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We propose an image-based flow decomposition developed from the two-dimensional
(2-D) tensor empirical wavelet transform (EWT) (Gilles, IEEE Trans. Signal Process.,
vol. 61, 2013, pp. 3999-4010). The idea is to decompose the instantaneous flow data,
or their visualisation, adaptively according to the averaged Fourier supports for the
identification of spatially localised structures. The resulting EWT modes stand for the
decomposed flows, and each accounts for part of the spectrum, illustrating fluid physics
with different scales superimposed in the original flow. With the proposed method,
decomposition of an instantaneous three-dimensional (3-D) flow becomes feasible
without resorting to its time series. Examples first focus on the interaction between
a jet plume and 2-D wake, where only experimental visualisations are available. The
proposed method is capable of separating the jet/wake flows and their instabilities. Then
the decomposition is applied to an early-stage boundary layer transition, where direct
numerical simulations provided a full dataset. The tested inputs are the 3-D flow data
and their visualisation using streamwise velocity and A, vortex identification criterion.
With both types of inputs, EWT modes robustly extract the streamwise-elongated streaks,
multiple secondary instabilities and helical vortex filaments. Results from 2-D stability
analysis justify the EWT modes that represent the streak instabilities. In contrast to proper
orthogonal decomposition or dynamic modal decomposition that extract spatial modes
according to energy or frequency, EWT provides a new strategy for decomposing an
instantaneous flow from its spatial scales.

Key words: transition to turbulence, computational methods, wakes/jets

1. Introduction

The age of big data has witnessed a rapid generation and accumulation of flow data,
both numerically and experimentally (Duraisamy, laccarino & Xiao 2019). Even standing
on top of data, on most occasions, it remains not a simple task to understand a fluid flow
due to the broad range that the flow may involve in its temporal and spatial scales. On the
other hand, a complete dataset may not always be available. The extraction of pertinent
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knowledge from projected flow data (e.g. from flow visualisations) represents immense
potentials for practical applications (Raissi, Yazdani & Karniadakis 2020).

The development of model reduction and modal analysis techniques has played an
essential role in promoting this effort (see reviews by Rowley & Dawson (2017) and Taira
et al. (2017, 2020)). With these approaches, a flow field has been decomposed into modes
ranked by their inherent properties, e.g. energy, frequency or growth rate. For example,
proper orthogonal decomposition (POD) (Lumley 1967) determines the optimal set of
modes that represent most of the energy based on the L, norm. The optimality lies both
in the least possible number of modes to represent the signal and in the minimisation of
error between the signal and its truncated representation. Dynamic mode decomposition
(DMD) (Schmid 2010), on the other hand, arranges modes in the order of their dynamical
importance that is measured by a characteristic frequency and growth rate. In essence,
DMD is a finite-dimensional approximation to the Koopman operator (Rowley et al.
2009). For nonlinear problems, choosing a suitable set of observables as input is critical
to maintain the link to the Koopman operator. Various improvements to the standard
POD and DMD have been proposed. For example, balanced POD (Rowley 2005) weighs
controllability and observability of a state by forming a biorthogonal set, and therefore is
more suitable for non-normal systems. Spectral POD (Towne, Schmidt & Colonius 2018)
reconsiders POD in the frequency domain, providing orthogonal modes (still ranked by
energy) at discrete frequencies. Sparsity promoting DMD (Jovanovié¢, Schmid & Nichols
2014) reduces the dimensionality of the full rank decomposition, and recursive DMD
(Noack et al. 2016) achieves orthogonality, an essential property of POD. Both POD and
DMD are purely data-driven, in contrast to model-based linear global stability analysis
(Theofilis 2011) and resolvent analysis (McKeon & Sharma 2010), which require an
accurate base flow as well as the construction of a linearised operator. From the point
of view of the stochastic process, Towne et al. (2018) showed the inherent connection
between DMD, resolvent analysis and spectral POD, indicating their common ground in
mathematics.

The above-reviewed data-based decompositions aim at extracting dominant structures
from a series of snapshots, while in the present work, an image-based technique will be
introduced to obtain meaningful structures from instantaneous flow data, even though it
can also apply to a sequence of snapshots. This technique is cost-effective and supports
real-time analysis of flows upon observations.

Image-based flow decomposition hinges on the basis of the empirical wavelet transform
(EWT) (Gilles 2013, 2020). Wavelet transform was recognised as a powerful technique in
fluid mechanics not long after its advent (see early review by Farge 1992). The pioneering
work of Meneveau (1991) brings turbulence to the orthonormal wavelet space. Knowledge
of turbulent kinetic energy, energy transfer and nonlinear interactions was obtained by
physically interpreting the wavelet coefficients. In the examination of fluid flow data,
wavelet analysis has been widely used as a flexible ‘microscope’ discriminating scales
and positions simultaneously. The coherent vortex extraction (CVE) proposed by Farge,
Pellegrino & Schneider (2001) splits turbulent flows into coherent and incoherent parts.
Such CVE achieves its goal by projecting the vorticity field onto an orthogonal wavelet
basis, and a threshold on the resulting wavelet coefficients is then specified to identify
the coherent component. In the last decade, wavelet-based numerical algorithms and
turbulence modelling have been developed (Schneider & Vasilyev 2010). Their strengths
lie in the ability to unambiguously identify and isolate localised, dynamically dominant
flow structures which improves the efficiency of the computation. The EWT provides
the first mathematically rigorous method to adaptively analyse a signal (Gilles 2013).
The principal idea is to build a set of adaptive filter banks based on the property of the
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input signal itself, such that meaningful modes are extracted, each possessing a particular
section of the Fourier supports. This feature matches well with the requirement to extract
modes from instantaneous flow data or their visualisation.

In § 2, the formulation and algorithm of EWT for flow decompositions are introduced.
In §3 are provided two examples of EWT being applied to three-dimensional (3-D)
instantaneous flow data and/or their visualisation, followed by a comparison with other
methods in § 4. The study is concluded in § 5.

2. Imaged-based flow decomposition using EWT

We term the complete flow dataset or the visualisation (image or video) as a function
f(x,y,z 1). Here x, y and z represent the spatial coordinates, and the optional ¢ denotes
time. Note that flow visualisations project data onto a two-dimensional (2-D) image or
video: f(x, y; t). The visualisation may be qualitative and aided by auxiliary materials
(e.g. smoke, sensitive coatings), or be quantitatively made with state-of-the art facilities
(e.g. particle image velocimetry) or from numerical simulations (e.g. using A, criterion
(Jeong & Hussain 1995) to identify vortex structures). We decompose the flow using 2-D
tensor EWT (Gilles, Tran & Osher 2014) as summarised in algorithm 1. We aim to keep
a limited number of resulting EWT modes which are sufficient to reveal the complex flow
structures.

The EWT defines its scaling function q&m and empirical wavelets g@m (see appendix A)
in a normalised Fourier axis with 2w periodicity. The set {¢y, {lﬁm}%j} is a tight and
orthogonal frame of L*(R). Consequently, the ‘energy’ of the signal is conserved by the
extracted EWT modes. The EWT of a signal f(¢) is obtained by

Wi =(f.¢1) = /f(t)dn -0 dr= (@ @)

Wist = (. ¥) Z/f(t)lﬁm(r—l) dr = (f(w)x&J,(w))v, m=1,... M1,
2.1

where ( ) stands for the inner product, { is the complex conjugate and A and V indicate
the Fourier transform and its inverse.

We show in figure 1 an example of the adaptive filter bank. The signal in Fourier space
f (w) is shown with a white line. A discussion of various Fourier supports {w,,} detection
strategies can be found in Gilles et al. (2014). In this study, they are adaptively determined
such that local maxima of f (w) are retained in different Fourier segments (indicated with
different colours). As a result, the extracted modes strategically capture components of
the input signal, each standing for a section of the spectrum. The idea of 2-D tensor EWT
is to perform EWT successively in two directions, with the corresponding filter banks
built according to the spatial-averaged spectrum. When flow visualisation is used as an
input, it is essential to have the principal direction of the flow (e.g. direction of the mean
flow) coincide with either direction of decomposition, such that the averaged spectrum
maximises its physical relevance. This corresponds to step 1 of algorithm 1 and is detailed
with an example in § 3.1.

3. Applications and results

We show two applications of flow decomposition using EWT: the interaction between
a 2-D wake and a jet plume, and an early-stage boundary layer transition subject to
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Algorithm 1: Flow decomposition using 2-D tensor EWT.

Input: f(x, y, z; 1) with N,, Ny, N; and N, points in corresponding indices. If ¢
(optional) is present, the input is a 3-D unsteady flow or its visualisation
(video); M, M, the number of desired filters/modes in the direction of x
and y. Note that we show the decomposition algorithm in the x and y
directions, while in practical applications, it is not necessarily limited to
two directions.

For inputs with flow visualisations, detect the principal direction of f(x, y, z; t)
(details can be found in § 3.1.). Rotate f such that the principal direction is in line
with x or y;

2 In the x direction, compute its fast Fourier transform to obtain the x-averaged

spectrum. For the input with N, snapshots, the spectrum is also averaged in time:

)

—

Ny N. N,

~ 1
fx(wx)zNNN

3 Similarly, obtain the y-averaged spectrum:

N, N,

iz ‘f(i, k. wy: 1)

i=1 k=1 t=1

Iy (@) = N.N. N,

4 Perform the Fourier boundary detection on fx (w,) and fy (a)‘) respectively;
5 Build filter banks B, = {}, {¥}"" "} and B, = (¢}, {v;2}"" '} using (A 1) and
(A2);

6 Filter f along the x direction with B,, resulting in M, outputs: W;(x, y, z; 1),
i=1,....M,

Filter each output in step 6 along the y direction using B,;

If necessary, reconstruction of the input f(x, y, z; ) is performed by inverting the
y and x filtering successively following

M—1 Vv
f = <W1d31+ Z Wm-&-ll&m) .

m=1

o 3

Output: EWT modes: W, ;(x, y,z; ) withi=1,... M, j=1,..., M,.

free-stream turbulence. The two examples serve to demonstrate the applicability to both
flow data and their visualisation, irrespective of their experimental or numerical origin.

3.1. Interaction between a jet plume and a 2-D wake (images from experiments)

In this example, the decomposition is applied to the experimental observation of the
interaction between a jet plume and a 2-D wake (Roquemore et al. 1988). The slot jet
is located in the centre of the rectangular face of a bluff body. The flow is visualised with
the reactive Mie scattering technique, where streamlines are highlighted by TiO, particles
that are spontaneously formed by the reaction of TiCl, in the jet with water in the wake.
The flow visualisation is shown in the first column of figure 2 with jet velocity increasing
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FIGURE 1. A sketch in the Fourier space of the signal f‘ (w), the detected supports {wy,}
(m=1,2,...,M) and the filter bank {¢ (@), V1 (®), V2(®), ..., ¥y—1(w)}. Here » € [0, 7]
and abides by the Nyquist—Shannon sampling theorem. The Fourier supports are determined
from the spectrum of the signal f (w) such that each EWT mode amounts to part of the spectrum.
The first and the last EWT modes, WW; and W,, are termed the shadow mode and the skeleton
mode, respectively.

from 18.5 cm s~! in figure 2(a) to 55.5 cm s~! in figure 2(c). As introduced in Roquemore
et al. (1988), the flow is initially dominated by the wake flow when the shear-layer velocity
of the jet U, is smaller. Along with the increase of U, in figure 2(b), wake instabilities
are considerably prohibited, and only wavy structures are observed. In figure 2(c), the flow
is dominated by the jet instability as indicated by the change in the direction of rotation of
the vortices.

The flow decomposition is performed with M, = M, = 3, leading to nine EWT
modes, W;; (i,j =1, 2, 3). The lower modes (columns 2-5 of figure 2) well isolate key
components of the flows. In particular, mode WV, ; (the shadow mode), comprising the
lower-end spectrum in both the flow and transverse directions, can be used to detect
the principal direction of the flow. Mode W, | possesses mid-spectrum in the transverse
direction and features the mean flow. Representing the mid-spectrum of the flow direction,
modes W, and W,, present the flow instabilities with W, , accounting for higher
wavenumbers in the transverse direction. Comparing the three cases adheres to the
intention of the experiment: an increase of the jet velocity leads to the suppression of
wake instabilities (figure 2b) and promotion of the jet instability downstream (figure 2c),
as is supported by W, , in figure 2(a—c). It is also helpful to inspect the flow by combining
certain modes: W, | @ W, and W, , @ W, ,. The combination is obtained by performing
an inverse EWT with corresponding modes. As is shown, W, ;1 & W, and W, & W»,
account for a wider spectrum in the transverse direction and differentiate in the flow
direction, thus delivering a more comprehensive view of the mean flow and wake/jet
instabilities, respectively. We have reconstructed the higher modes (the last column of
figure 2) with Wi 3 @ Wi 1 @ Wh 3 @ Wi, @ W 3. The higher modes account for the rest
of the spectrum and retain all the small scales of the visualisation. Note that by increasing
the number of EWT modes, the higher modes (the skeleton) will contain less information
of the input.

Recalling algorithm 1, in 2-D tensor EWT, the wavelet filter bank is built based on the
averaged spectrum in the x and y directions of the signal. It is crucial that the principal
direction of the flow (e.g. the direction of the mean flow, orientations of the geometry)
coincides with these directions, such that the flow physics can be correctly separated.
In the 37.0 cm s~! case of the visualisation under consideration, we have rotated the
source counterclockwise by 2.0° before the EWT is applied (step 1 of algorithm 1).
We take this case as an example to show how to accurately detect the principal
direction. As shown in figure 3, the shadow mode W), ;, which is free from small scales,
characterises the principal direction of the signal. This direction is thus numerically
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(a) Source W1,1®W2,1 W1,2®W2,2 Higher modes

FIGURE 2. Image-based flow decomposition of the interaction between a jet plume and a
2-D wake: (a) Ujey = 18.5 cm s~ () Ujey = 37.0 cm s~ with the source image rotated 2°

counterclockwise; (¢) Ujes = 55.5 cm s~!. The wake is subject to an annular air flow at a constant

velocity of 27.5 cm s~

recovered by the gradient, |V (W), 1)|. The principal direction is the direction along which
the average gradient reaches a minimum, as shown in figure 3(c). Consequently, it is found
that the source shall be rotated counterclockwise by 2.0°. Figure 3(d) shows the rotated
image as compared with figure 3(a). Figure 3(e) shows the decomposition when the source
image has an inappropriate orientation at which W, | and W, , fail to capture the mean
flow and instabilities.

3.2. Early-stage boundary layer transition (from direct numerical simulations)

Laminar—turbulent transition prompts a significant broadening of flow scales that
ultimately takes the form of coherent structures. This example examines an incompressible
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FIGURE 3. Identification of the principal direction. (a) The source taken from the Uj, =
37.0cm s~! case of Roquemore er al. (1988). (b) Wi ,1 of the original image. (¢) Image gradient
of Wi 1. For better display of the identified principal direction, the x—y aspect ratio is not to scale.
(d) The rotated image for flow decomposition. (e¢) Flow decomposition based on the source with
an inappropriate orientation.

boundary layer flow over a flat plate with an elliptic leading edge (see figure 4). To promote
flow transition, free-stream turbulence from a nonlinear optimisation procedure (with the
target that the maximum perturbation energy is reached at a designated time) is specified
ahead of the leading edge. The width of the domain is chosen such that three discernible
streamwise-elongated streaks are generated. A periodic boundary condition is employed
in the spanwise direction. Further numerical details and set-up of the simulations can also
be found in Wang, Mao & Zaki (2019). In this example, we first apply the algorithm to
flow visualisation, followed by the decomposition with instantaneous 3-D velocity data.

The flow has been visualised through its pivotal structures, i.e. with iso-surfaces of 1, =
—0.02, u = 0.8 and contour slices of u = 0.1, 0.2, ..., 0.9 as presented in figure 4, where
u stands for the streamwise velocity (normalised by the free-stream value). A grey-scale
top-view image with the same iso-surfaces serves as the input of the image-based flow
decomposition. As can be seen, the 2-D image features the generation of streaks and the
formation of hairpin vortices.

We show the flow decomposition in figure 5(a). In this example, we have M, = M, = 3.
By construction, modes W, ; (shadow mode) and Wi 5 (skeleton mode) represent the flow
structure with a spectrum that amounts to the lower and higher end in both the streamwise
and spanwise directions. Modes W, , and W, ; isolate the streaks. The secondary
instabilities of streaks are captured by modes W, ;, W, and W, 3, featuring the low to
high wavenumbers in the spanwise direction. From W, j, it is seen that Streak A gives
rise to sinuous instabilities after x = 40, followed by the instability of Streak C. It also
indicates that perturbations around Streak C have a larger amplitude after x = 70. These
observations are, however, hidden in the source image. Finally, in modes W; ; and Wi ,,
localised helical vortex filaments are identified, marking the meandering of streaks and
appearance of smaller scales.
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0.1 02 03 04 05 06 0.7 08 09

Contour slices and iso-surface coloured
by streamwise velocity u

FIGURE 4. A schematic diagram of imaged-based flow decomposition with the example of
boundary layer transition. The instantaneous flow field (3-D data) is visualised by iso-surfaces of
Ay = —0.02 and u = 0.8 together with contours of u = 0.1,0.2,...,0.9 in cross-sections that
are perpendicular to the free-stream direction. Both the iso-surfaces and contours are coloured
by u. We apply imaged-based flow decomposition on the grey-scale 2-D image that contains the
same iso-surfaces. The image has a top view on which the flow data in the wall-normal direction
are projected. Within the computation domain, three discernible streaks are generated, and they
become unstable downstream before giving rise to hairpin vortices.

To verify the observation from EWT modes, a 2-D stability analysis (secondary
instability of streaks) is performed at x = 43,44,45 (to secure the onset location of
secondary instabilities) and x = 50, 70 (to identify multiple modes). We plot temporal
growth rates versus streamwise wavenumber « in figure 5(b). The peak growth rates
are marked with red crosses, and the corresponding eigenfunctions and base flows are
provided in figure 5(c). A positive growth rate is seen at x = 44, which demonstrates
the onset of secondary instabilities. This mode (termed mode 1) has its eigenfunctions
localised around Streak A. Further downstream, the flow is unstable to multiple modes.
From around x = 50, mode 2 (centred around Streak C) also becomes unstable, though at
a smaller growth rate. However, further downstream at x = 70, mode 3 (centred around
Streak C) becomes the most energetic. All these secondary instability modes are of
sinuous nature. Generally, the stability analysis matches rather well with EWT modes;
the onset of multiple secondary instability modes, their sinuous nature and the dominance
of instabilities around Streak C are evidenced by mode WV, ;. For the case of a video input,
an unsteady flow decomposition is provided as a supplementary movie. The video records
the flow from # = 0 when free-stream turbulence is introduced to the laminar flow until the
time step illustrated in figures 4 and 5. The video-based EWT modes provide the evolution
of flow structures subject to the temporal—spatial averaged Fourier supports.

To test the sensitivity and robustness of the method with respect to the input image,
a comparison of EWT modes with different flow visualisations is shown in figure 6.
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FIGURE 5. (a) Image-based flow decomposition of boundary layer transition. Here My = M, =
3, leading to nine EWT modes. Important streamwise locations x = 44 (onset of secondary
instabilities), x = 50, 70 (base flows and eigenfunctions as seen in panel ¢) and x = 99
(formation of hairpin vortices) are highlighted. White dashed lines in W, 1, W 2, W 3 show
the position of streaks and the streamwise range over which secondary instabilities occur.
(b) Growth rates of the secondary instabilities versus streamwise wavenumber « at cross-sections
of x =43, 44,45, 50, 70. The red cross marker indicates the maximum growth rate of a mode
whose eigenfunction is visualised in (c). The eigenfunction «’ is shown with black lines (dashed
lines denote negative values) on top of the base flow contours (z = 0.1,0.2,...,0.9). A movie
of the video-based flow decomposition is available as a supplementary movie available at https://
doi.org/10.1017/jfm.2020.817.

Images with various iso-surfaces of # and A, are adopted as shown in figure 6(a). The same
filter banks from EWT are used to process these inputs. As can be seen from figures 6(b)
and 6(c), the streaks and their secondary instabilities are correctly extracted by modes
Wi, and W, | for most of the cases, regardless of the different inputs. With iso-surfaces
of u alone, secondary instabilities are captured, but the importance of Streak C is not
revealed. For a more inimical input (# = 0.5, 1, = —0.10), the EWT modes still result in
satisfactory decompositions. Besides, it has been tested that the decomposition is robust
to changes in lighting and shading of the visualisation.

In addition to these robustness tests, considering different choices of flow data,
e.g. Reynolds decomposed velocity perturbations (Jacobs & Durbin 2001), we present
decomposition for such inputs in figure 7. The input data are obtained at four horizontal
sections, i.e. y = 0.508, y = 0.755, y = 1.00§ and y = 1.25§, where ¢ is the boundary
layer thickness near the centre of the streamwise domain (x = 60). Unlike the source
images used in figure 4, the inputs are essentially 2-D and represent flows at a certain
height. For example, at y = 0.506, streaks are mostly visible plus some wavy structures
downstream, while y = 0.756 and y = 1.00§ show the secondary instabilities primarily.
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FIGURE 6. (a) Flow visualisations of boundary layer transition with iso-surfaces of u and A, at
values indicated on the image. (b,c) The corresponding EWT modes: W 2 and W ;.
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FIGURE 7. The EWT as applied to Reynolds decomposed streamwise velocity perturbations at
horizontal sections: (a) y = 0.508, (b) y = 0.7568, (¢) y = 1.006, (d) y = 1.255. Here § is the
boundary layer thickness near the centre of the streamwise domain (x = 60). In each panel, the
first image shows the input data while the EWT modes follow and are arranged in the same order
as in figure 5(a).

Outside of the boundary layer at y = 1.256, the helical vortex filaments become dominant.
These variations are appropriately captured by their EWT modes.

We further apply EWT to the decomposition of 3-D instantaneous data, as shown in
figure 8. The flow has been decomposed in the x and z directions with M, =M, =3
based on the streamwise velocity u(x, y,z) on each y plane. We show the physically
significant modes with iso-surfaces. As can be seen, the streamwise-elongated streaks and
their nonlinear harmonics are extracted by W, , and W, 5. Modes W, , and Wj , capture
streak instabilities at different scales. Modes W, 3 and Ws 3 represent the higher-end
spectrum in the spanwise direction, displaying the canonical bypass nature of the transition
process, i.e. small scales in the free stream only reappear further downstream in the
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FIGURE 8. Flow decomposition with 3-D velocity data u(x, y, z). The EWT is applied in the
x and z directions with M, = M, = 3. Iso-surfaces are defined and coloured (blue/white for
positive/negative values) according to EWT modes: W > (u = £0.1), Wi 3 (u = £0.05), W »
(u = £0.02), W1 3 (u = £0.01), W5 2 (u = £0.02), W5 3 (u = £0.01).

boundary layer leading to a ‘clean area’. Comparing the results presented in figures 5 and
8, both inputs of the instantaneous 3-D data and their visualisation lead to adaptively and
physically relevant decompositions. The extracted streaks and their secondary instabilities
from both results match well with each other and correctly reflect the flow physics. Note
that when viewed and processed as an image, flow visualisation represents a projection
of the 3-D instantaneous data, with the objective of compressing while retaining critical
features of the data. Differences, as a result, stem from the discrepancy in the Fourier
supports. For example, secondary instabilities are extracted by W, |, W5, and W, ; from
the visualisation, while W,, and W;, from 3-D instantaneous data stand for streak
instabilities. Another advantage of using flow data is that the extracted modes will have
a solid physical meaning. For example, in this case, the modes are the decomposed
streamwise velocities. Three-dimensional data further lead to more details of the flow,
as evidenced by the bypass characteristics in W, 3 and W; 3.

4. Comparison with other methods

At this point, it becomes relevant to ask: what is the added value of EWT modes to the
state-of-the-art data-based flow decompositions (e.g. the POD and DMD families)? This
section takes the boundary layer transitional flow as an example to show the strengths and
weaknesses of the proposed methods.

The flow case corresponds to the example shown in § 3.2. Time series as inputs for
POD and DMD start from the initialisation of free-stream turbulence, encompassing
the development of streamwise-elongated streaks and their secondary instabilities, and
end at the snapshot shown in figure 4 where hairpin vortices appear. Figure 9 shows
the decomposed flows using POD, DMD and EWT. These modes are illustrated with
iso-surfaces of the streamwise velocity. From figure 9(d) it is evident that the first four
POD modes cover most of the energy as displayed in figure 9(a). As can be seen, the
most energetic structure is streamwise-elongated streaks. Modes 2 and 3 display a mixed
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FIGURE 9. A comparison of POD, DMD and EWT modes. The POD (@) and DMD (b) modes
are extracted based on the velocity data u(x, y, z,f) with the time series starting from the
initiation of free-stream turbulence and ending at the snapshot shown in figure 4. The EWT
modes (c) are solely extracted from the instantaneous u(x, y, z) corresponding to figure 4. The
iso-surfaces are coloured with wall-normal coordinate and defined by u = —4 x 107* of the
extracted POD/DMD modes. The same iso-surface levels as in figure 8 are used for EWT modes.
(d) The energy distribution among POD modes. (e,f) The growth rate and amplitude of the DMD
modes. The blue dots mark four (pairs of) dominating POD/DMD modes shown in (a,b).

structure of streaks and their instabilities. Mode 4, on the other hand, extracts smaller
scales associated with the hairpin vortices. The DMD modes appear in pairs and are sorted
by their frequencies. As expected, lower frequencies (modes 1 and 2 and modes 3 and 4)
stand for streaks while the instabilities are captured in higher modes. The growth rates and
amplitudes of DMD modes shown in figure 9(e,f) provide a soft criterion as a measure of
the significance of the modes.

The EWT modes are obtained solely from a single snapshot corresponding to figure 4.
Without resorting to time series, the flows are decomposed according to spatial scales. As
a result, the streaks, their secondary instabilities and the bypass nature of smaller scales
are distinctly identified.
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FIGURE 10. Coherent vortex extraction of the transitional boundary layer. The input is the
streamwise vorticity wy. Iso-surfaces are defined and coloured by w, = £0.1 for the input
and coherent component, while @, = £0.06 is used for the incoherent counterpart to increase
visibility.

On the aspect of outputs, all three methods can lead to an arbitrary number of modes.
A notable question arises as to what is the effectiveness of the modes in characterising the
flow. For example, how many modes would be sufficient to represent the flow and what
are the criteria for selecting dominant modes? This has been recognised as a weakness of
modal-based flow analysis (Taira et al. 2017). The POD modes are arranged according to
their energy, which is a meaningful indication of importance. However, highly nonlinear or
travelling wave problems may require a large number of POD modes to cover the majority
of the energy (Murata, Fukami & Fukagata 2020). On the other hand, a single correct
way to rank DMD modes is absent, though the growth rate and amplitude provide means
of measurement. With regard to EWT, there is not a concomitant indicator (e.g. energy,
frequency, growth rate) associated with the modes. Instead of producing a large number
of modes and choosing a few important ones (e.g. in POD and DMD), EWT aims at
generating a limited number of modes, differing only in spatial scales. We have shown
that for flows with compact Fourier supports, M, = M, = 3 gives satisfactory results.
However, for flows with a broader spatial spectrum, one may need to increase the number
of modes to reduce the mixing of scales in extracted modes.

The EWT shares a similar theoretical basis, i.e. multi-resolution analysis, with CVE
(Farge et al. 2001). In CVE, wavelet coefficients are first obtained for the vorticity field
using orthogonal wavelet transform. These coefficients are further divided into two groups
(coherent and incoherent) according to their amplitudes. The coherent and incoherent
flow components are therefore reconstructed through the inverse wavelet transform. By
construction, the objective of CVE is to extract coherent structures based on the wavelet
denoising method rather than decomposing a flow into several modes. Results of CVE
for boundary layer transitional flow are provided in figure 10. For this case, the coherent
structure is captured by only 0.8 % of the total wavelet coefficients, reflecting the sparse
distribution in the wavelet space. Integrating the spirit of multi-resolution analysis into
DMD creates multi-resolution DMD (Kutz, Fu & Brunton 2016), which performs DMD
recursively on a hierarchy of multi-resolution time scales. The method is a variation of the
standard DMD. Still, it exhibits strengths in handling signals with multi-scale or invariant
dynamics, while the present approach addresses multi-scale fluid structures in the spatial
domain.

As such, it becomes clear that EWT provides a new decomposition strategy, as shown in
table 1. Furthermore, EWT does not depend on a separation-of-variables strategy, which
leads to its advantage in dealing with non-stationary flows or travelling wave problems.
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Method Input Decomposition strategy

POD Flow data as time series By energy

DMD Flow data as time series By frequency and growth rate
CVE Instantaneous flow data By amplitude of wavelet coefficients
EWT Instantaneous flow data or their visualisation By averaged spatial Fourier supports

TABLE 1. A comparison of POD, DMD, CVE and EWT.

5. Concluding remarks

In this paper, we have proposed an image-based flow decomposition using the 2-D
tensor EWT (Gilles 2013; Gilles et al. 2014), which was initially devised for image
processing. According to the Fourier supports of the input data, a set of adaptive filter
banks (an orthogonal frame) is built to perform the decomposition. A first example
considers the interactions between a 2-D wake and a jet plume, where only experimental
flow visualisations are available. The EWT modes correctly isolate the jet and wake
components and their instabilities. In the spirit of 2-D tensor EWT, the visualisation
principal direction needs to coincide with one of the decomposition directions. We
show that this direction can be accurately determined using the shadow mode of EWT,
Wi 1. The second example considers an early-stage boundary layer transition subject to
free-stream turbulence, where direct numerical simulation provided a full dataset. For both
inputs of 3-D instantaneous flow data and their visualisation, the EWT modes distinctly
extract streamwise-elongated streaks, their secondary instabilities and smaller scales. A
comparison with 2-D stability analysis justifies the EWT modes that characterise the
secondary instabilities. The bypass nature of smaller scales is also captured by EWT
modes based on the 3-D instantaneous flow data.

Compared with the prevailing data-based methods for flow decomposition (POD, DMD
and CVE, to name a few), EWT offers a new strategy to adaptively decompose a flow
from its averaged Fourier supports. An instantaneous flow or its visualisation is thus
readily decomposed without resorting to its time series. The method also functions well
on non-stationary flows or travelling wave problems by extracting fluid physics that are
localised from the input. Still, it would be less effective for flows with broader or flattened
Fourier supports, e.g. fully developed turbulent flows, where the number of EWT modes
needs to be in line with the spatial spectrum of the flow. In future development, the method
can be extended to account for the temporal spectrum and the prediction of flow evolution.
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Appendix A. Scaling function and empirical wavelets of EWT

The scaling function b and empirical wavelets ¥, of EWT (Gilles 2013) are given by

1 if o] < (1 —=y)wn,
I —(1- m .
b= feos| Zp (LD e (1 )0, < ol < (4 1)
2 2y
0 otherwise,
(A1)
sin| Zg (= v it (1= 1) o < ol < (1 + ) o,
2 2y wy,
. 1 it (I+y)o, <lol <A —y)wou,
wm (C()) =
T |Cl)| - (1 - )’) W1 .
cos | =B if (1 —=y)on <lo|l <A +y)ou,
2 29 Wi
0 otherwise,
(A2)
0 if x <0,
with B (x) = { x* (35 — 84x + 70x> — 20x°) if0 <x <1, (A3)
1 ifx > 1.
W1 — Wy = In 2 " ~ 2
Ify<min(—>, then Z b1 (w—{—an)‘ +Z‘Wm(w+2k7[)‘ =1.
m W41 + Wy k=—o00 =1

(A4)

The set {¢1, {{¥, Amtll} forms a tight and orthogonal frame of L*>(R). Note that in the theory
of wavelet frames, a frame is termed tight if the energy of the extracted wavelet coefficients
is directly proportional to the original signal with a factor of A. Furthermore, if A = 1, the
frame is defined as orthogonal.
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