https://doi.org/10.1017/jfm.2023.851 Published online by Cambridge University Press

J. Fluid Mech. (2023), vol. 974, A26, doi:10.1017/jfm.2023.851

F liad?

7~y On u._ﬂ-':?,&
/9 . ':I" v

Effect of Stokes number and particle-to-fluid
density ratio on turbulence modification in
channel flows

P. Gualtieri!, F. Battista'>+, F. Salvadore? and C.M. Casciola'

Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, via Eudossiana 18,
00184 Rome, Italy

2HPC Department, CINECA, via dei Tizii 6/B, 00185 Rome, Italy

(Received 23 March 2023; revised 25 September 2023; accepted 5 October 2023)

Two-way momentum-coupled direct numerical simulations of a particle-laden turbulent
channel flow are addressed to investigate the effect of the particle Stokes number and of
the particle-to-fluid density ratio on the turbulence modification. The exact regularised
point-particle method is used to model the interphase momentum exchange in presence of
solid boundaries, allowing the exploration of an extensive region of the parameter space.
Results show that the particles increase the friction drag in the parameter space region
considered, namely the Stokes number Sz € [2, 80], and the particle-to-fluid density ratio
op/pr € [90, 5760] at a fixed mass loading ¢ = 0.4. It is noteworthy that the highest
drag occurs for small Stokes number particles. A measurable drag increase occurs for
all particle-to-fluid density ratios, the effect being reduced significantly only at the highest
value of p,/pr. The modified stress budget and turbulent kinetic energy equation provide
the rationale behind the observed behaviour. The particles’ extra stress causes an additional
momentum flux towards the wall that modifies the structure of the buffer and of the viscous
sublayer where the streamwise and wall-normal velocity fluctuations are increased. Indeed,
in the viscous sublayer, additional turbulent kinetic energy is produced by the particles’
back-reaction, resulting in a strong augmentation of the spatial energy flux towards the
wall where the energy is ultimately dissipated. This behaviour explains the increase of
friction drag in particle-laden wall-bounded flows.
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1. Introduction

Turbulence modulation by inertial particles represents a challenging multiscale problem
(Soldati & Marchioli 2009; Balachandar & Eaton 2010), whose full understanding would
impact on a better comprehension of natural phenomena (Woods 2010; Fu et al. 2014), and
technological applications ranging from industrial (Jenny, Roekaerts & Beishuizen 2012;
Capecelatro, Pepiot & Desjardins 2014) to medical applications (Kleinstreuer & Zhang
2010).

Besides its relatively simple geometrical configuration, the turbulent flow in a channel
still represents a paradigmatic problem in multiphase flows; see Marchioli, Picciotto &
Soldati (2007), Sardina et al. (2012) and Fong, Amili & Coletti (2019). One of the major
issues in wall turbulence is whether or not the presence of solid particles can modify the
flow friction at the wall, and the overall structure of the turbulent fluctuations. Indeed,
there are numerical studies that report drag reduction by particles (Vreman 2007; Zhao,
Andersson & Gillissen 2010), while others report its increase, both numerically (Pan
& Banerjee 1997; Costa, Brandt & Picano 2020, 2021) and experimentally (Righetti &
Romano 2004; Li et al. 2012).

The lack of a clear answer can be ascribed to two main reasons. The first is represented
by the multiscale interaction between turbulence and inertial particles that can be
parametrised in terms of additional dimensionless parameters, i.e. the particle Reynolds
number, the particle-to-fluid density ratio, the particle-to-fluid response time (i.e. the
Stokes number), and the volume fraction of the suspensions; see Elgobashi (2006). At
least a four-dimensional parameter space should be explored with experiments and/or
numerical simulations to characterise the turbulence modification. The second reason
concerns the different numerical approaches describing with different grades of accuracy
the fluid—particle interaction; see e.g. the review by Brandt & Coletti (2022). Usually, a
very accurate description of the fluid—particle interaction goes along with a tremendous
computational cost. Resolved particle simulations have been applied to study the effect of
almost neutrally buoyant suspensions and the modulation of wall turbulence of one specific
particle population. However, when a wider range of the parameter space is spanned,
the intrinsic scale separation calls for modelling the fluid—particle interaction in order to
reduce the computational cost. When the flow past each particle is not actually resolved,
the major interaction between the fluid and the point-particles consists of the momentum
exchange (two-way coupling regime).

In the limit of small particle Reynolds number, and dilute volume fractions, the
particle-source in cell method (Crowe, Sharma & Stock 1977) has been the first approach
designed to capture the interphase momentum exchange. Since (Crowe et al. 1977), many
alternative and more accurate approaches have been conceived — see, for instance, Garg
et al. (2007), Horwitz & Mani (2016), Pakseresht, Esmaily & Apte (2020) and Evrard,
Denner & van Wachem (2021) — in the context of Euler—Lagrangian simulations. Other
authors filtered the fluid equations on the scale of the particle accounting for excluded
volume effects, and the related subgrid stresses on the fluid (Capecelatro & Desjardins
2013; Ireland & Desjardins 2017). In the force coupling method (Maxey & Patel 2001;
Lombholt & Maxey 2003; Yeo & Maxey 2010) and the pairwise interaction extended
point-particle method (Akiki, Jackson & Balachandar 2017a; Akiki, Moore & Balachandar
2017b), the authors evaluated the local disturbance produced by the particles by solving
a steady Stokes flow. In the exact regularised point-particle (ERPP) method (Gualtieri
et al. 2015; Battista et al. 2019), and in the work by Balachandar, Liu & Lakhote (2019),
the particle disturbance was modelled exploiting unsteady Stokes solutions. Other related
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approaches adopt regularisation procedures based on nonlinear diffusion processes; see
Poustis et al. (2019). All the above methods aimed to retrieve in a somehow lumped way
the boundary condition that was killed when the particles were modelled as point masses
(see Prosperetti 2015), still preserving an accurate and physically reliable description of
the fluid—particle interaction. The ERPP method reproduces faithfully the momentum
exchange between small particles and the carrier phase, and given its computational
efficiency, it can be used to explore a wide range of the parameter space where turbulence
modulation occurs at different grades.

This paper addresses the turbulence modulation in the range of Stokes number
Sty € [2,80], and of particle-to-fluid density ratio p,/pr € [90, 5760] at a fixed mass
loading ¢ = 0.4. In this region of the parameter space, the overall friction drag is either
increased or left unaltered. This behaviour is explained in terms of the particles’ additional
momentum transfer towards the wall, i.e. the particles’ extra stress, and in terms of the
modification of the turbulent kinetic energy (TKE) budget. As discussed by Capecelatro,
Desjardins & Fox (2018), there exist regimes where TKE production due to the Reynolds
shear stress (shear production) is overwhelmed by the particle feedback term (particle
production). In homogeneous flows (Richter 2015; Gualtieri, Battista & Casciola 2017),
this results in the increase of the fluid dissipation rate at the scales where additional kinetic
energy is produced. In inhomogeneous conditions, however, these mechanisms originate
a spatial energy flux. Indeed, in regimes where a strong increase of the friction drag is
observed, the particle production term turns out to be the largest one and is localised near
the wall. The excess of TKE produced by the particles is not locally dissipated and triggers
an intense spatial energy flux towards the wall, where ultimately the energy is dissipated by
the viscosity. This behaviour explains the increase of the friction drag and the concurrent
increase of velocity fluctuations that are observed in the viscous sublayer in the presence
of two-way coupling effects.

The paper is organised as follows. Section 2 summarises briefly the numerical approach
based on the ERPP model, and discusses the simulations’ parameters. Section 3 first
documents the turbulence modulation and then explain it in terms of the alteration of
the stress and TKE balances. Section 4 draws the main conclusions of the study.

2. Particle-laden turbulent channel flow
The dimensionless Navier—Stokes equations for a divergence-free velocity field,

V-u=0,

"y wouw=— Vot Vudf —
— cUQu)=— —| e — — Vu+f,
ot dx|, P Rey,

are solved in the domain D = [0, 47t] x [0, 27t] x [0, 2] in the streamwise (x), spanwise
(v) and wall-normal (z) directions, respectively. Periodic boundary conditions are applied
along the streamwise and spanwise directions, whilst no-slip boundary conditions are
enforced at the channel’s top and bottom walls. The flow is sustained by a constant mean
pressure gradient dp/dx|o applied in the direction of the streamwise unit vector e,. The
reference quantities are the fluid density pr, the channel half-height 4, the bulk velocity
of the reference uncoupled case (no back-reaction on the fluid) Uy, o = Qo/(2h), where
Qo is the flow rate per unit length, and the fluid viscosity w. It follows that the Reynolds
number is Re, = prUp oh/w. In (2.1), field f represents the particle feedback on the fluid
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as modelled by the ERPP approach, namely
NP

f, 1) == "Dyt — e)glx — x,(t — €). €] + Dy(t — e)glx — Xp(t — €), €], (2.2)
p=1

where the sum encompasses all N, particles. The dimensionless drag force on the pth
particle is D, = 3nd, /Re;, (é1|, — v),), where d,, is the dimensionless particle diameter, v,
is the particle velocity, and &|, = u[x, (1), f] is the fluid velocity at the particle position
X, (1) deprived by the particle self-disturbance, i.e. the field that accounts for the turbulent
background velocity and for the disturbance of all particles except the pth. This field is
evaluated by summing the contributions of all the particles and by successively removing
the particle self-disturbance that, in the context of the ERPP approach, is known in a closed
analytical form.

In (2.2), the variables with a tilde denote quantities about the image particles obtained by
reflection with respect to the wall according to i; = x[’,‘, 5(1’3 = —xz, b;,‘ = D;, DZ = —D;,
where the superscripts 7 and n denote the coordinates along the tangent plane and the
wall-normal direction, respectively. The image particle is a feature of the ERPP approach
to account for the particle feedback in presence of solid boundaries. Both the current
time ¢ and the regularisation time scale €r are made dimensionless with i/Uj o, namely
€ = €pUp,0/h. In the ERPP approach, the regularisation of the singular feedback force
field caused by the particles in the fluid is achieved by exploiting the disturbance vorticity
that each particle generates when subjected to force D). The disturbance vorticity is
consistently regularised by the fluid viscosity, and its ‘regular’ counterpart forces the
Navier—Stokes equations via the field f(x, 7) in (2.2). The delay time scale € represents
the time required by the vorticity generated by the particles to diffuse up to the grid size.
It turns out that the Dirac delta functions that localise the force on the fluid at the particle
position are turned on a physical ground into Gaussian functions, i.e. g[x — x,(t — €), €],
centred at the delayed particle position x,(f — €) with variance given by the regularisation
time scale €; see e.g. Gualtieri et al. (2015) and Battista et al. (2019) for a more detailed
description of the method.

Equations (2.1) are solved in Cartesian coordinates using an in-house developed code
that exploits a hybrid MPI-GPUs parallelisation. Chorin’s projection method (Chorin
1968) is used to enforce the divergence-free constraint imposed by the mass balance. Both
convective and diffusive terms are discretised in space by second-order finite differences
on a staggered grid, and are integrated explicitly in time using a third-order, four-stage,
low-storage Runge—Kutta method.

Inner or wall units are provided by the viscous length £, = v/u, (where v = u/pr is
the kinematic viscosity) and the friction velocity uy = /7, /pr (Where 1,, is the average
wall shear stress). The wall-normal distance in inner units is denoted as z4 = z/4,
and the friction Reynolds number is Re, = u.h/v. All the simulations are performed
with the same friction Reynolds number Re, = 185. The bulk Reynolds number of the
reference uncoupled case (no particle back-reaction) is Re, = 2890. The discretisation grid
is uniformly spaced in the streamwise and spanwise directions, while it is stretched along
the wall-normal direction. The number of grid points and the grid spacing are reported in
table 1.

Concerning the disperse phase, at a relatively large particle-to-fluid density ratio pp,/ oy,
the only relevant hydrodynamic force acting on the particles is the Stokes drag; see
Gatignol (1983) and Maxey & Riley (1983). Newton’s equations for the particles read
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Case Ny x Ny X N, oplor Sty df N,

S2 1152 x 576 x 168 180 2 045 46678528
S3 1024 x 512 x 168 180 3 0.59 25408560
S5 768 x 384 x 168 180 5 0.71 11808832

S10 768 x 384 x 168 180 10 1 4175052
S15 768 x 384 x 168 180 15 123 2272612
$20 768 x 384 x 168 180 20 141 1476 104
540 768 x 384 x 168 180 40 2 521880

S80 768 x 384 x 168 180 80 2.83 184512

R90 768 x 384 x 168 90 10 1.41 2952208
R360 768 x 384 x 168 360 10 071 5904416
R720 768 x 384 x 168 720 10 0.5 8350104
R1440 768 x 384 x 168 1440 10 035 11808832
R2880 768 x 384 x 168 2880 10 025 16700224
R5760 768 x 384 x 168 5760 10 018 23617664

Table 1. All simulations are performed with the same mean pressure gradient corresponding to a friction
Reynolds number Re, = 185 and a bulk Reynolds number for the reference uncoupled case (one-way
coupling, no back-reaction) Re;, = 2890. The grid resolution is Ny x Ny x N; in the dimensionless domain
D = [0, 4x] x [0,27n] x [0,2]. The grid spacing is uniform in the streamwise and spanwise directions
corresponding to Axy = Ayy =3, Axy = Ayy =2 and Axy = Ayy = 1.5 for the different grids. In the
wall-normal direction, the grid is stretched corresponding to minimum spacing Azy|, = 0.2 at the wall
and Azy|o =3 at the centreline. In all the simulations, the mass loading is ¢ = 0.4. Here, pp/pr is the
particle-to-fluid density ratio, St; = 1,/7, is the Stokes number in wall units, d; is the particle diameter
in wall units, and N, is the number of particles.

dx

o
WL (2.3)
- = — V),
dr — Sp “p = Bp

where the bulk Stokes number is St, = 1,/70 = Rep, pp/(18py) (dp/h)z, with 19 = h/Up,0,
and 7, the particle relaxation time. Equations (2.3) are integrated in time with the same
four-stage, low-storage Runge—Kutta method used for the carrier phase. A purely elastic
bounce is implemented at the channel’s top and bottom walls. In some of the cases listed in
table 1, namely for the largest Stokes numbers (St = 40, 80) and for the relatively smaller
density ratio (pop/pr = 90), companion simulations that included the Faxén correction
(Gatignol 1983) were performed, showing inappreciable effects on the results, and they
will not be discussed further here.

The dynamics of the two-way coupled system for small particle Reynolds number and
dilute suspensions is controlled by a set of four dimensionless parameters, as it follows
from the application of the Buckingham theorem, namely {Re.; Sty; pp/pr; Np}, where
N, is the total number of particles in the flow domain D, and the inner-scale Stokes
number is defined as St = 1, /74 = St Rei /Rep, with T, = £, /u, the friction time scale.
However, N, is a quantity that is difficult to determine experimentally. In contrast, the total
mass of the disperse phase can be measured easily by a weight balance. Hence N, can be
replaced by the mass loading ¢ = N,,0,V,/prVy = (pp/pf)Np(dp/h)3/(96Tc), where V), is
the volume of the particle, and Vy is the volume of the fluid in the domain D; see e.g.
Elgobashi (2006) and Balachandar & Eaton (2010).
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Figure 1. Instantaneous configuration of the particle-laden flow in (a) the one-way coupling, and (b) the
two-way coupling. The contour plot represents the velocity magnitude normalised with the bulk velocities
of the corresponding cases, |u|. The particle population at Sz = 10 is represented in both images (half of the
domain is represented for the sake of clarity).

A summary of the dataset is listed in table 1. In all the simulations, the friction Reynolds
number Re, is fixed (same pressure drop), implying that the actual flow rate Q = 2hU,
follows as a consequence of the fluid—particle momentum exchange. The simulation plan
is designed to assess in a systematic way the role of the particle Stokes number and of
the particle-to-fluid density ratio on the turbulence modification at fixed mass loading
¢ = 0.4. For this purpose, the simulations are divided into two groups. In the first set
of simulations, the Stokes number is changed at a fixed density ratio. The second set
addresses the effect of the density ratio at fixed Stokes number. The mass loading is
maintained constant by consistently adjusting the particle number N, to compensate for
the increase of the mass of each particle when the density ratio and/or the Stokes number
are varied. The choice of the present parameters rules out the role of gravity in the
dynamics of the particles. Indeed, the ratio between the particle terminal velocity v,
in a quiescent fluid and the bulk velocity can be expressed by v;/Up = Sty /Frl%, where
Fry = Up/+/gh is the Froude number. In realistic conditions, i.e. in an actual experiment
of air flowing in a channel of half-height # = 1 cm at the present value of the bulk Reynolds
number, it turns out that v,/ U >~ 0.04 in the worst scenario, i.e. for the particle population
at St+ = 80.

3. Results

The instantaneous channel flow configuration laden with the particle population at
Sty = 10 is reported in figure 1. Figure 1(a) pertains to the one-way coupling regime,
and figure 1(b) pertains to the corresponding two-way coupling regime. The contour
plot represents the fluid velocity magnitude normalised with the bulk velocity of the
corresponding case. In the one-way regime, the fluid velocity is characterised by the
presence of the ordered low- and high-speed streaks, whilst in the two-way regime, even
though the streaky structure of the velocity field is still apparent, the spatial order is clearly
altered. A related effect consists of the modification of the particle distribution. Indeed,
ordered clusters are evident in figure 1(a), while they are hardly appreciable in figure 1(b).
The analysis of the instantaneous flow configuration denotes an appreciable turbulence
modification that is quantified and detailed below in terms of statistical observables.
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3.1. Mean flow and friction coefficient

The mean velocity profile is plotted in figure 2 for some selected relevant cases of
table 1. Figures 2(a,b) show the effect of the Stokes number at a fixed density ratio
in the semi-log scale and in the linear scale, respectively, the latter to better appreciate
the modification of the flow rate. Particles with the largest Sz, e.g. St = 80, have a
small, though measurable, effect on the mean velocity profile that approaches the curve
of the one-way coupling regime. When the Stokes number is decreased, the interphase
momentum coupling becomes more effective, and the ensuing velocity profile departs
from the reference data of the one-way coupled simulation. All the data show a sensible
reduction of the flow speed that occurs up to the smallest Stokes number considered,
St = 2. By increasing the density ratio up to p,/0r = 5760 at a fixed Stokes number, the
effect of the particles always results in a depletion of the velocity profile; see figures 2(c,d).
Note that the depletion of the flow speed becomes progressively weaker, being the velocity
profile for the case pp,/pr = 5760 almost superimposed on the reference Newtonian case.
This suggests a relevant role of the particle-to-fluid density ratio that must be taken into
account when comparing different studies and flow configurations.

All the data reported in figure 2 indicate that the effect of the particles, at least
in the range of parameters considered in this study, goes always in the direction of
reducing the flow speed for a prescribed pressure gradient. This means that the laden flow
experiences a larger friction drag than the unladen case. Figure 3 shows the ratio between
the friction coefficient Cr = 21,/ (,ofU%) and the friction coefficient of the reference
uncoupled simulation Cro = 21,/ (,ong’O). At large Stokes numbers, the ratio Cr/Cy o
approaches a plateau; at intermediate Stokes numbers, a rapid increase of Cr/Cy g is
measured when decreasing St ; and at relatively smaller Stokes numbers, the increase of
Cr/Cy o is weaker though still clear. For all the values of the particle-to-fluid density ratio,
the drag result is always larger than the corresponding value measured in the uncoupled
case. Indeed, Cr/Cy o starts constant, decreases with increasing particle-to-fluid density
ratios to saturate eventually at very large values of p,/pr, being always above 1.

The particle average distribution is presented in figure 4 as a function of the wall-normal
distance. The particle concentration is defined as C(z) = ({np)/AVy)/(N,/Vy), where (n,)
is the average number of particles in a cylindrical shell of volume AV, = L, x L, x A,
placed at distance z from the wall, and N, is the total number of particles in the fluid
domain Vy. The normalisation is chosen such that C = 1 when the particles are distributed
homogeneously throughout the fluid domain. Figure 4(a) documents the effect of the
Stokes number, and figure 4(b) the effect of the density ratio. Note that particles cannot lie
in a wall layer as thick as their radius.

Concerning the effect of the Stokes number, the particle feedback modifies the particle
concentration with respect to the uncoupled case only for the populations at Sz, = 2 and
St = 10. At higher Stokes number (S7; = 80), the particles are still unevenly distributed
across the flow domain, but the difference between the one-way and two-way coupled
simulations is less apparent. It turns out that the particle accumulation near the wall is
not necessarily the only precursor for turbulence modification. Figure 4(b) addresses the
effect of the density ratio. Note that all three two-way coupled cases correspond to a
single one-way couple case since in the latter, only the Stokes number matters. These
results prove that p,/pr is a crucial parameter in two-way coupled particle-laden flows,
and that most of our understanding that is based on one-way coupled simulations must
be reconsidered since the particle-to-fluid density ratio does not enter the uncoupled case
dynamics.
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Figure 2. Mean streamwise velocity U, = (u) versus the wall-normal distance z. (a,c) Data normalised with
internal units, U = Uy /u, against z4 = z/¢s. (b,d) Data normalised with external units, Uy/Up o against z/h.
(a,b) Data at p,/pr = 180 and ¢ = 0.4 for different Stokes numbers. (c,d) Data at fixed mass load ¢ = 0.4
and Stokes number Sz = 10 for different density ratios. The solid black line in all plots is the mean velocity
profile in the one-way coupling regime. In (a,c), the log law with k = 0.39 and A = 6 (dash-dotted line), and
the viscous scaling U = z; (dotted line), are reported.
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Figure 3. The friction coefficient Cr normalised with the friction coefficient Cy ¢ in the one-way coupling
regime (no back-reaction). Data are plotted versus the Stokes number Sz, for the dataset at a fixed density
ratio p,/pf = 180 (bottom x-axis, red circles), and versus the density ratio pp/ oy for the dataset at fixed Stokes
number St = 10 (top x-axis, blue triangles).

3.2. Turbulent fluctuations

The mean streamwise velocity fluctuation profile is shown in figure 5. Figure 5(a)
addresses the role of the Stokes number, and figure 5(b) addresses the role of the
density ratio. The striking effect observed in the two-way coupling regime consists of
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Figure 4. Mean particle concentration versus wall normal distance z4 = z/{. (a) Data at fixed p,/pr = 180
and ¢ = 0.4 for different Stokes numbers. (b) Data at fixed ¢ = 0.4 and Sz, = 10 for different density ratios.
The solid lines correspond to the two-way coupling regime; the dashed colour-matched lines correspond to the
one-way coupling regime.
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Figure 5. Mean streamwise velocity fluctuation (u;2)+ = (uf) /ui versus wall-normal distance z4+ = z/4,.

(a) Data at fixed p,/or = 180 and ¢ = 0.4 for different Stokes numbers. (b) Data at fixed ¢ = 0.4 and St = 10
for different density ratios. The solid black line in all plots corresponds to the one-way coupling regime.

the modification of turbulent fluctuations near the wall. Particles at large Stokes numbers
St = 80 and 20 deplete the peak intensity in the buffer layer and the lower part of the log
layer. Besides the depletion in the buffer region, the particle at Sz = 10 starts augmenting
the fluctuations in the viscous sublayer. When the Stokes number is further decreased (see
cases Sty € [2, 5]), a new peak of velocity fluctuations appears definitively in the viscous
sublayer. Concerning the effect of the density ratio (figure 5b), the fluctuations in the
viscous sublayer are augmented, while the reduction of the intensity peak in the buffer
region is relevant up to p,/or = 1440. In the highest density ratio p,/or = 5760 case, the
viscous sublayer is unaltered, while the peak of the fluctuations is still depleted in the
buffer region.

Figure 6 presents the wall-normal mean velocity fluctuation profile. The two-way
coupling effects are again striking in the near-wall region, where a clean peak is observed
in the viscous sublayer for all the particle populations except for the case at St = 80
where, instead, fluctuations are depleted across the entire channel height. The increase of
the wall-normal velocity fluctuations is particularly evident for the populations at relatively
small Stokes number, i.e. St € [2, 5]. Similar behaviour is observed for cases at different
density ratios (see figure 6b), where the fluctuations approach the data of the one-way
coupling regime only for the case at p,/or = 5760.

Figure 7 shows Reynolds shear stress profile modification due to the particle presence.
The Reynolds stresses are reduced in the log region and in the buffer region, to be
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Figure 6. Mean wall-normal velocity fluctuation (’4/72>+ = / uy, versus wall-normal distance z4 = z/ls.

(a) Data at fixed p,/ pr = 180 and ¢ = 0.4 for different Stoke% number% (b) Data at fixed ¢ = 0.4 and St = 10
for different density ratios. The solid black line in all plots corresponds to the one-way coupling regime.
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Figure 7. Mean Reynolds shear stress profile (#u)); = (u,u’) /uﬁ versus wall-normal distance z4 = z/¢,.

(a) Data at fixed pj,/ pr = 180 and ¢ = 0.4 for dltferent Stokes numbers. (b) Data at fixed ¢ = 0.4 and St = 10
for different density ratios. The solid black line in all plots corresponds to the one-way coupling regime.

increased significantly in the viscous sublayer except for the population at Sty = 80.
Similar behaviour is observed when the density ratio is changed.

The augmentation of the Reynolds shear stresses close to the wall indicates an
increase in the momentum transfer towards the wall due to turbulent fluctuations. The
turbulent fluctuations in the viscous sublayer are augmented along both the streamwise
and wall-normal directions, with also an alteration of the off-diagonal components of
the stresses. One can figure out that when fast particles coming from the channel bulk
approach the wall, due to their inertia, they have streamwise and wall-normal velocities
much different to those of the surrounding fluid. The same happens for slow particles that
from the near-wall region migrate towards the centre of the channel. It follows a large
slip velocity between particles and fluid, resulting in an intense and localised momentum
exchange that manifests as a large increment of fluctuations. This point is investigated
more deeply by addressing stress balance.

3.3. Stress balance
The mean streamwise momentum balance,

[ aU, ) dp
[u——m Z>+re}=— , (3.1)

0z 0z dx|g
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helps us to understand turbulence modification. In (3.1), 7, = foz( fx) d¢ is the extra stress
due to the particles; see (2.2). After a first integration, the stress balance reads

OU L =7 (1-3 32

122 9z pf(”,y”g)'i‘fe—fw( h)v (3.2)

where the mean pressure gradient has been replaced by the wall shear stress t,,, being
—dp/dxlo = y/h.

The viscous stress 7, = j dU,/dz, the Reynolds shear stress g = —py(u}u.) and the
extra stress 7, are plotted in figure 8. The total stress t7 = t,,(1 — z/h) and the Reynolds
shear stress in the one-way coupling regime are shown in all plots for comparison. The
interesting feature of the two-way coupled simulations is the contribution of the extra
stress, which alters the overall balance; see also the results by Lee & Lee (2015) in the
context of point-particle simulations, and Costa et al. (2021) in the context of resolved
particle simulations. For relatively small Stokes number Sz} € [2, 20] (figures 8a—c), the
extra stress represents a significant contribution to the balance both in the near-wall region
and in the bulk of the flow. In the near-wall region, 7, is comparable to or even larger than
the corresponding Reynolds shear stress. Here, the extra stress provides an alternative way
of transferring streamwise momentum towards the wall in synergy with the augmented
Reynolds shear stress; see figure 7. Near the wall, the sum of the extra stress and the
Reynolds shear stress turns out to be always larger than the Reynolds shear stress of the
one-way coupled case. This behaviour provides a rational interpretation and explanation
of the increased turbulent velocity fluctuations near the wall. It is also worth discussing the
stress balance at the larger Stokes number Sty = 80, where the contribution of the extra
stress is still significant. However, Reynolds shear stress is depleted near the wall, and the
sum of the two tends to match the Reynolds shear stress of the one-way coupling regime.
This results in a negligible drag increase as observed in figure 3.

The effect of the density ratio is presented in figure 9. For the values of p,/pr up to
1440, a significant extra stress is present, with the sum of the extra stress and the Reynolds
shear stress always larger than the Reynolds shear stress of the one-way coupling regime.
This gives the reason for the significant increase in the friction drag. Only at the highest
values p,/pr = 2880 (not shown) and p,/pr = 5760 does the extra stress, though still
appreciable, get smaller, and the sum of the extra stress and the Reynolds shear stress
approaches the Reynolds shear stress of the one-way coupling regime. Indeed, in these
latter cases, the alteration of the overall friction drag is relatively small.

Further insight into turbulence modification can be gained from (3.2), which can be
integrated in [0, z] and in [0, 4] (Fukagata, Iwamoto & Kasagi 2002; Costantini, Mollicone
& Battista 2018), leading to the global balance

h
1
pwhUp + / (h—2) (tg + 1) dz = grwhz. (3.3)
0

Equation (3.3) expresses the fact that in a turbulent flow, only part of the available pressure
drop, i.e. the wall shear stress, produces a flow rate U,. Part of the pressure drop is
absorbed by the turbulent Reynolds shear stresses, and in two-way coupling conditions,
another part is absorbed by the particle extra stress. Equation (3.3) can be recast in
dimensionless form as

3—+3/ (1-2) (g +r,Hdz=1, (3.4)

974 A26-11


https://doi.org/10.1017/jfm.2023.851

https://doi.org/10.1017/jfm.2023.851 Published online by Cambridge University Press

P. Gualtieri, F. Battista, F. Salvadore and C.M. Casciola

(0) 1.0
0.8
0.6 |Lf /
0.4 |
02

0 20 40 60 80 100 120 140 160 180
(d)1.0g—
0.8

(c) 105

St, =20 St, =80

0.6

/T

0.4
0.2

0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180

z, z,

Figure 8. Mean stress balance (3.2) versus the wall-normal distance z4. Viscous stress 7, (1), Reynolds
shear stress tg (A), extra stress 7, (), total turbulent stress g + 7, (©), total stress (1 — z/h) (dash-dotted
line), Reynolds shear stress tx in the one-way coupling regime (solid line). All stresses are normalised with the
wall shear stress 7,,. In all plots, ¢ = 0.4 and p,/por = 180.
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Figure 9. Mean stress balance (3.2) versus the wall-normal distance z,. Viscous stress 7, (), Reynolds
shear stress tg (A), extra stress 7, (), total turbulent stress 7g + 7, (¢), total stress (1 — z/h) (dash-dotted
line), Reynolds shear stress tx in the one-way coupling regime (solid line). All stresses are normalised with the
wall shear stress t,,. In all plots, ¢ = 0.4 and Sz = 10.
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Figure 10. Mean flow rate budget (3.4), with I, = 3Re/Re2, I =3 [; (1 — D)7 dZ and 1, =3 [} (1 —
2) re* dz. (a) Data at different Stokes numbers. (b) Data at different density ratios. The first bar in each plot
shows the data of the one-way coupling case.

where Z = z/h, and 71—; , 7,7 are the Reynolds shear stress and the particle extra stress
expressed in wall units, respectively. Note that the contribution of the Reynolds shear
stress and the extra stress is now weighted by (1 — z), meaning that the near wall values of
the corresponding profiles contribute more significantly to the balance.

The different terms in the budget, I = 3Reb/Rei, Ig =3 fol (1— 2)11"; dz and

I,=3 fol(l — 7)t,t dz, are shown in figure 10. Figure 10(a) highlights the effect of the
Stokes number. In the St; € [2, 40] range, the portion of the pressure drop absorbed by the
Reynolds shear stress and by the flow rate is depleted. The extra stress contribution absorbs
the remaining part of the available pressure drop, which represents a significant part of the
balance. At the largest Stokes number St = 80, the extra stress and the (depleted) Reynolds
stress turn out to reproduce the turbulence stress contribution of the uncoupled case, thus
leaving almost unaltered the flow rate contribution. Note that a significant increase in
the friction drag starts occurring at St = 20, corresponding to a bulk Stokes number
Sty = 1.7 ~ O(1) (see figure 3), in correspondence with an appreciable contribution of
I, in the budget. Finally, the total turbulent stress contribution /g + I, turns out to be
always larger than the value of the uncoupled case to eventually reach the one-way
coupling regime at Sz, = 80. As p,/pr is increased, the terms in the budget approach
the corresponding values of the one-way coupling regime in a monotonic way, making /,
progressively smaller; see figure 10(b).

3.4. Turbulent kinetic energy
The TKE budget reads
V.®=1]—¢+1I,, 3.5)

where @ is the TKE spatial energy flux vector, IT = —(u{u}) dU,/dz is the production
term, ¢ = 1/Rep (8,-14;. a,-uj/.> is the viscous energy pseudo-dissipation rate, and I1, =
(flu) is the extra production/destruction term due to the particles’ feedback on the
fluid. Given the flow symmetries, the only relevant derivative in the divergence term
is along the wall-normal direction z. This selects the z component of the flux vector,
@, = 1/2(uuiu) + (p'u]) — 1/Rey, dk;/0z, that encompasses turbulent transport, pressure
diffusion and viscous diffusion, respectively, with k; = 1/2(u/u}) the TKE.

The production term I7 and the extra term due to particles IT,, are shown in figure 11 for
cases at different Stokes numbers and density ratios (the production term of the one-way
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Figure 11. Turbulent kinetic energy production /7 (%), extra production/destruction term /7, (LJ) and their sum
I + 10, (O) versus the wall normal distance z, for (a) St; = 80, (b) Sty = 10, (¢) St1 = 2, and (d) St; = 10
and p,/pr = 2880. In all the plots, the production term IType-yay in the one-way coupling regime (solid line) is
reported for comparison.

coupling case is reported for comparison). The data at Sz, = 80 show how the particles
deplete the TKE production but do not shift its peak position since the particles turn
out to behave as a sink of TKE. This contributes to a further reduction of the effective
TKE production IT + IT,. The behaviour changes dramatically for particle populations
at small Stokes number, where a significant increase of the friction drag occurs. The
particles at St = 10 (figure 11b) can deplete the production term /7 and shift its peak
close to the wall. The striking effect concerns the particle term I7,, which behaves as a
source of TKE near the wall. At small z, the term [7, is larger in its amplitude than
the turbulent production 1. This behaviour is even more pronounced for the population
at St; = 2 (figure 11c), where the particle term [T, largely overwhelms the production
term 1, providing a localised source of TKE in the viscous sublayer (note that the plot
is on a different scale, one order of magnitude larger than in the other plots). Finally,
figure 11(d) addresses the effect of the density ratio reporting the data at p,/por = 2880
(see also figure 11b). The particle term I, is still comparable in amplitude with /7. The
effective production IT + [T, has two peaks, one in the buffer layer and one in the viscous
sublayer induced by the particles.

The dramatic alteration of the effective production IT + IT, impacts the energy flux
vector that spatially redistributes the TKE. In figure 12, the flux vector @ is superimposed
on the contour plot of the effective source Q = IT — ¢ + IT, (either positive or negative).
The sign of Q fixes the value of V - @ and the ensuing direction of the flux vector.
In principle, @ = ®.e; + D.e,, where @, = Uk, + 1/2(uuul) + (p'u)) (not shown) is
responsible for the downstream transport of the energy and does not contribute to the flux
divergence. The vector @, e, is shown along the vertical axis of each plot, in arbitrary units:
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Figure 12. Contour plot of the effective TKE source Q = IT — ¢ + IT,. The vectors represent flux vector
@,(2) e; in arbitrary though comparable units reported in the bottom left corner of each plot. (@) One-way
coupling; (b—d) two-way coupled cases at St = 80, 10 and 2, respectively.

the vertical arrow in the bottom left corner of each plot reports the direction and the value
of the selected units to make a fair comparison among the different cases.

Figure 12(a) pertains to the one-way coupling regime. The effective source Q is positive
in the buffer layer (locally IT > ¢). This triggers the spatial fluxes directed towards the
channel’s centre and towards the wall. The flux directed towards the centre of the channel
crosses (with slight modifications) the log layer, and is eroded progressively by viscosity
in the bulk, where the effective source is mildly negative in a wide range of z,. More
interesting is the behaviour of the flux directed towards the wall. The wall itself behaves
as an intense sink of energy (see (3.5)) evaluated at the wall, 9.¢,|,—0 = —¢|,—0 (Pope
2000). The flux is eroded in about 5 wall units, and the effective source Q quickly
becomes negative approaching the wall. The same energy path is observed for the particle
population at St = 80 (figure 12b), but with reduced amplitude.

The situation changes dramatically at smaller Stokes numbers, i.e. Sty = 10 and 2; see
figures 12(c,d). The effective source Q is strongly altered by the particle contribution IT,.
The range of positive values of Q is shifted in the viscous sublayer, and its intensity is
increased progressively with decreasing St.. The spatial flux originates closer to the wall,
and its intensity gets larger and larger at decreasing St , since the effective production is
located in the viscous sublayer, and its intensity is dominated by the particle contribution
IT,. This triggers an intense spatial flux towards the wall that is eroded rapidly by viscous
dissipation in about one wall unit. This behaviour gives a rational reason for the increased
friction drag. The other part of the flux directed towards the centre of the channel is
comparable in intensity with the flux directed towards the wall. Indeed, it triggers the
large velocity fluctuations observed in the viscous sublayer (see figures 5 and 6), and is
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eroded progressively by viscosity moving towards the centre of the channel, where the
effective source is mildly negative in a wide range of z.

4. Final remarks

Direct numerical simulations of a particle-laden turbulent channel flow in the two-way
coupling regime have been discussed to characterise and explain the turbulence
modulation in a wide region of the parameter space. The particle Stokes number is
varied in the range Sty € [2, 80], and the particle-to-fluid density ratio in the range
pp/pr € [90, 5760] at fixed mass loading ¢ = 0.4. The interphase momentum coupling
has been modelled using the ERPP approach, which, by overcoming at once many
drawbacks of the particle-source in cell method, also allows the exploration of a wide
region of the parameter space.

For all the cases considered, the friction drag was always found to be augmented by the
particles’ back-reaction with respect to the reference unladen case. The flow rate is reduced
substantially by reducing the Stokes number to St = 2, the smallest value considered. An
appreciable alteration of the friction drag, say 10 % of the friction drag in the unladen case,
occurs for particle populations characterised by a bulk Stokes number St, = O(1). The
present simulations show that a measurable increase in the drag persists for a wide range
of density ratios. Only the extreme case at p,/pr = 5760 does not show such friction drag
increase. The velocity fluctuation intensities are also altered by two-way coupling effects.
At small Stokes numbers, a new peak of fluctuations appears in the viscous sublayer,
and its amplitude is almost twice the peak intensity in the unladen case for the particle
population at Sz = 2. The modification of the turbulence structure has been explained
by addressing the mean stress balance and the turbulent kinetic energy (TKE) budget. In
terms of stresses, the particles contribute with the extra stress that represents an alternative
path for the streamwise momentum to be transferred towards the wall. Even though the
Reynolds shear stress is depleted in the bulk of the flow, its intensity is augmented in
the viscous sublayer. However, the total effective turbulent stress tg + 7, is augmented
with respect to the one-way coupling regime, leading to an enhanced momentum mixing
and thus larger friction. The TKE budget highlights the modification of the spatial energy
fluxes across the channel height. For cases where a substantial increase of the friction
drag is observed, the production/destruction term due to the particles /T, overwhelms the
classical mechanisms of TKE production via the Reynolds shear stresses 1 close to the
wall. The TKE is produced by the particles in the viscous sublayer, and the ensuing energy
spatial fluxes are enhanced. The spatial flux directed towards the wall is eroded rapidly by
viscous dissipation within a few wall unit distances from the wall, giving the reason for
the enhanced dissipation at the wall, i.e. the drag increase.
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