 ≥ p0,2 then, for t ≥ 0,

p(t, p0,1, 	1) ≥ p(t, p0,2, 	2).

Proof. Denote p(t, p0,1, 	1) and p(t, p0,2, 	2) by p1(t) and p2(t) respectively. For a
proof by contradiction, let T denote the set of times t ≥ 0 such that there exists y such that
p1,y(t) − p2,y(t) < 0. Then T is the union over y of the inverse image of the negative reals
under p1,y − p2,y , and is therefore open. If T is empty, the assertion holds. If T is not empty,
let a = inf T . Since p0,1 ≥ p0,2, it follows that T does not contain 0; therefore, a ≥ 0. Then,
since T is open, a /∈ T . There exists an ε > 0 and a y such that p1,y(t) − p2,y(t) < 0 for
a < t < a + ε. Using Lemma 6, we expand p1,y(t) − p2,y(t) as a power series centred at a:

p1,y(t) − p2,y(t) =
∑
k≥0

1

k! [p
(k)
1,y(a) − p

(k)
2,y(a)](t − a)k.

Since a /∈ T , p1,y(a) ≥ p2,y(a). Thus, for some m > 0, p
(k)
1,y(a) = p

(k)
2,y(a) for k < m and

p
(m)
1,y (a) < p

(m)
2,y (a). Denote p1(a) and p2(a) by p1 and p2, and define the relation x → y and

the function d(x, y) according to p1 (works equally well using p2). Ignore parameters αx and
βzx for which ∂αx p

(j)
1,y = 0 and ∂βzx p

(j)
1,y = 0 for all j . Suppose that, for k < m, the entries of

p1 and p2 agree up to a distance k −1 and that the parameters 	1 and 	2 agree up to a distance
k −2, a fact which is vacuously true for k = 1. Now, p(k)

1,y and p
(k)
2,y are equal, and each depends

on its entries up to a distance less than or equal to k and on its parameters up to a distance less
than or equal to k − 1. By assumption, only the entries at distance k and the parameters at
distance k − 1 may differ. However, by Lemma 5, if any of these values differed, then p

(k)
1,y and

p
(k)
2,y would be different, which is not the case. Therefore, entries at distance k and parameters

at distance k − 1 must agree. By induction, this forces agreement of entries up to a distance
less than or equal to m − 1 and parameters up to a distance less than or equal to m − 2. Since
p1 ≥ p2 and 	1 ≥ 	2, and since p

(m)
1,y and p

(m)
2,y depend on entries at a distance less than or

equal to m and on parameters at a distance less than or equal to m−1, again applying Lemma 5
now establishes that p

(m)
1,y ≥ p

(m)
2,y , which contradicts p

(m)
1,y < p

(m)
2,y . It follows that T is empty;

in other words, p1(t) ≥ p2(t) for t ≥ 0.

8. Sample paths for a star network

We conclude by examining the sample paths for a star network. It is interesting to observe
the dynamics of the spontaneous process from the perspective of a single site, when there is
interaction. As a simple example, consider N sites having identical rates α > 0 and γ > 0 of
spontaneous infection and recovery. Endow the sites with a star graph topology by selecting a
central site x, and setting βxy = βyx = β > 0 if y �= x and βyz = 0 if y �= x and z �= x.
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For this model, the stationary probability of infection of a site (according to the reduced
equations) can be computed explicitly. Since the dynamics are invariant under permutation of
the noncentral sites, the stationary probability of infection must be constant over noncentral sites,
and so it can take on at most two distinct values. Let π(x) and π(y) denote the corresponding
values, where x is the central site and y is any noncentral site. Then (7) gives the system of
equations

π(x)[α + (N − 1)π(y)β + γ ] = α + (N − 1)π(y)β,

π(y)[α + π(x)β + γ ] = α + π(x)β.

Substituting the second equation into the first equation, gives the quadratic equation AX2 +
BX + C = 0 for π(x), with

A = (α + γ )β + (N − 1)β2,

B = (α + γ )2 + (N − 2)αβ − (N − 1)β2,

C = −[α(α + γ ) + (N − 1)αβ],
which, since A > 0 and C < 0, means that the roots [−B ± √

B2 − 4AC]/2A are real and
distinct, with one positive and one negative root. Therefore, the positive root is equal to π(x),
the stationary probability of infection at x; π(y) can then also be obtained.

We could try to simulate the dynamics at x just by defining the rate of infection α+
(N − 1)π(y)β and the rate of recovery γ . This would give the correct stationary probability
of infection at x. However, the dynamics at x are more colourful, as shown below.

Let (ξt )t≥0 be a realization of the process such that P(ξt (y) = 1) is the same for all y �= x.
Since the dynamics are invariant under any permutation of the noncentral sites, for this property
to hold, it is sufficient that it hold for t = 0. If y �= x then in terms of the path (ξt (x))t≥0 at x,

d

dt
py(t) = (α + 1{ξt (x)=1} β)(1 − py(t)) − γpy(t),

which can be integrated to give py(t) in terms of py(0) and the sample path {ξs(x) : 0 ≤
s ≤ t}. Defining m(t) = α + 1{ξt (x)=1} β + γ , M(s, t) = exp(−∫ t

s
m(τ) dτ), and i(t) =

α + 1{ξt (x)=1} β,

py(t) = M(0, t)py(0) +
∫ t

0
i(s)M(s, t) ds.

The quantity m(t) can be understood as the instantaneous rate of mixing at y, since it is the rate
at which the influence of the state at previous times decays. The quantity i(t) can be understood
as the instantaneous rate of infection. The instantaneous rate of infection at x at time t is then
given by α + (N − 1)py(t)β, which depends on the history at x. From x’s perspective, the
dynamics are non-Markovian.
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