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Computing Polynomials of the Ramanujan
tn Class Invariants

Elisavet Konstantinou and Aristides Kontogeorgis

Abstract. We compute the minimal polynomials of the Ramanujan values tn, where n ≡ 11 mod

24, using the Shimura reciprocity law. These polynomials can be used for defining the Hilbert class

field of the imaginary quadratic field Q(
√
−n) and have much smaller coefficients than the Hilbert

polynomials.

1 Introduction

In his third notebook, pages 392 and 393 in [10, vol. 2], Ramanujan defined the

values

(1) tn :=
√

3q1/18
n

f (q
1/3
n ) f (q3

n)

f 2(qn)

where

qn = exp(−π
√

n).

The function f is equal to:

f (−q) :=
∞
∏

n=1

(1 − qn) = q−1/24η(τ)

where q = exp(2πiτ), τ ∈ H and η(τ) denotes the Dedekind eta-function.

Without any further explanation on how he found them, Ramanujan gave the

following table of polynomials pn(t) based on tn for five values of n:

n pn(t)

11 t − 1

35 t2 + t − 1

59 t3 + 2t − 1

83 t3 + 2t2 + 2t − 1

107 t3 − 2t2 + 4t − 1

Bruce C. Berndt and Heng Huat Chan [2] proved that these polynomials indeed

have roots the Ramanujan values tn. Unfortunately, their method could not be ap-

plied for higher values of n, and they asked for an efficient way of computing the

polynomials pn for every n. Moreover, the authors proved that if the class number of
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584 E. Konstantinou and A. Kontogeorgis

Kn := Q(
√
−n) is odd and n ∈ N is squarefree such that n ≡ 11 mod 24, then tn is a

real unit generating the Hilbert class field.

It is known that the Hilbert class field can also be constructed by considering the

irreducible polynomial of the algebraic integer j(θ) where θ = −1/2 + i
√

n/2. The

minimal polynomial of j(θ) is called the Hilbert polynomial. It is interesting to point

out that the coefficients of the polynomials pn have remarkably smaller size compared

to the coefficients of the Hilbert polynomials. Therefore, finding an efficient and

simple method for their construction is highly desirable and has a direct impact on

applications where the explicit construction of class fields is needed. Problems such as

primality testing/proving [1], the generation of elliptic curve parameters [7] and the

representability of primes by quadratic forms [4] could be considerably improved if

the polynomials pn could be constructed in an efficient and easily implemented way.

An explicit construction of the Hilbert class field has been given by N. Yui and

D. Zagier [12] using the Weber functions. Yui and Zagier use a clever construction

of a function on quadratic forms ax2 + bxy + cy2 that does not depend on the equiv-

alence class of quadratic forms. The construction of a similar function in the case

of pn polynomials seems very complicated, and it is clear that a different approach

must be followed. Our construction came from the enforcement of the Shimura

reciprocity law on the values tn. The Shimura reciprocity law has been proven to be

a very powerful tool for attacking similar problems [3, 5, 6] and can provide meth-

ods for systematically determining the instances when a given function yields a class

invariant and for computing the minimum polynomial of a class invariant.

The contribution of this paper is twofold. First, we prove that the values tn con-

stitute class invariants for all values of n ≡ 11 mod 24. Expanding the theorem in

[2], we show that tn is a real unit generating the Hilbert class field not only in the

case where the class number of Kn is odd but also when it is even. Second, we pro-

vide an efficient method for constructing the irreducible polynomials pn from the

Ramanujan values tn and thus answer the demand made in [2] for a direct and easily

applicable construction method. Moreover, we have implemented our method in gp-

pari [9], and we present all polynomials pn for all integers 107 < n ≤ 1000, where

n ≡ 11 mod 24; see Table 1.

The rest of the paper is organized as follows. In the first section we fix the notation

and give the Ramanujan tn values in terms of the Dedekind eta function. Next, we

define six modular functions of level 72: R, R1, R2, R3, R4, R5, and compute the action

of the generators of the group SL2(Z) on them. In section 2 we prove that tn is indeed

a class invariant for all values n ≡ 11 mod 24, and in final section we employ the

Shimura reciprocity law in order to compute the conjugates of tn under the action of

the class group and compute the minimal polynomial of tn.

2 Notation

Let SL2(Z) be the group of matrices with integer entries and of determinant one. It is

known [11, cor. 1.6] that the group SL2(Z) is generated by the matrices

S =

(

0 −1

1 0

)

and T =

(

1 1

0 1

)

.
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Table 1: Polynomials pn for 107 ≤ n < 1000.

n pn(t)

107 x3
− 2x2 + 4x − 1

131 x5 + x4
− x3

− 3x2 + 5x − 1

155 x4 + 2x3 + 5x2 + 4x − 1

179 x5
− 2x4 + 5x3

− x2 + 6x − 1

203 x4
− 3x3 + 7x − 1

227 x5
− 5x4 + 9x3

− 9x2 + 9x − 1

251 x7 + 5x6 + 6x5
− 2x4

− 4x3 + 2x2 + 9x − 1

275 x4
− x3 + 6x2

− 11x + 1

299 x8 + x7
− x6

− 12x5 + 16x4
− 12x3 + 15x2

− 13x + 1

323 x4
− x3 + 4x2 + 13x − 1

347 x5 + 7x4 + 21x3 + 27x2 + 13x − 1

371 x8 + 9x6
− 10x5 + 14x4 + 8x3

− 23x2 + 18x − 1

395 x8
− x7 + 5x6 + 16x5 + 28x4 + 24x3 + 27x2 + 17x − 1

419 x9
− 6x8 + 12x7

− 7x6 + 12x5
− 8x4 + 31x3 + 10x2 + 20x − 1

443 x5
− 4x4

− 3x3 + 17x2 + 22x − 1

467 x7 + 6x6 + 7x5
− 3x4 + 3x3

− 23x2 + 26x − 1

491 x9 + x8 + 16x7 + 2x6 + 37x5
− 31x4 + 44x3

− 40x2 + 29x − 1

515 x6 + 8x5 + 32x4 + 60x3 + 68x2 + 28x − 1

539 x8
− 6x7 + 28x6

− 56x5 + 77x4
− 56x3 + 28x2

− 34x + 1

563 x9 + 4x8 + 6x7
− 11x6 + 44x5

− 76x4 + 91x3
− 64x2 + 38x − 1

587 x7 + x6 + 16x5
− 12x4 + 20x3 + 24x2 + 39x − 1

611 x10
− 8x9 + 35x8

− 62x7
− x6 + 116x5

− 65x4
− 100x3 + 125x2

− 46x + 1

635 x10
− 11x9 + 50x8

− 121x7 + 201x6
− 192x5 + 87x4 + 51x3

− 98x2 + 49x − 1

659 x11
− 7x10 + 7x9 + 27x8 + 19x7

− 43x6
− 5x5 + 91x4 + 157x3 + 97x2 + 49x − 1

683 x5 + 6x4
− 5x3

− 41x2 + 56x − 1

707 x6 + 4x5 + 30x4 + 72x3 + 108x2 + 58x − 1

731 x12 + 7x11 + 25x10 + 12x9 + 41x8 + 9x7+

+92x6 + 73x5
− 133x4 + 216x3

− 153x2 + 67x − 1

755 x12
− 2x11 + 18x10 + 50x9 + 82x8 + 182x7 + 360x6 + 522x5+

+598x4 + 486x3 + 262x2 + 66x − 1

779 x10 + 8x9 + 24x8
− 8x7

− 11x6 + 26x5 + 81x4 + 220x3 + 98x2 + 74x − 1

803 x10 + 3x9 + 26x8 + 11x7
− 65x6 + 16x5 + 7x4

− 83x3 + 150x2
− 83x + 1

827 x7
− 7x6 + 38x5

− 54x4 + 112x3
− 146x2 + 89x − 1

851 x10
− 7x9

− x8 + 86x7 + 69x6
− 201x5

− 219x4 + 94x3 + 103x2
− 95x + 1

875 x10
− 10x9 + 25x8 + 10x7 + 15x6 + 94x5

− 35x4
− 120x3 + 85x2 + 100x − 1

899 x14 + 16x13 + 97x12 + 308x11 + 666x10 + 1086x9+

+1490x8 + 1766x7 + 1800x6 + 1556x5 + 998x4 + 698x3 + 229x2 + 106x − 1

923 x10
− x9 + 30x8

− 81x7
− 29x6 + 56x5 + 211x4

− 27x3
− 110x2

− 115x + 1

947 x5 + 5x4 + 7x3
− 103x2 + 125x − 1

971 x15
− x14 + 21x13 + 133x12 + 264x11 + 310x10 + 216x9+

+62x8
− 100x7

− 300x6 + 152x5 + 338x4 + 79x3
− 285x2 + 135x − 1

995 x8 + 12x7 + 59x6 + 78x5 + 12x4 + 66x3 + 289x2 + 140x − 1
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Every matrix
(

a b
c d

)

of SL2(Z) induces an action on the upper half plane

H := {z ∈ C : Im(z) > 0}, by sending z 7→ az + b

cz + d
.

Let η denote the Dedekind function:

(2) η(τ) = exp(2πiτ/24)

∞
∏

n=1

(1 − qn), where τ ∈ H and q = exp(2πiτ).

The η-function is transformed by S and T as follows [11, prop. 8.3]:

(3) η(τ + 1) = e2πi/24η(τ) and η(− 1

τ
) =

√
−iτη(τ).

From equation (3) we can compute the action of every element g of SL2(Z) on the

η-function, since g can be written as a word in S, T.

We denote by Hn the Hilbert field of Kn := Q(
√
−n), i.e., the maximal Abelian un-

ramified extension of Kn. The extension Hn/Kn is Galois, with Galois group equal to

the class group of fractional ideals modulo principal fractional ideals. For imaginary

quadratic fields the class group can be represented as the space of binary quadratic

forms ax2 + bxy + cy2 modulo an equivalence relation [4, Thm. 5.30]. We will de-

note by [a, b, c] the quadratic form ax2 + bxy + cy2, and we will call two quadratic

forms [ai , bi , ci] for i = 1, 2 equivalent if the corresponding roots τi ∈ H are in the

same orbit of SL2(Z) acting on H. Using the identification of equivalence classes of

quadratic forms with the ideal class group we can define the structure of an abelian

group on the set of equivalence classes of quadratic forms.

Let ℓ0 := (1, 1, 1−d
4

)(d = −n ≡ 1 mod 4, n ∈ N) be the zero element in this

group. This element corresponds to the root

τℓ0
= −1

2
+ i

√
n

2
.

Set

qn = exp(−π
√

n) = − exp(2πiτℓ0
).

Then

f (qn) = f
(

− exp(2πiτℓ0
)
)

= exp(2πiτℓ0
)−1/24η(τℓ0

),

f (q3
n) = exp(2πiτℓ0

)−3/24η(3τℓ0
),

f (q1/3
n ) = (−1)1/18 exp(2πiτℓ0

)−
1

3·24 η
( τℓ0

3
+

2

3

)

.
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Taking equation (1) and all the above equations into consideration we arrive easily

at the following Lemma.

Lemma 2.1 The Ramanujan value tn is given by

tn =

√
3R2(τℓ0

),

where

R2(τ) =
η(3τ)η( 1

3
τ + 2

3
)

η2(τ)
.

Now let N ∈ N and Γ(N) be the group

Γ(N) :=
{

γ ∈ SL2(Z), γ ≡
(

1 0

0 1

)

mod N
}

.

The field of modular functions of level N consists of the meromorphic functions g of

the upper half plane H that are invariant under the group Γ(N), i.e., g(γτ) = g(τ)

for every τ ∈ H and γ ∈ Γ(N). Every modular function is periodic with period N

and thus it admits a Fourier expansion of the form

g(q) =

∞
∑

ν=−i

aνqν ,

where q = exp(2πiτ/N). We will limit ourselves to modular functions where all

coefficients of the Fourier expansions are elements of the field Q(ζN ). The Galois

group Gal(Q(ζN )/Q) is isomorphic to the group ( Z

NZ
)∗ by defining σd(ζN) = ζd

N for

every (d, N) = 1.

The action of the group Gal(Q(ζN )/Q) can be extended to the field of modular

functions of level N with coefficients in Q(ζN), as follows:

g(q)σd =

∞
∑

ν=−i

σd(aν)qν , σd ∈ Gal(Q(ζN)/Q).

Moreover, the action of an element A ∈ GL2(Z) on modular functions g(q) can be

expressed as

gA
= (gB)σdet(A) ,

where A = B · ( 1 0
0 det(A) ) and B ∈ SL2(Z).
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Lemma 2.2 The following are modular functions of level 72:

R(τ) =
η(3τ)η(τ/3)

η2(τ)
,

R1(τ) =
η(3τ)η(τ/3 + 1/3)

η2(τ)
,

R2(τ) =
η(3τ)η(τ/3 + 2/3)

η2(τ)
,

R3(τ) =
η(τ/3)η(τ/3 + 2/3)

η2(τ)
,

R4(τ) =
η(τ/3)η(τ/3 + 1/3)

η2(τ)
,

R5(τ) =
η(τ/3 + 2/3)η(τ/3 + 1/3)

η2(τ)
.

Moreover, the element σd : ζ72 7→ ζd
72 for (d, n) = 1 acts on them as follows:

σd(R) = R,

σd(R1) =

{

ζd−1
72 R1 if d ≡ 1 mod 3,

ζd−2
72 R2 if d ≡ 2 mod 3,

σd(R2) =

{

ζ2d−2
72 R2 if d ≡ 1 mod 3,

ζ2d−1
72 R1 if d ≡ 2 mod 3,

σd(R3) =

{

ζd−1
72 R3 if d ≡ 1 mod 3,

ζd−2
72 R2 if d ≡ 2 mod 3,

σd(R4) =

{

ζ2d−2
72 R4 if d ≡ 1 mod 3,

ζ2d−1
72 R3 if d ≡ 2 mod 3,

σd(R5) = ζ3d−3
72 R5.

(4)

Proof The fact that the above equations are indeed modular of level 72 is a direct

computation using the transformations of the η-functions under the generators T, S

of SL2(Z) given in (3). The action of σd given in (4) is computed by considering the

Fourier expansions of the η-factors of the functions Ri . For instance let as compute

the action of the element σd on R2. We begin by computing its action on η(τ/3+2/3):

η(τ/3 + 2/3) = exp
( 2πi

24
(τ/3 + 2/3)

)

∞
∑

ν=0

an exp
( 2πiν

3
τ +

2πiν

3

)

= exp
( 2πi

24
(τ/3)

)

ζ2
72

∞
∑

ν=0

ζ2ν
3 an exp

( 2πiν

3
τ
)

,

(5)
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where ζ3 = ζ24
72 is a primitive third root of unity. The desired formulas of (4) follow

from the definition of the action of σd on ζ72 and arguing as above. For example

(notice that from (2) the Fourier expansion for η(τ) has rational coefficients, so it is

invariant under the action of σd),

σd(R2) = σd

( η(3τ)η(τ/3 + 2/3)

η2(τ)

)

=
η(3τ)

η2(τ)
σd(η(τ/3 + 2/3)).

By (5) we have that

σd(η(τ/3 + 2/3)) = exp
( 2πi

24
(τ/3)

)

ζ2d
72

∞
∑

ν=0

ζ2νd
3 an exp

( 2πiν

3
τ
)

.

If d ≡ 1 mod 3 then ζ2νd
3 = ζ2ν

3 , thus

σd(R2) = ζ2d−2
72 R2.

If d ≡ 2 mod 3 then ζ2νd
3 = ζν

3 , and

σd(η(τ/3 + 2/3)) = η(τ/3 + 1/3))ζ2d−1
72 ⇒ σd(R2) = ζ2d−1

72 R1.

Later we will use some computer algebra programs in order to prove that tn is

indeed a class invariant and find the minimal polynomials of tn. For this reason

it is convenient to have the actions of the elements S, T, σd in matrix form. Using

(3) we give the following matrix action of the elements S, T, σd on the functions

R, R1, . . . , R5:

(6)

















R(τ + 1)

R1(τ + 1)

R2(τ + 1)

R3(τ + 1)

R4(τ + 1)

R5(τ + 1)

















= AT

















R(τ)

R1(τ)

R2(τ)

R3(τ)

R4(τ)

R5(τ)

















,

















R(−1
τ )

R1(−1
τ )

R2(−1
τ )

R3(−1
τ )

R4(−1
τ )

R5(−1
τ )

















= AS

















R(τ)

R1(τ)

R2(τ)

R3(τ)

R4(τ)

R5(τ)

















,

















σdR

σdR1

σdR2

σdR3

σdR4

σdR5

















= Aσd

















R

R1

R2

R3

R4

R5

















,

where

(7) AT :=



















0 ζ3
72 0 0 0 0

0 0 ζ3
72 0 0 0

ζ6
72 0 0 0 0 0

0 0 0 0 1
ζ3

72
0

0 0 0 0 0 1
ζ6

72

0 0 0 1
ζ3

72
0 0



















,

https://doi.org/10.4153/CMB-2009-058-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2009-058-6


590 E. Konstantinou and A. Kontogeorgis

AS :=





















1 0 0 0 0 0

0 0 0 1
ζ3

72(−ζ30
72 +ζ6

72)
0 0

0 0 0 0
ζ3

72

−ζ30
72 +ζ6

72
0

0 −ζ33
72 + ζ9

72 0 0 0 0

0 0
−ζ30

72 +ζ6
72

ζ3
72

0 0 0

0 0 0 0 0 1





















.

and

Aσd
=

















1 0 0 0 0 0

0 ζd−1
72 0 0 0 0

0 0 ζ2d−d
72 0 0 0

0 0 0 ζ2d−2
72 0 0

0 0 0 0 ζd−1
72 0

0 0 0 0 0 ζ3d−3
72

















if d ≡ 1 mod 3,

Aσd
=

















1 0 0 0 0 0

0 0 ζd−2
72 0 0 0

0 ζ2d−1
72 0 0 0 0

0 0 0 0 ζ2d−1
72 0

0 0 0 ζd−2
72 0 0

0 0 0 0 0 ζ3d−3
72

















if d ≡ 2 mod 3,

3 The Shimura Reciprocity Law and tn Class Invariants

Let Kn = Q(
√
−n) be an imaginary quadratic number field, O the ring of integers of

Kn and θ =
1
2
− i

√
n

2
. It is known that j(θ) is an algebraic integer that generates the

Hilbert class field of Kn, and moreover that the conjugates j(θ) under the action of

the class group are given by

j(θ)[a,−b,c]
= j(τ[a,b,c]),

where τ[a,b,c] is the unique root of ax2 + bx + c with positive imaginary part, i.e.,

τ[a,b,c] =
−b + i

√
−D

2a
.

There is an efficient algorithm for computing a set of non-equivalent quadratic

forms and the minimal polynomial fD(x) of j(θ) can easily be computed from the

floating point approximation of the values j(τ[a,b,c]):

fD(x) =

∏

[a,b,c]∈Cl(O)

(x − j(τ[a, b, c])).

For instance, the polynomial for the quadratic extension of discriminant −107 is

f−107(x) = x3+129783279616·103x2−6764523159552·106x+337618789203968·109.
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The disadvantage of using the above polynomials for the construction of the Hilbert

class field is the very large size of their coefficients compared to the coefficients of the

polynomials pn. Notice that the polynomial pn for n = 107 is equal to x3−2x2+4x−1.

In the literature there are alternative explicit constructions of the Hilbert class fields

based on the Weber functions [12] or other modular functions [3, 5, 6]. In [2] the

authors proved that the values tn can also generate the Hilbert class field, providing

the following theorem.

Theorem 3.1 If n ≡ 11 mod 24 and the class group of Kn is odd, then tn generates

the Hilbert field.

Proof See [2, Thm. 4.1].

The Shimura reciprocity law can be applied in order to compute the minimal poly-

nomial of tn and give an alternative proof of Theorem 3.1 by removing the odd class

number requirement.

In order to prove that tn is also a class invariant when the class group of Kn is even,

we will use the following construction.

Theorem 3.2 Let O = Z[θ] be the ring of algebraic integers of the imaginary quadratic

field K, and assume that x2 + Bx + C is the minimal polynomial of θ. Let N > 1

be a natural number, x1, . . . , xr be generators of the abelian group (O/NO)∗ and let

αi + βiθ ∈ O be a representative of the class of the generator xi . We consider the matrix

Ai :=

(

αi − Bβi −Cβi

βi αi

)

.

If f is a modular function of level N and if for all matrices Ai it holds that

(8) f (θ) = f Ai (θ), and Q( j) ⊂ Q( f ),

then f (θ) is a class invariant.

Proof See [5, Cor. 4]

We know by Lemma 2.1 that the Ramanujan invariant tn can be constructed by

evaluating the modular function
√

3R2 of level 72 at τℓ0
. Thus, we begin by construct-

ing the generators of (O/72O)∗, as Theorem 3.2 dictates. Since n ≡ 11 mod 24

we can take θ =
1
2

+ 1
2

√−n as a generator of the ring of algebraic integers of

K = Q(
√
−n). The minimal polynomial of θ is x2 − x + n+1

4
, and thus B and C

in Theorem 3.2 are equal to −1 and n+1
4

respectively. The form of the minimal poly-

nomial implies that the prime p = 2 stays inert in the extension K/Q while the prime

p = 3 splits.

In order to prove that tn :=
√

3R2(θ) is indeed a class invariant, we have to prove

that

(9)
(
√

3R2

)Ai
=

√
3R2, for all matrices Ai and for n ≡ 11 mod 24.

We observe that the structure of the group ( O

72O
)∗ depends only on the value of

n mod 72, and there are exactly three equivalence classes n mod 72 such that
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n ≡ 11 mod 24, namely n = 11, 35, 59 mod 72. Thus, we are reduced to checking

(9) for a finite number of n.

Using the Chinese remainder theorem we can express the group ( O

72O
)∗ as a direct

product
(

O

72O

) ∗ ∼=
(

O

9O

)∗
×
(

O

8O

)∗
.

We will study the structure of the above two summands separately.

We compute that
(

O

9O

) ∗ ∼= Z

6Z
× Z

6Z
.

A selection of generators for this group is cumbersome to do by hand. We have

used a brute force method, i.e., we have checked all elements one by one if there

are invertible and then we have computed their orders using the magma [8] algebra

system in order to compute that for C =
n+1

4
∈ {3, 9, 15} a set of generators is given

by 7θ + 4, 5. Moreover

(

O

8O

) ∗ ∼= Z

12Z
× Z

2Z
× Z

2Z
,

and, we have computed the following selection of generators using magma.

n n+1
4

Generators

11 3 θ, 7, 4θ + 7

35 9 5θ + 6, 7, 4θ + 7

59 15 θ, 7, 4θ + 7

From the above generators and from the Chinese remainder theorem we can con-

struct generators for the group (O/72O)∗ and map them to the matrices Ai defined

in theorem 3.2. We have a total of 5 generators for the group (O/72O)∗. The first two

are generators of the group (O/9O)∗ and, the last three are generators of the group

(O/8O)∗. In order to compute the term f Ai in (8), we have to consider any lift of Ai

in GL2(Z) and write it as a product wi(S, T)diag(1, det(Ai)), where wi(S, T) is a word

in S, T.

The following lemma gives us the decomposition of a matrix in SL2(Z/prZ) as a

word in the generators of the group SL2(Z/prZ). Therefore, we must consider the

matrices Ai modulo 8 or 9 and define Ai,8 ∈ GL2(Z/8Z) and Ai,9 ∈ GL2(Z/9Z), such

that Ai ≡ Ai,8 mod 8 and Ai ≡ Ai,9 mod 9. Notice that Ai,8 ≡ Id mod 8 for i = 1, 2,

i.e., the first two generators, and Ai,9 ≡ Id mod 9 for i = 3, 4, 5, i.e., the last three

generators.

Lemma 3.3 Let pr be a prime power and let ( a b
c d ) ∈ SL2(Z/prZ) so that either a or

c is invertible modulo pr . Let S̄pr = ( 0 1
−1 0 ), T̄pr = ( 1 1

0 1 ) be two generators of the group

SL2(Z/prZ). Set y = (1+a)c−1 mod pr if (c, p) = 1, otherwise set z = (1+c)a−1 mod

pr. Then

(

a b

c d

)

≡







T̄
y
pr S̄pr T̄c

pr S̄pr T̄
dy−b
pr mod pr if (c, p) = 1

S̄pr T̄−z
pr S̄pr T̄−a

pr S̄pr T̄bz−d
pr mod pr if (a, p) = 1.
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Proof See [5, lemma 6].

The generators S̄pr , T̄pr modulo pr
= 8, 9 are then lifted to elements S8, S9,

T8, T9 ∈ SL2(Z) such that

S8 ≡
(

0 1

−1 0

)

mod 8, and S8 ≡ Id mod 9,

S9 ≡
(

0 1

−1 0

)

mod 9, and S9 ≡ Id mod 8,

T8 ≡
(

1 1

0 1

)

mod 8, and T8 ≡ Id mod 9,

T9 ≡
(

1 1

0 1

)

mod 9, and T9 ≡ Id mod 8.

Using the Chinese remainder theorem we compute that

S8 = T−1ST−10ST−1ST−162, T8 = T9,(10)

S9 = T−1ST−65ST−1ST1096, T9 = T−8.

We observe that the elements S8, T8 commute with S9, T9 modulo 72.

The matrices Ai,pr , pr
= 8 or 9 can be decomposed as products

Ai,pr = Bi,pr

(

1 0

0 det(Ai,pr )

)

,

where the matrices Bi,pr have determinant 1 mod pr and can be expressed, using

Lemma 3.3, as words wpr (S, T) in the generators S, T. The matrices of the form Ai

act on the field of modular functions of level 72 with coefficients in Q(ζ72) as the

product w8(S, T) · w9(S, T) · diag(1, di), where di is the determinant of Ai , i.e., the

unique integer such that di ≡ det(Ai,9) mod 9 and di ≡ det(Ai,8) mod 8.

For instance the generator 7θ + 4 of (O/9O)∗ for C = 3 corresponds to the matrix

A := ( 11 −21
7 4 ) ≡ ( 2 6

7 4 ) mod 9 (and to the identity matrix modulo 8). This is a matrix

of determinant 2 mod 9, and it is decomposed as

(

2 6

7 4

)

=

(

2 3

7 2

)(

1 0

0 2

)

,

where B := ( 2 3
7 2 ) is a matrix of determinant 1 mod 9. Using 3.3 we find that

B =

(

2 3

7 2

)

= T̄3
9 S̄9T̄7

9 S̄9T̄3
9 .

A lift of the elements S̄9, T̄9 in SL2(Z) is given by equation (10). This means that we

replace each S̄9 of the above formula by S9 = T−1ST−65ST−1ST1096 and each T̄9 by

T−9. This gives us the desired lift of B to an element in SL2(Z). Using this lift and the
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transformation matrices AS, AT given in (7) we compute that the action of A on the

modular functions Ri is given in terms of the following matrix:

E :=























0 0 0
−2ζ18

72

3
+

ζ6
72

3
0 0

0 0 ζ15
72 − ζ3

72 0 0 0

0 0 0 0 0
ζ15

72

3
+

ζ3
72

3
0 0 0 0 −ζ9

72 0

−2ζ21
72 + ζ9

72 0 0 0 0 0

0 ζ18
72 + ζ6

72 0 0 0 0























.

Let V be the Q(ζ72)-vector space of modular functions generated by the elements

R, R1, R2, R3, R4, R5. The vector space V can be identified to the vector space Q(ζ72)6,

in terms of the map

V → Q(ζ72)6,

a0R + a1R1 + · · · + a5R5 7→ (a0, a1, . . . , a5), ai ∈ Hom(V, Q(ζ72))

The space V ∗
= Q(ζ72)6 is the dual space of V and we have to see how the action of

the elements T, S, σd act on V ∗. The elements AT, AS defined in (7) act on Q(ζ72)6 in

terms of the transpose matrices At
T, At

S, while the action of Aσd
on R, R1, . . . , R5 given

on (7) acts on Q(ζ72)6 in terms of the contragredient action, i.e., by considering the

transpose of the matrix Aσ
−d

. By the Chinese remainder theorem we compute that

the element ( 1 0
0 2 ) acts on Q(ζ72) as the automorphism σ65 : ζ72 7→ ζ65

72 . Indeed, 65 is

an integer 65 ≡ 2 mod 9 and 65 ≡ 1 mod 8.

Since d = 65 ≡ 2 mod 3 we compute that the vector (0, 0, 1, 0, 0, 0)t correspond-

ing to the element R2 is mapped to

Aσ
−65

Eσ
−65 (0, 0, 1, 0, 0, 0)t

= (0, 0,−1, 0, 0, 0),

where by Eσ
−65 we denote the matrix where all elements are acted on by σ−d. No-

tice that
√

3 = ζ6
72 − ζ30

72 . Indeed, the value i
√

3 can be expressed as a difference

of two primitive 3-roots of unity ζ3, ζ
2
3 since i = ζ18

72 and ζ3 = ζ24
72 . Moreover,

σ−65(
√

3) = ζ−6·65
72 − ζ−30·65

72 = −
√

3 and thus
√

3R2 is left invariant. Following

the same procedure it can be proven that
√

3R2 stays invariant for all matrices Ai .

Theorem 3.4 The Ramanujan value tn is a class invariant for n ≡ 11 mod 24.

Proof The condition Q( j) ⊂ Q( f ) of Theorem 3.2 is known [2, proof of Thm. 4.1].

By machine computation1, it turns out that (9) holds for all matrices Ai and thus tn

is a class invariant for all n ≡ 11 mod 24.

1The magma program used for this computation is available at http://eloris.samos.aegean.gr/papers.html
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4 Computing the Polynomials pn

In this section we provide a method for the construction of the minimal polynomial

of tn. Following the article of A. Gee [5, eq. 17] we give the following definition:

Definition 4.1 Let N ∈ N and let [a, b, c] be a representative of the equivalence class

of an element in the class group. Let p be a prime number and pr be the maximum

power of p that divides N. Assume that the discriminant D = b2 − 4ac ≡ 1 mod 4. We

define the matrix

A[a,b,c],pr =























































a
b − 1

2
0 1



 if p ∤ a,





−b − 1

2
−c

1 0



 if p | a and p ∤ c,

(

−b−1
2

− a 1−b
2

− c

1 −1

)

if p | a and p | c.

The Chinese remainder theorem implies that

GL2(Z/NZ) ∼=
∏

p|N
GL2(Z/pr

Z).

We define A[a,b,c] as the unique element in GL2(Z/NZ) that it is mapped to A[a,b,c],pr

modulo pr. This matrix A[a,b,c] can be written uniquely as a product

(11) A[a,b,c] = B[a,b,c]

(

1 0

0 d[a,b,c]

)

,

where d[a,b,c] = det A[a,b,c] and B[a,b,c] is a matrix with determinant 1.

The Shimura reciprocity law gives us [5, lemma 20] the action of [a, b, c] on√
3R2(θ) for θ = 1/2 − i

√
n/2:

(
√

3R2(θ)
) [a,−b,c]

= (ζ
6d[a,b,c]

72 − ζ
30d[a,b,c]

72 )R2

( α[a,b,c]τ[a,b,c] + β[a,b,c]

γ[a,b,c]τ[a,b,c] + δ[a,b,c]

) σd[a,b,c]

,

where

(

α[a,b,c] β[a,b,c]

γ[a,b,c] δ[a,b,c]

)

= A[a,b,c] and τ[a,b,c] is the (complex) root of az2 + bz + c

with positive imaginary part.

If we try to implement this method in order to compute the polynomial for tn we

face a problem. Even though we can compute a floating point approximation of the

conjugate R2(A[a,b,c]), it is not possible to use this approximation in order to compute

the action of σd[a,b,c]
on it. There is however a simple approach that we can follow and

solve this problem. We can express the matrix A[a,b,c] as a product of a matrix B[a,b,c]

as in (11) and then compute the expansion of B[a,b,c] as a word of the matrices S, T.
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We begin our computation by computing a full set of representatives of equiva-

lence classes [a, b, c]. Since 72 = 23 · 32, we have to compute matrices

A[a,b,c],pr ∈ GL2(Z/pr
Z) for pr

= 8, 9.

Then we compute the determinant d[a,b,c],pr of the matrix A[a,b,c],pr , and we find a

decomposition

A[a,b,c],pr = B[a,b,c],pr

(

1 0

0 d[a,b,c],pr

)

.

The matrices B[a,b,c],pr are elements of SL2(Z/prZ) and can be written as words of

S̄pr , T̄pr using Lemma 3.3.

So if B[a,b,c],8 = w(T̄8, S̄8) and B[a,b,c],9 = w ′(T̄9, S̄9) are the decompositions of

B[a,b,c],pr as words of S̄pr , T̄pr , we take the lift

B[a,b,c] = w(T8, S8)w ′(T9, S9) ∈ SL2(Z)

and the corresponding action on the functions R, R1, . . . , R5 is computed using (6).

The determinants d[a,b,c],8 ∈ Z/8Z and d[a,b,c],9 ∈ Z/9Z can be lifted to an element

d[a,b,c] of Z/72Z (so that it reduces to d[a,b,c],8 mod 8 and d[a,b,c],9 mod 9 respectively)

by again using the Chinese remainder theorem.

The desired polynomial pn can then be computed:

pn(t) =
∏

[a,b,c]

(

t −
(
√

3R2(
−1 + i

√
n

2
)
) [a,−b,c]

)

.

We have used the gp-pari 2 program in order to perform this computation. The

resulting polynomials pn for 107 ≤ n < 1000 are given in Table 1.
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