
11

Hamiltonian simulation

The task of Hamiltonian simulation is to approximately compile the evolu-

tion under a Hamiltonian H(t), for time t, into a sequence of quantum gates.

For a time-independent Hamiltonian, solving the Schrödinger equation (set-

ting ℏ = 1) yields a time evolution operator U(t) = e−iHt. In this chapter, we

will discuss the equivalent operator U(t) = eiHt, which is the more common

definition in an algorithmic setting. We will assume t ≥ 0, without loss of

generality. The Hamiltonian of interest can arise from physical systems (e.g.,

quantum chemistry, condensed matter systems, or quantum field theories) but

may also be constructed for other applications, such as differential equation

simulation. Quantum simulation does not give full access to the amplitudes

of the wavefunction during the simulation, unlike classical approaches based

on exact diagonalization (or similar methods). Instead, we are only able to

measure observables with respect to the time-evolved state, or use the state

as an input to other quantum subroutines. Nevertheless, there are no known

efficient classical methods that achieve this for general local or sparse Hamil-

tonians, suggesting an exponential quantum speedup. In fact, as a quantum

computation can be expressed as a time evolution under a sequence of local

(time-dependent) Hamiltonians, quantum simulation (i.e., time evolution and

measurement of a given observable) is a BQP-complete problem.

Hamiltonian simulation algorithms require access to the Hamiltonian. There

are three commonly used input models. The Pauli input model assumes that

the Hamiltonian is given classically as a sum of products of Pauli operators,

for example, H =
∑

l hlHl, where hl are coefficients and Hl are multiqubit

Pauli products. The d-sparse access model assumes that the Hamiltonian is

a sparse matrix with at most d nonzero elements per row or column. We re-

quire that the locations of the nonzero elements and their values are efficient to

compute classically. The density matrix access model assumes that the Hamil-

tonian corresponds to a density matrix, which we are either provided access to

210

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.1 Product formulas 211

copies of [708], or given a unitary that prepares a purification of the density

matrix [717]. All of these input models can be used to prepare block-encodings

of the Hamiltonian, which provides a standard-form access model that general-

izes the above input models. Block-encodings are the input model of choice for

some algorithms for Hamiltonian simulation (e.g., qubitization with quantum

signal processing) [717].

Hamiltonian simulation can be used as a subroutine in a range of algorithms,

including quantum phase estimation, quantum linear system solvers, Gibbs

state preparation, and the quantum adiabatic algorithm. We remark that some

of these algorithms are implicitly using Hamiltonian simulation to provide co-

herent, unitary access to the Hamiltonian. This can be particularly useful if few

ancilla qubits are available, which may inhibit the use of some approaches to

coherently access the Hamiltonian (e.g., block-encodings based on linear com-

binations of unitaries) but does not prevent the use of Hamiltonian simulation

based on product formulas.

Each algorithm has its own advantages and disadvantages, as described at

a high level in Table 11.1. Specific optimizations of each algorithm may be

available for a given Hamiltonian. One can also consider hybridized methods

combining two or more of the algorithms [718, 720, 820, 484, 852, 1027].

There are also other methods for Hamiltonian simulation, such as quantum

walks [275, 133, 136] or density matrix–based Hamiltonian simulation [708,

619], which we do not discuss due to their less widespread use as algorithmic

primitives for the applications discussed elsewhere in this book.

The authors are grateful to Yuan Su for reviewing this chapter.

11.1 Product formulas

Rough overview (in words)

Product formulas (or Trotter–Suzuki formulas/Trotterization) [705] are the

most commonly used approach for Hamiltonian simulation, and are applicable

to Hamiltonians in the Pauli access model and the sparse access model (see

below for definitions of these models). Product formulas divide the evolution

into a repeating sequence of short unitary evolutions under subterms of the

Hamiltonian. These subterm evolutions have a known decomposition into

elementary quantum gates. The error in product formulas depends on the

commutators between different terms in the decomposition; if all of the terms

in the Hamiltonian commute, product formulas are exact.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

P
ro

d
u

ct
fo

rm
u

la
(o

rd
er

k
)

q
D

R
IF

T
T

a
y
lo

r
a
n

d
D

y
so

n
se

ri
es

Q
S

P
/Q

S
V

T

#
Q

u
b

it
s

O
(n

)
O

(n
)

O
(n
+

lo
g
(L

))
O

(n
+

lo
g
(L

))

A
cc

es
s

m
o
d

el
P

au
li

S
p
ar

se
P

au
li

S
p
ar

se

P
au

li
S

p
ar

se
B

lo
ck

-e
n
co

d
in

g
B

lo
ck

-e
n
co

d
in

g

S
ca

li
n

g
O

(5
2
k
n

L
∥H
∥ 1

t(∥
H
∥ 1

tϵ
−1

)1 2
k

) a
O

(n
∥H
∥2 1

t2
ϵ
−1

)
Õ

(∥
H
∥ 1

tn
L

lo
g
(ϵ
−1

))
O

(n
L

(∥
H
∥ 1

t
+

lo
g
(ϵ
−1

))
) b

P
ro

s

C
o
m

m
u
ta

to
r

sc
al

in
g
.

S
im

p
le

im
p
le

m
en

ta
ti

o
n
.

E
m

p
ir

ic
al

p
er

fo
rm

an
ce

.
M

in
im

al
an

ci
ll

a
q
u
b
it

s.

L
-i

n
d
ep

en
d
en

t
sc

al
in

g
.

N
o

an
ci

ll
a

q
u
b
it

s.
lo

g
(1
/ϵ

)
sc

al
in

g
.

T
im

e-
d
ep

en
d
en

t
si

m
u
la

ti
o
n
s.

O
p
ti

m
al

sc
al

in
g

w
it

h
t,
ϵ
.

F
ew

an
ci

ll
a

q
u
b
it

s
fo

r
al

g
o
ri

th
m

.

C
o
n

s
S

ca
li

n
g

w
it

h
t,
ϵ

at
lo

w
o
rd

er
s.

E
x
p
o
n
en

ti
al

p
re

fa
ct

o
r

(i
n

o
rd

er
k
).

S
ca

li
n
g

w
it

h
t,
ϵ
.

M
an

y
an

ci
ll

a
q
u
b
it

s
if

u
si

n
g

n
o
n
co

m
p
re

ss
ed

va
ri

an
t

[7
1
8
].

T
im

e-
d
ep

en
d
en

t
si

m
u
la

ti
o
n
.

A
n
ci

ll
a/

g
at

e
co

st
o
f

b
lo

ck
-e

n
co

d
in

g
.

T
ab

le
1
1
.1

H
ig

h
-l

ev
el

co
m

p
ar

is
o

n
o

f
H

am
il

to
n

ia
n

si
m

u
la

ti
o

n
te

ch
n

iq
u

es
.

Q
u

an
ti

ta
ti

v
e

co
m

p
ar

is
o

n
s

as
su

m
e

a
P

au
li

in
p

u
t

m
o

d
el

(w
h

ic
h

ca
n

ea
si

ly
b
e

u
se

d
to

p
re

p
ar

e
a

b
lo

ck
-e

n
co

d
in

g
o

f
th

e
H

am
il

to
n

ia
n

).
F

o
r

th
e

st
at

ed
co

m
p

le
x

it
y,

w
e

co
n

si
d

er
ev

o
lu

ti
o

n
U

(t
)
=

eiH
t

fo
r

ti
m

e
t

u
n
d
er

a
ti

m
e-

in
d

ep
en

d
en

t
H

am
il

to
n

ia
n

H
o

n
n

q
u

b
it

s,
g

iv
en

as
a

su
m

o
f

L
P

au
li

p
ro

d
u
ct

s
H
=

∑
L j=

1
h

jP
j.

T
h

e
ev

o
lu

ti
o

n
is

ap
p

ro
x

im
at

e
to

er
ro

r
ϵ

in
th

e
sp

ec
tr

al
n

o
rm

(d
ia

m
o

n
d

n
o

rm
fo

r
q

D
R

IF
T

).
W

e
d

efi
n

e
∥H
∥ 1
=

∑
L j=

1
|h

j|.
T

h
e

q
u

b
it

re
q

u
ir

em
en

t
fo

r
th

e
T

ay
lo

r
an

d
D

y
so

n
se

ri
es

m
et

h
o
d

o
m

it
s

ad
d

it
io

n
al

ad
d

it
iv

e
fa

ct
o

rs
th

at
sc

al
e

lo
g
ar

it
h

m
ic

al
ly

w
it

h
th

e
n

o
rm

an
d
/o

r
d

er
iv

at
iv

e
o

f
th

e
H

am
il

to
n

ia
n

.
In

sp
ec

ifi
c

ap
p

li
ca

ti
o

n
s

it
m

ay
b
e

p
o

ss
ib

le
to

re
d

u
ce

th
e

n
u

m
b

er
o

f
q

u
b

it
s

an
d
/o

r
g
at

e
co

m
p

le
x

it
y

fu
rt

h
er

b
y

ex
p
lo

it
in

g
k

n
ow

le
d

g
e

o
f

th
e

sy
st

em
,

su
ch

as
sy

m
m

et
ri

es
,

co
m

m
u
ta

ti
o
n

st
ru

ct
u

re
,

o
r

en
er

g
y

sc
al

es
.

F
o

r
ex

am
p

le
,

th
e

fa
ct

o
r

o
f

n
p

re
se

n
t

in
th

e
ab

o
v
e

co
m

p
le

x
it

ie
s

m
ay

b
e

re
d

u
ce

d
b

y
ex

p
lo

it
in

g
lo

ca
li

ty

in
th

e
P

au
li

p
ro

d
u

ct
te

rm
s

o
f

th
e

H
am

il
to

n
ia

n
.

a
T

h
e

fa
ct

o
r

o
f

n
ca

n
b
e

re
d
u
ce

d
to

w
w

h
en

ea
ch

P
au

li
te

rm
P

j
ac

ts
n
o
n
tr

iv
ia

ll
y

o
n

at
m

o
st

w
si

te
s.

T
h

e
fa

ct
o
r
∥H
∥1
+

1
/2

k

1
ca

n
b
e

re
d
u
ce

d
b
y

ex
p
lo

it
in

g
co

m
m

u
ta

ti
v
it

y

o
f

th
e

va
ri

o
u

s
P

j.
b

T
h

e
fa

ct
o

r
n

L
d
er

iv
es

fr
o
m

an
u
p
p
er

b
o
u
n
d

o
n

th
e

g
at

e
co

m
p
le

x
it

y
o
f

b
lo

ck
-e

n
co

d
in

g
,

an
d

it
ca

n
o
ft

en
b
e

si
g
n
ifi

ca
n
tl

y
im

p
ro

v
ed

b
y

ex
p
lo

it
in

g
st

ru
ct

u
re

in
h

j

an
d

H
j.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.1 Product formulas 213

Product formula approaches have also been extended to treat time-

dependent Hamiltonians [556, 1038, 1031, 34, 839]. In the following

discussion, we will restrict our focus to the time-independent case, noting

that the time-dependent approaches are executed in the same way, but have a

slightly more complex error analysis.

Rough overview (in math)

Given a Hamiltonian H, desired evolution time t, and error ϵ, return a circuit

U(t) made of elementary gates such that

∥U(t) − eiHt∥ ≤ ϵ.

In the above, we use the operator norm ∥·∥ (the maximal singular value) to

quantify the quality of approximation, which controls the error for arbitrary

input states (in trace distance) and for observables. This worst-case metric is

mathematically convenient, but, as discussed below, tighter bounds may be

obtained by using error metrics more closely aligned with the specification of

the problem.

A product formula generates U(t) through a product of easy-to-implement

evolutions under terms in the Hamiltonian. For a Hamiltonian decomposition

H =
∑L

j=1 H j with L terms, the first-order product formula with r steps is

S 1(t) =
(∏L

j=1
eiH jt/r

)r

.

The error in the first-order product formula is upper bounded as [286]

∥S 1(t) − eiHt∥ ≤ t2

2r

L∑

i=1

∥∥∥∥∥∥∥∥

L∑

j=i+1

[Hi,H j]

∥∥∥∥∥∥∥∥
≤
∥H∥21t2

2r
,

where ∥H∥1 =
∑L

j=1∥H j∥. Higher-order formulas can be defined recursively,

and are referred to as (2k)th-order product formulas. The error in a recursively

defined (2k)th-order product formula is bounded by [286]

∥S 2k(t) − eiHt∥ = O

∥H∥2k+1

1
t2k+1

r2k

 .

Product formulas can be applied to d-sparse Hamiltonians (at most d

nonzero elements per row/column) with efficiently row computable nonzero

elements [11]. Access to the nonzero elements of the Hamiltonian is provided

via oracles O f and OH . The oracle O f returns the column index (j) of the

k ∈ {1, . . . , d}th nonzero element in row i. The oracle OH returns the value of

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

214 11. Hamiltonian simulation

the matrix element Hi j.

O f : O f |k⟩|i⟩|0⟩ = |k⟩|i⟩| j⟩
OH : OH |i⟩| j⟩|0⟩ = |i⟩| j⟩|Hi j⟩.

Using graph-coloring algorithms, a d-sparse Hamiltonian H can be efficiently

decomposed into a sum of efficiently simulable sparser Hamiltonians [134,

278]. Illustrating this idea with the approach of [134], we can decompose H =∑6d2

j=1 H j, where each H j is 1-sparse. The nonzero elements of a given H j can

be computed coherently using O (
log∗(n)

)
queries to O f ,OH , where log∗ is

the iterated logarithm.1 Time evolution under a 1-sparse Hamiltonian can be

implemented efficiently using the approach of [11]. To simulate eiHt using, for

example, a first-order product formula, we sequentially apply each eiH jt using

the methods outlined above.

As a special case of the d-sparse access model, one can consider Hamiltoni-

ans given as a linear combination of L Pauli terms H =
∑L

j=1 H j =
∑L

j=1 α jP j,

as each Pauli tensor product is already a 1-sparse matrix (so in this case, d ≤ L).

Time evolution under each Pauli term (or in some cases, groups of Pauli terms)

can be simulated efficiently (see, e.g., [705, 801]), considerably simplifying the

d-sparse construction by removing the need for oracles O f and OH .

Dominant resource cost (gates/qubits)

For an n-qubit Hamiltonian, product formulas act on n qubits. In the Pauli

access model, no additional ancilla qubits are required. In the sparse access

model, ancilla qubits may be required to implement the oracles O f and OH

and to implement time evolution under 1-sparse Hamiltonians H j.

The gate complexity is obtained by choosing the number of Trotter steps r

sufficiently large to obtain an error ϵ and multiplying by the complexity of im-

plementing each step of the product formula. It is necessary to balance the im-

proved asymptotic scaling with t and ϵ of higher-order Trotter formulas against

the exponentially growing prefactor of the higher-order formulas. In practical

simulations of chemistry, condensed matter systems, or quantum field theories,

a low-order formula (2nd–6th) typically minimizes the gate count.

A recursively defined (2k)th-order product formula (i.e., the first-order for-

mula is given by k = 1/2, and is the base case) for simulating a d-sparse

Hamiltonian for time t to accuracy ϵ requires [278]

O
52kd2(d + log∗ n)∥H∥t

(
d∥H∥t
ϵ

)1/2k


1 For practical purposes, the iterated logarithm is essentially constant, since log∗(n) ≤ 5 for all
n ≤ 265536.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.1 Product formulas 215

calls to the oracles O f and OH .

A recursively defined (2k)th-order product formula for simulating an L-term

Hamiltonian in the Pauli access model for time t to accuracy ϵ requires [286]

O
(
52knLt

(
tαcomm,k

ϵ

)1/2k
)

(11.1)

elementary single- and two-qubit gates, where

αcomm,k =
∑

i1,i2,...,i2k+1

∥[Hi2k+1
, . . . [Hi2 ,Hi1]]∥ .

The dependence on αcomm,k can be tightened and calculated for lower-order

formulas (see [286] for full calculations). The dependence on n can be reduced

to w for local Hamiltonians with Pauli terms that each act on at most w qubits.

Caveats

The error bounds of product formulas in the Pauli access model have been the

object of significant investigation. Evaluating the tightest spectral norm bounds

requires computing a large number of commutators between the terms in the

Hamiltonian, which can be computationally intensive. Numerical simulations

have shown that the commutator bounds can be loose by several orders of

magnitude for chemical [72, 840] or spin [283] systems.

The spectral norm is the worst-case metric; it is an active area of research

to find error metrics better suited to the problem at hand. For example, one

may consider the average-case error over random input states [257, 1087] by

the normalized Frobenius norm ∥U(t) − eiHt∥F/
√

2n. Recently, in [257] it was

shown that the average-case error can be much smaller than the worst-case

error for systems with large connectivity. More directly, one can also compute

the Trotter error associated with input states from the low-energy [891, 516] or

low-particle-number subspace [991, 963].

The gate counts of product formula approaches can also be reduced by

grouping together mutually commuting terms such that they can be imple-

mented using fewer gates than would be required to implement all the terms

individually [124, 630, 225]. One can also reduce the number of Trotter steps

required by randomizing the ordering of the terms [284, 288, 839] (although

this must be balanced against any compilation benefits that may be obtained

from a fixed ordering).

Example use cases

• Physical systems simulation: quantum chemistry, condensed matter sys-

tems, quantum field theories.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

216 11. Hamiltonian simulation

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation, quantum adiabatic algorithm.

Further reading

• A rigorous derivation of the error in product formulas [286].

• A comparison of product formula methods with other approaches to Hamil-

tonian simulation for a concrete problem of interest [283].

11.2 qDRIFT

Rough overview (in words)

The quantum stochastic drift protocol [222], abbreviated as qDRIFT, oper-

ates in the Pauli access model2 and approximates the Hamiltonian simulation

channel (as opposed to the unitary) by randomly sampling a term from the

Hamiltonian (according to the coefficient magnitudes), and then evolving un-

der the chosen term. This process is repeated for a number of steps. Because it

approximates the channel, rather than the unitary, it can be more difficult to use

qDRIFT as a coherent subroutine in other algorithms (see §Caveats below).

The error in qDRIFT depends on the 1-norm of Hamiltonian coefficients.

One main advantage of qDRIFT is that it does not explicitly depend on the

number of terms in the Hamiltonian and has small constant overheads, making

it well suited to systems with rapidly decaying interaction strengths, domi-

nated by a few large terms. However, qDRIFT’s time and error dependence are

asymptotically worse than other methods, which seems to originate from the

algorithm’s randomized nature [258]. qDRIFT can also be extended to time-

dependent Hamiltonian simulation with a Hamiltonian H(t), where the gate

count of the algorithm scales as
∫ t

0
∥H(t′)∥dt′, rather than as t maxt′∥H(t′)∥ like

other Hamiltonian simulation algorithms [141]. We will restrict our discussion

below to the time-independent case.

Rough overview (in math)

Given a Hamiltonian in the Pauli decomposition H =
∑

i hiHi (with ∥Hi∥ =
1), qDRIFT provides a stochastic channel N that, when applied for N steps,

approximates the Hamiltonian simulation channel

∥NN − eiHt(·)e−iHt∥⋄ ≤ ϵ
2 qDRIFT was originally formulated, and is typically presented, for the Pauli access

model [222], but the algorithm appears compatible with the d-sparse access model by
applying it to the d-sparse decompositions in [134, 278] [961].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.2 qDRIFT 217

to within diamond-norm error ϵ.

qDRIFT proceeds by randomly sampling terms according to their relative

importance

Xk
i.i.d.∼ hiHi

pi

, where pi =
|hi|
∥H∥1

and ∥H∥1 :=
∑

i |hi| is the sum of the strengths. Each step of qDRIFT then

evolves the randomly sampled term Xk for a short period of time t/N, where N

is a free parameter determining the number of qDRIFT steps, which controls

the error in the simulation. The result is the following quantum channel:

N[ρ] = E[ei(t/N)Xkρe−i(t/N)Xk] .

As discussed above, this channel is repeated for N steps, in order to approxi-

mate the Hamiltonian simulation channel.

Dominant resource cost (gates/qubits)

For an n-qubit Hamiltonian, qDRIFT acts on n register qubits, and no addi-

tional ancilla qubits are required.

In order to simulate the Hamiltonian evolution channel to within diamond-

norm error ϵ, we require

N = O

∥H∥21t2

ϵ



steps of qDRIFT [222, 258]. While the diamond-norm is a different error met-

ric to the spectral norm used in other articles in this section, both metrics pro-

vide upper bounds on the error in an observable measured with respect to the

time-evolved state [222]. For unitary channels, the diamond norm is effectively

equal to the spectral norm (see, e.g., discussion in [480], up to constant factors).

The gate complexity is the number of steps multiplied by the individual costs

of the elementary evolution ei(t/N)Xk , which scales linearly with the locality of

the Pauli operator Xk. When using qDRIFT to time evolve a state (e.g., for the

purpose of measuring an observable), it is important to average the results over

a sufficient number of independently sampled qDRIFT circuits [222].

Caveats

The qDRIFT algorithm has a quadratic dependence on time and a linear depen-

dence on the inverse error 1/ϵ, while other Hamiltonian simulation methods

can achieve linear time dependence and logarithmic inverse error dependence.

A higher-order variant of qDRIFT was recently developed that improves the

error dependence, but it is only suitable for estimating the expectation value of

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

218 11. Hamiltonian simulation

observables with respect to the time-evolved state, rather than approximating

the unitary channel itself [794]. It is currently unclear how to design higher-

order variants of qDRIFT that improve the time dependence, which appears to

result from the randomized nature of the algorithm [258].

As discussed above, qDRIFT approximates the time evolution channel,

rather than the unitary eiHt. As a result, it can be difficult to incorporate as

a subroutine in algorithms that seek to manipulate the unitary directly—for

example, measuring Tr(U(t)ρ). Tasks of this form feature in some approaches

for phase estimation [690], motivating alternate, qDRIFT-inspired approaches,

in order to exploit qDRIFT-like benefits [1013].

Example use cases

• Physical systems simulation: quantum chemistry, condensed matter sys-

tems, quantum field theories.

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation, quantum adiabatic algorithm.

• Hybridization with other quantum simulation methods [820, 852, 484].

• Using importance sampling to incorporate variable gate costs for simulating

different terms Xk [621].

11.3 Taylor and Dyson series (linear combination of

unitaries)

Rough overview (in words)

Taylor and Dyson series approaches for Hamiltonian simulation expand the

time evolution operator as a Taylor series (time independent) [137] or Dyson

series (time dependent) [615, 141] and use the linear combination of unitaries

(LCU) primitive to apply the terms in the expansion, followed by (robust,

oblivious) amplitude amplification to boost the success probability close to

unity. These methods are close to being asymptotically optimal, achieving lin-

ear scaling in time and logarithmic dependence on the error. However, they use

a large number of ancilla qubits, compared to other Hamiltonian simulation al-

gorithms.

Rough overview (in math)

We focus on the time-independent case and follow the presentation in [137].

Given a Hamiltonian H, desired evolution time t, and error ϵ, return a circuit

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.3 Taylor and Dyson series (LCU) 219

U(t) made of elementary gates such that

∥U(t) − eiHt∥ ≤ ϵ.

In the above, we use the operator norm (the maximal singular value) to quantify

the worst-case error in the simulation.

The total evolution time t is divided into r segments. In each segment, we

evolve under an approximation of eiHt/r. The Hamiltonian is decomposed into

a linear combination of unitary operations H =
∑L

l=1 αlHl, where we choose αl

real and positive by shifting phases into Hl, and ∥Hl∥ = 1. This decomposition

appears naturally when the Hamiltonian is given as a linear combination of

Pauli products. We approximate eiHt/r using a Taylor expansion truncated to

degree K

eiHt/r ≈ U(t/r) :=

K∑

k=0

1

k!
(iHt/r)k

=

K∑

k=0

L∑

l1,...,lk=1

(it/r)k

k!
αl1 . . . αlk Hl1 . . .Hlk .

Each segment U(t/r) is implemented using robust oblivious amplitude ampli-

fication. Amplitude amplification is necessary because truncating the Taylor

series at degree K makes U(t/r) non-unitary. However, textbook amplitude am-

plification necessitates reflecting around the initial state (as well as the “good”

state), which would be problematic since Hamiltonian simulation requires syn-

thesizing a unitary that works simultaneously for all input states. This issue can

be circumvented using oblivious amplitude amplification: we are given a uni-

tary V such that for any state |ψ⟩, we have V |0m⟩|ψ⟩ = a|0m⟩U |ψ⟩+b|0m
⊥ϕ⟩, for a

unitary operator U, and the goal is to amplify the state |0m⟩U |ψ⟩ to be obtained

with probability 1 (we can recognize V as an (a,m, 0) unitary block-encoding

of U). A further problem is that the above operator U(t/r) is non-unitary, and

so deviates from the formulation of oblivious amplitude amplification [135].

The proven “robustness” property of oblivious amplitude amplification [137]

ensures that the error induced by treating U(t/r) as a probabilistically imple-

mented unitary does not accumulate.

The value of K controls the error in the simulation and can be chosen as

K = O
(

log(∥H∥1t/ϵ)

log log(∥H∥1t/ϵ)

)
,

where we define ∥H∥1 :=
∑L

l=1 αl. The total time evolution is divided into

r = ⌈∥H∥1t/ ln(2)⌉ segments, each of duration ln(2)/∥H∥1, which ensures that a

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

220 11. Hamiltonian simulation

single application of robust oblivious amplitude amplification boosts the suc-

cess probability of the segment to unity.

Within each segment, we apply U(t/r) using the LCU primitive. This tech-

nique can be applied to Hamiltonians given in both the Pauli and d-sparse

access models. For the Pauli access model, the Hamiltonian is already in the

form of a linear combination of unitary operators. For the d-sparse case, we can

use graph coloring algorithms [134, 278] to decompose the d-sparse Hamilto-

nian into a linear combination of unitaries, where each unitary is 1-sparse and

self-inverse.

Dominant resource cost (gates/qubits)

In addition to the n-qubit data register, the Taylor series approach requires a

number of ancilla registers to implement the LCU technique. In the original

formulation [137], a register with K qubits is used to control the degree of the

Taylor expansion, storing the value as |k⟩ = |1⊗k0⊗(K−k)⟩. An additional K reg-

isters, each containing ⌈log2(L)⌉ qubits, are used to index the possible values

of each of the possible Hlk . Hence, the overall space complexity of the original

formulation [137] is O (
n + K log(L)

)
= O (

n + log(∥H∥1t/ϵ) log(L)
)
. In [718]

it was shown how to reduce the space complexity to O (
n + log(K) + log(L)

)

using quantum counter circuits.

Additional ancilla qubits may be required to implement the LCU gadget

(e.g., in the sparse access model) or for the reflections used in robust oblivious

amplitude amplification.

As discussed above, implementing each segment requires one use of ro-

bust oblivious amplitude amplification, which makes two calls to the LCU cir-

cuit and one call to its inverse. The method incurs approximation errors from

truncating the Taylor series at degree K and from the use of robust oblivi-

ous amplitude amplification. The resulting error per segment is bounded by

(e ln(2)/(K + 1))K+1.

The cost of the LCU circuit depends on the Hamiltonian access model. For

the case of the Pauli access model, the LCU circuit requires two calls to a PRE-

PARE operation that prepares the ancilla registers with the correct coefficients.

In the compressed formulation [718], this requires O (L + K) gates (compared

to O (LK) gates in the original formulation [137]). The LCU circuit also re-

quires one call to a SELECT oracle, which can be implemented using K con-

trolled select(H) operations. Each of these K operations can be implemented

using O (Ln) elementary gates [283, 75] (using quantum read-only memory).

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.3 Taylor and Dyson series (LCU) 221

The overall gate complexity in the Pauli access model is thus

O
(∥H∥1tLn log(∥H∥1t/ϵ)

log log(∥H∥1t/ϵ)

)
= Õ

(
∥H∥1tLn log

(
1

ϵ

))
.

Using the LCU approach applied to a 1-sparse decomposition of a d-sparse

Hamiltonian, the overall complexity is [137]

O
(

d2∥H∥maxtn log2(d2|H|maxt/ϵ)

log log(d2∥H∥maxt/ϵ)

)
= Õ

(
d2∥H∥maxtn log2

(
1

ϵ

))
,

where ∥H∥max = maxi, j|⟨i|H| j⟩|. Using the amplification technique of [715],

which utilizes quantum singular value transformation (QSVT), the dependence

on d and ∥H∥max can be improved in some cases.

The extension to time-dependent Hamiltonians, through the use of a Dyson

series, requires an additional “clock” register to store the time value and intro-

duces a logarithmic dependence on the time derivative of the Hamiltonian [615,

141, 718].

Caveats

Concrete resource estimates for physical systems of interest have observed

that the Taylor series approach may require more ancilla qubits and gates than

product formulas or quantum signal processing approaches for Hamiltonian

simulation [283], although these qubit counts would be improved by the sub-

sequent compression approach to the algorithm [718]. The gate complexity of

the algorithm can be reduced by exploiting anticommutativity in the Hamilto-

nian [1086], adding a corrective operation [804], or pruning terms with small

magnitudes from the expansion [759].

Example use cases

• Physical systems simulation: quantum chemistry (see [73, 74, 962, 718]),

condensed matter systems, quantum field theories.

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation, quantum adiabatic algorithm.

• Hamiltonian simulation in the interaction picture [718].

Further reading

• A comparison of several Hamiltonian simulation algorithms, including Tay-

lor series [283].

• Derivations of the compressed variants of Hamiltonian simulation via Tay-

lor/Dyson series [718, Appendices B & D].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

222 11. Hamiltonian simulation

11.4 Quantum signal processing / quantum singular value

transformation

Rough overview (in words)

Quantum signal processing (QSP) and quantum singular value transforma-

tion (QSVT) are techniques for applying polynomial transformations to block-

encoded operators. These techniques can be used to implement Hamiltonian

simulation, given a block-encoding of the Hamiltonian. Both approaches have

optimal scaling with t and ϵ for time-independent Hamiltonians.

QSP was initially developed for the d-sparse access model [716]. Through

the introduction of block-encodings and qubitization, it was made applicable

in a standard form to Hamiltonians in a Pauli access model, d-sparse access

model, or given as density matrices (where we are given access to a unitary that

prepares a purification of the density matrix) [717]. QSVT was later developed

as a more general and direct route to the results of QSP [429].

Hamiltonian simulation via QSP or QSVT is less well suited to time-

dependent Hamiltonians, as the need to Trotterize the time-dependent

evolution breaks the optimal dependence on the parameters.

Rough overview (in math)

Access to the Hamiltonian H is provided by an (α,m, 0)-block-encoding UH

(the case of approximate block-encodings can be treated using [429, Lemma

22]) such that

(⟨0m| ⊗ I)UH(|0m⟩ ⊗ I) = H/α.

The Hamiltonian has a spectral decomposition of
∑
λ λ|λ⟩⟨λ|. We seek to use

UH to implement an operator U(t) approximating

∥U(t) −
∑

λ

eiλt |λ⟩⟨λ|∥ ≤ ϵ.

Qubitization converts UH into a more structured unitary W (which is also

a block-encoding of the Hamiltonian). The eigenvalues of W are e±i arccos(λ/α),

directly related to those of H. QSP then enables polynomial transformations

to be applied to these eigenvalues, which defines the application of the poly-

nomial to W. This concept can be generalized via QSVT, which effectively

unifies the qubitization and QSP step.

In both cases, our goal is to implement a block-encoding of U(t) ≈∑
λ eiλt |λ⟩⟨λ|, which defines Hamiltonian simulation. In QSVT we separately

implement polynomials approximating cos(λt) and i sin(λt), combine them

using a linear combination of block-encodings, and boost the success prob-

ability using three-step oblivious amplitude amplification. Further details

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

11.4 QSP/QSVT 223

can be found in [429, 744]. Meanwhile, QSP implements exp(itH) directly

but requires an additional ancilla qubit and controlled access to a Hermitian

block-encoding U′
H

, which, when implemented via Eq. (10.5), uses both

controlled UH and U
†
H

resulting in a factor of ∼ 4 overhead [717]. Altogether,

these considerations suggest that the QSVT-based approach might have a

slightly better complexity, particularly when controlled UH is significantly

more costly to implement than UH . If UH is already Hermitian, then QSP can

have a lower complexity.

Dominant resource cost (gates/qubits)

Using either QSP or QSVT, block-encoding a degree-k polynomial f (H) is

performed using O (k) calls to the block-encoding UH [717, 429]. Hence, the

degree of the polynomial approximating eiHt determines the complexity of

Hamiltonian simulation using these techniques. As noted in [429, Corollary

60], we can rigorously bound the resources for Hamiltonian simulation via

QSVT for all values of t as using

O
(
αt +

log(1/ϵ)

log(e + log(1/ϵ)/αt)

)

calls to the (α,m, 0)-block-encoding UH . This query complexity is opti-

mal [134, 429], although the block-encoding can hide additional complexities,

in practice. In some cases, the dependence on norm parameters can be

improved by exploiting details of the simulated system; see [715, 714].

For a Pauli access model, the block-encoding is implemented using the lin-

ear combination of unitaries (LCU) primitives PREPARE and SELECT. For

a Hamiltonian with L terms α = ∥H∥1, m = O (
log(L)

)
, and two additional

qubits are required for QSVT. The overall gate complexity depends on the ex-

act implementation of PREPARE and SELECT, which can often be tailored to

the Hamiltonian of interest. In the worst case, PREPARE uses Θ(L) gates, and

SELECT uses Θ(nL) gates (although these can be significantly improved by

exploiting structure in the Hamiltonian; see, e.g., [75, 1011]). Thus, the overall

worst-case gate complexity is

O
(
nL

(
∥H∥1t +

log(1/ϵ)

log(e + log(1/ϵ)/∥H∥1t)

))
.

For a d-sparse access model, α = d∥H∥max, where ∥H∥max = maxi, j|⟨i|H| j⟩|,
m = O (

log(d)
)
, and two additional qubits are required for QSVT. The overall

gate complexity depends on the cost of sparse access to elements of H. As-

suming a circuit for sparse access with constant gate complexity, the overall

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

224 11. Hamiltonian simulation

gate complexity is

O
(
d∥H∥maxt +

log(1/ϵ)

log(e + log(1/ϵ)/d∥H∥maxt)

)
.

Using the QSVT-based amplification technique of [715], the dependence on

d∥H∥max can be improved in some cases.

The density matrix access model seeks to perform time evolution under eiρt,

given access to either multiple copies of ρ or a unitary Uρ that prepares a

purification of ρ. Given Uρ, we can prepare a block-encoding of ρ [717] (see

Section 10.1 on block-encodings for details) with α = 1. If the gate complexity

of Uρ is C(Uρ), then the overall gate complexity is

O
(
C(Uρ)

(
t +

log(1/ϵ)

log(e + log(1/ϵ)/t)

))
.

Caveats

The method was found to perform competitively with Trotterization (and bet-

ter than Taylor series) in concrete resource estimates for simulating spin-chain

Hamiltonians [283]. While that work had difficulty calculating the QSP phase

factors, this issue has since been addressed with the development of classi-

cal algorithms for finding the phase factors (e.g., [431, 477, 356, 255], and

successors). Nevertheless, this contributes a classical preprocessing cost to the

algorithm.

It is currently unclear how to perform optimal time-dependent Hamiltonian

simulation with these methods, without resorting to Trotterization. Some ini-

tial investigations have shown promising results using clock Hamiltonian con-

structions [1027] or for time-periodic Hamiltonians [770, 769].

Example use cases

• Physical systems simulation: quantum chemistry, condensed matter systems

(see [283]), quantum field theories, differential equations in plasma physics

(see [803]).

• Algorithms: quantum phase estimation, quantum linear system solvers,

Gibbs state preparation.

Further reading

• Pedagogical overviews [744, 687].

• Comparison of several Hamiltonian simulation algorithms [283].

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781009639651.014
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.129, on 26 Jun 2025 at 14:33:26, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009639651.014
https://www.cambridge.org/core

