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ERGODIC PROPERTIES OF THE STEPPING STONE MODEL
SEIICHI ITATSU

§1. Introduction

The purpose of this paper is to discuss some ergodic properties of
the stepping stone model proposed by Kimura, M. [4] and developed by
Weiss, G.H. and Kimura, M. [12]. Our model to be discussed in this
paper involves selection in addition to mutation and migration which are
dealt with in [4], [12]. Because of the additional factor selection, the
stochastic process describing our model becomes complicated and presents
particularly interesting profound structure of the random phenomena in
question.

To describe the model mathematically, basic terminologies and nota-
tions are now introduced. The d-dimensional integer lattice Z¢ is denoted
by X, which is considered as the set of colonies. We assume that all
the colonies have the same population size N. The set of possible states
of gene frequency is therefore given by G = {k/(2N); k = 0,1, - - -,2N}. Set

S = G*%,
which is the set of sequences of gene frequencies. The Markov process
{p(n); n > 0} on S describing our model is defined by the transition prob-
abilities @(p, A), prescribed below, in the following manner:

We consider the alleles A,, A,, and by the gene frequency we mean
frequency of genes of the allele A,, We assume that the allele A,
mutates to the allele A, and A, mutates to A, with rates u, v (0 < u,
v < 1), respectively, and that migration into x occurs from colony z with
rates 2,,C., 4. = 1,2,, > 0), and that selection occurs in any colony x,
in which relative fitness of A, and A, are 1 +s,/2 and 1 —5,/2 (—2<
s, < 2), respectively. Then we can define a map H from S into [0, 1]* by

(1.1) Hp), = L+ 8/DA—u—0)2,2.p. + 0}
sx{(l —u— U) Zz lxzpz + U} + 1-— s;c/z
xeX, for p = {p,},exeS.
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Given a finite subset Y of X and integers k,, x€ Y, let A be the cylinder
subset of S determined by them; namely A = {p = {p.}. € S; p, = k,/(2N);
xe Y}. Define a transition probability @(p, A) by

Qp, A) = T1 GHH(p)A(1 — H(p))" .

The Markov process {p(n); n > 0} is defined by an initial probability
measure p and the transition probability @(p, A). Then we have

P(p(n + e Alp(n) =p) = Q(p, A).

This means that for a given sequence of the gene frequencies p the genes
of the next generation are randomly chosen with the probability H(p),
from the colony x. The probability is one of the important character-
istics of the model. The model involving selection has been investigated
by Nagylaki, T. [9], [10], Maruyama, T. [7], Itatsu, S. [3], and Shiga, T.
and Uchiyama, K. [11], in which the properties of the measures are
treated, in terms of Markov process.

We are particularly interested in the case where u >0, v= 0, {2,.}
is homogeneous, 1,, = 4,,_,, and s, = s for some constant s. In the fol-
lowing only this case will be considered.

Our first aim is to investigate the asymptotic properties of the right
and left extremes of linearly ordered colonies, where A, genes survive,
starting from some special initial states. First of all, our problem of
obtaining limit theorems for the Markov chain {p(n) = {p.(n)}; n > 0}
is paraphrased to limit theorems for the spin system on state space
{0, 1}12¥xX " which has been discussed in the author’s paper [3]. After
that, we introduce a generalized percolation process defined by inde-
pendent random variables, which has the same law as the spin system.
The process plays an essential role in the proofs of Theorems 1 and 2.
In particular, the subadditive ergodic theorem discussed in [1] is ready
to be applied with the help of the generalized percolation process.

Our second aim is to investigate the ergodic properties of the step-
ping stone model, which have been partially discussed in [3]. We will
obtain much finer results than in the author’s previous paper [3]. The
convergence theorem for p(n) with translation invariant initial distribu-
tions is clarified and the limit distribution is shown to be a convex
combination of two extremal invariant measures.
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§2. Theorems

Our main results can be summarized in the following theorem: Theo-
rems 1-3. We assume d = 1 in Theorems 1 and 2. Set r, = sup {x; p.(n)
#+ 0} and ¢, = inf{x;p(n) ++ 0}. We tacitly understand that r,= — oo
and 4, = + oo if {x;p,(n) #+ 0} = @. Denote the indicator function of a
set I by X;. Then we have

THEOREM 1. Assume that

2.1) the number of {x; 4, + 0} > 2
and that
(2'2) Za: ZOxixlz < + oo .

(@) If p,(0) = X(_..,(%) for the initial state p(0) = {p,(0)},, then there
exists a€[— oo, o) such that

limr,/n=a as.

n—co

If p.(0) = X,.)(%), then there exists pe(— oo, o] such that
limé,/n=8 as.

n—sco

(b) Write a(s) = «, and p(s) = B, expressing the dependence on s.
Then, for any compact set K C [0, 2), there exists cx > 0 such that

a(s) — a(s) > cx(s — &) and — B(s) + B(s') > cx (s — &)
for s, s’ € K satisfying s > s’. There exists s, € (0, 2) such that

a(s) > p(s) for s> s,,
a(s) < B(s) for s <s,, and oa(s)) > B(s,).

If the assumption (2.2) is replcaced by
2.3) e lx[ 2, < o0 for some 6 >0,
then

a(s) = —co and B(s) = oo for s <s,.

Remark 1. The assumption (2.1) is not an essential restriction, be-
cause the case where the number of {x; 2, #+ 0} = 1 is trivial.
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Remark 2. Let p, be the critical value of the oriented bond percola-
tion. Precisely speaking, p > p, implies that there exists an infinite open
path starting the origin 0 with positive probability and p < p, implies
that, with probability 1, there is not any infinite open path starting 0.
Using this constant p,, we can get an estimate on the constant s, in
Theorem 1 as follows. Let x, < x, be arbitrary distinct elements of the
set {x; 4, #+ 0}. Then

8 < 2(2p, — p; — b)[{2p. — p; — (1 — 4p, + 2p))b}
where b = (1 — w)(1/(2N)) min {A,,,, Az,}-
Remark 3. The constants a(s), p(s) can be estimated as follows.

a(s) = {(x — xa(p) — 2 — %}/2,
Bs) < {— (0 — x)a(p) — % — x}/2,
when
s> 22p — p* — b)[{2p — p* — (1 — 4p + 2p")b}.
Here, x,, x, are the same as in Remark 2, and «,(p) will be explained in

the proof of Theorem 1.

Remark 4. Suppose that the migration matrix {1,,} is symmetric.
Then we see that

B(s) = — afs) .
Hence, the inequality
a(s) > pls)
is equivalent to a(s) > 0, and the inequality
a(s) < B(s)

holds if a(s) = — oo.
If (2.2) is strengthened by (2.3), then

a(s) < B(s)
holds if and only if a(s) = — oo.

THEOREM 2. Under the assumption of Theorem 1, let the initial state
p(0) be given by p.(0) = (L/@N)(o(x). Set

0y = {liminfr,/n > lim sup /,/n} .

n—00 n—
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Then there exists s, € l[s,,2) such that , has a positive probability for
s > s, and probability zero for s < s,.

Let d > 1, and let & be all translation invariant measures on S.
Let 0 and 1 be elements of S defined by p,(0) =1 for all xe X and
p.(0) = 1 for xe X, respectively. Then we have

THEOREM 3. Suppose the random walk on Z* with transition prob-
abilities {1,,} is irreducible and aperiodic. Then for any pe %,

lim p@" = ady + (1 — a)y

n->c0

where a = p{0} and v is the inveriant measure given by

y = lim 51Q" .

n—co

In particular {y; @ = p} N & are the convex combinations of d and v.

Theorem 3 does not exclude the possibility v = §y in general. How-
ever the case v = §y which seems to be of main interest has been
discussed in [3]. We have now obtained limit theorems which bear char-
acteristic features of each case. Now we pause to review the result in
[3].

Let

S=G*, X=2z,

as mentioned above. Assume that the matrix {1,,} is given by

g = Apsep=131—2dm ifx=2z
0 otherwise ,

where 0 < m < 1/(2d). Then, there exists s, ¢ [2u(2 — w)~!, 2) such that
the stepping stone model is ergodic for s < s, and not ergodic for s > s..
Combining this with Theorem 3, we obtain the next statement: If
s < s,, then for any probability measure p on S
lim ;,LQ“ = 50 ’
while, if s > s,, then the invariant measure v is distinct from §, and, for
any pe s,

lim p@Q" = ady + (1 — @),

n—co

where a = p{0}.
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Furthermore, the relation between the critical values s, and s, is
S < S,
because the inequality a(s) < 0 obviously implies the equality
lim 4@" = 3y .

n— o0

§3. Ergodic theorems on discrete time spin systems

For the proofs of Theorems 1, 2 we need to introduce the discrete time
spin systems defined by Liggett, T [5] and apply the ergodic theorems
for them to the stepping stone model. Suppose that W is a countable
set and let p,(y) be a function on W X {0, 1}* and satisfy 0 < p,(p) < 1.
The spin system 7, on {0, 1} corresponding to {p,()} is the discrete time
Markov chain defined by the transition law

Pilpw)=1,weT]l =[] puly) for TC W.

weTl

Then the next comparison theorem follows (see Lemma 1 in [3]).

LemMA 1. Let 7}, 75 be spin systems 7, 75, on {0, 1} corresponding to
{ou)}, {ou(n)}. Assume

o) < o) for n< L,
and

Then there exists a spin system T, = (3.,(,) on {0,1}" X {0,1}" such
that 5, and ¢, have the same law as 7, and 7., respectively, and that

7 <8 forn>0.

Set W={1,.--,2N} X X, and put
p(j,z)(v) = H(Zizl 77(k7 )/(2N)).r ’ fOI‘ (]’ x) € W and 77 € {09 1}W )

where H is the probability given by (1.1). Define the spin system 7, on
{0, 1}" with transition law corresponding to p. Then by [3], &.(x) =
N 7.(J, x)/(2N) is a Markov process with the same law as our stepping
stone model p,(n).
In order to prove the Theorem 1 we need to use the theory of ori-
ented percolation processes. The next Lemma 2 asserts the subadditive
ergodic theorem (see [1], [6]) for such processes.
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Lemma 2. Suppose that {X, ., m < n} are random variables which
satisfy the following properties:

(@ X,0=0 X,<Xon+ Xy for 0<m< n.

(b) {Xinu_tyr,ars n > 1} is a stationary process for each k > 1.

©) {Xpmsw B>0} and {X,,1mixs1, B > 0} are the same distribution
for each m.

d) EX;, < + oo (X§, = max (X4, 0)).
Let o, = EX,, < + oo, which is well defined by (a), (b), and (d). Then

. . o .
a=1lim % =inf " ¢[— o0, 0) and X.= l1m—)£°'_"
n—co R n>l N Nn~o00 n

exists a.s., with — oo < X, < oo. Furthermore, EX, = a. If > — oo,
then

lim E | Xon

n—oo n

- X.|=0.

If the stationary process in (b) are ergodic, then X, = a a.s.
Let ,(j, ) = X(_,(x). For 5, put
r, = sup {x; 5(j, x) # 0 for some j},
then we have

LEMMA 3. Suppose >, A |xf < . Let «, = Er, < + oo, then
(@) a=lim,... (@,/n) = inf, (@u/n) € [— o0, o0),

®» lim,..(r./n) =« as., and

(¢) if « > — oo, then lim,_., E{(r,/n) — a| = 0.

Proof. Let the function of 5

(1 —s/2fu + A — w) 3., ./2N)A — 5G, 2))}
(1 —w) — {0 — w) 20i.: A./@2N)A — (G, 2)} + 1 — /2

to express the expansion of power series of 1 — 7,
(31) 1-— p(jw)(v) = Zf(]vx)(B) ) ﬂ (1 - 7)(": y)) ’
B (i,y)EB

where the coefficients f;,, ,,(B) are expressed in the form

1— z =
0, >(77) S

(1 — s/2)(1 + 5/2) Tt oo 7
AT 2= D 5ttty ot Rosd)

X 2N)"(1 — wls/{1 + s(1/2 — w}]** for B+ &,
and
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1 — s/2u

] A for B= ¢ .
1+ s(1/2 — w) o @

Here the above sum is taken over the al n> 1,4, --+,i,,2 ---,2, such
that {(i,, 2), - - -, (i, 2,)} = B. Then {f,, ,,(B)} satisfies f,, ,,(B) > 0 for every
B. Evaluate both sides of (3.1) at y = 0. Then > ,f ,(B) = 1, because
0u.0(0) = 0. Let us define the probability space (2, P) and the inde-
pendent random variables {8, .}wew,»>1 With values on finite subsets of W,
by P(B.,. = B) = f,(B) for any finite subset B of W. For n>0, z,we W
we define the bond (w,n — 1) to (2, n) is open by weB,,,. We define the
oriented percolation on W X [0, o) by the method which is familiar in
the theory of the percolation processes ([1]). For & €{0,1}", &,€{0,1}"
is defined by &,(w) = 1 if there exists a path of open bonds from (2, 0)
to (w, n) for some z with &(2) = 1 and &,(w) = 0 otherwise. Then &, is
the Markov process with transition probabilities

P = 116) = ZABA — [ (1 — £@) = 0.6

Therefore &, is subject to the same law as the one with the spin system
7.. We call &, the generalized percolation process (g.p.p., see [2]).
Define r,, = max{xe Z; there exists a path of open bonds from
@@, 9),0) to ((j,x),n) for some y<0 and i,j} for 0<n and r,, =
max {x € Z; there exists a path of open bonds from ((i, y), m) to ((J, x), n)
for some y<r,, and i,j}—r,, for 0<m<n. Then r,,=r, and
X,.n = I'n,, satisfies (a), (b), (c) of Lemma 2. The assumption of (d) is
satisfied by following: -
Ery = i x[l _ (1 _ A+ s2A —uw) DAy )ZN]
a=1 1—5/2+8(1— w2 ey
X I ( _ 1+ 520 —uw sz—z Aoy )m
>z+1 1— 8/2 + 3(1 - u) Zys-z 101/

1482, (=y+ D=y .
gle_slza 2P 5 Ry < + 0.

Since r, is the same law with r,,, Lemma is proved. Q.E.D.

Set r? = max {x € Z'; there exists a path of open bonds from ((Z, y), 0)
to ((J, x), n) for some (i, y) € B and j}, where BC W. Then we have

LeEmmaA 4. Suppose B C A, where the number of {x > 0; (i, x) € A for
some i} < 4 oo, and let C be any finite set. Then
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0 < raVe — A < rBYU0 2,
In particular, for BC {1, ---,2N} X (— o0, — 1],
E@rzotaor — By > 1/(2N) .
Proof. Denote the g.p.p. with the initial state & by &, then
& =& VE

where for & »€{0,1}7, §Vye{0,1}" is defined by (¢ V p)(w) = max {&(w),
np(w)}. This implies the first relations of Lemma by the same proof as
that of Lemma 2.21 of [6]. For BC {l, ---,2N} X (— o, — 1], we have

E(rfu((ho)) — rf) > E(r;tl,-~-,2N)X(—°°.—IJU((1.0)} — l‘,{,l""’zN)X(°°°’—1])
Z E(ry{bl,...,ﬂv)x(—oo,—l]U(l,-‘-,i+1)x{0)

_ r}LI,---,ZN}X(—w,—IJU(l,"',i}X{O}) .

The last term is nonincreasing in i and

E(pfor Mol _ plleesaNiX ey — ]
holds by the translation invariance. Therefore we have

1
E(rpuiao) _ p5) > 1 ED.
r )2 on Q

LemwmA 5. For the spin system p, with n(j, x) = X n(x) put « = als),
and suppose the number of {x; A, # 0} > 2. Then
a(s) — a(s’) > c(t)(s — &) 0<ed<s<<t<2,

whenever a(s’) > — oo, where

o(t) = inf (1 — 5/2)**@V" exp (— _Lm) ,
0<s<t 1— 3/2

and c,, ¢, are positive constants, and k is a positive integer.

Proof. We will prove the Lemma similarly to the proof of the theo-
rem (3.14) in [1]. Set «, = a,(s), then if s > s/, for any initial states
(n,7) with 7 > 7’ we can construct spin systems 7,, 7, on the same space
of the probability measure P77 with parameters s, s’ respectively such
that », > 7, and set r,, r, as each rightmost points respectively. Then
r,>r. Let

t=1inf{n;r, > r;}.

By Lemma 4
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E(r,—r) > E(r,—ry;t<n)> (1/@2N)P(x < n).
By Markov property
P(z>n)< sup P""(r,=r))P(r>n—1).
7'< 9, 7#0
By the assumption there exist x,, x, (x, < x,) such that 2, # 0, A,, # 0.
If x = sup{y; 7’(j, y) # 0 for some j}, then

P, >r)>Pri(rp=x—x, 7. <x—x).

By translation invariance of the probability law of 7,, we can assume
x = x,. Hence

(32 Pl >r) > P AN () AWN ) ALN () AD

= P A0 N AGN O AL

> P((Ap — AN AL N ) A%

2 (oo = eao@N = pap@)* ™[I A = pan@)™
where A, = {7, k) = 1} and A, = {51(i, k) = 0} for any (i, k) € W, because

of the construction of the spin system. Let x, < x, be an integer such that

< .

wsTo 2

Then for any y > x, — x, we have

(3.3) 1= pon 2 om (- 235 LA~ w3 ).

wL~Y+T1

Since 1 — pa,,(p) = (1 — s/2))/(1 + s(1/2 — w)) for any y, from (3.2), (3.3)
we can prove

Pri(ry>r) > ( u(l — s/2) )2N—1+(2N)(z,_,o)

14 s5(1/2 — w

X exp (— 4N1 + zg(l P w)Ro,,,)
. (s—=s8)1 =) .

X inf {-((s’r F1—s/2)6r +1—52)°

- ”);—N <r<(—uwl-— zwg}

> (1 — g/2)N-1+eN(@-20) gx (_ Gy )S — g,
> o1 — 52 p(—tp)e—9
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where ¢, ¢, are positive constants. Put k= x, — x, and

oft) = inf o1 — sf2P- eVt exp (— ),
0<s<t 1 — 8/2

then for 0 < s/ <s<¢t
Pe<n>1—1-—c)s — s)".

Therefore the inequality
1
— n > —(1 — — g
an(8) — a,(s") > SN [1— (@ — (s —sN"]

holds. The method of the proof of (3.14) in [1] can therefore be applied.

For any M > 0
> M- (1- =)

Then

lim 2 (a,(5) = (&) = 2 [1 = e-eoe- ],

Let M — oo to obtain the desired inequality
a(s) — a(s’) > %)—(s — ). Q.E.D.
LEmMMA 6. Under the assumption of Lemma 5, if s < 2u(2 — u)~!, then
a(s) = — oo holds.

Proof. Put a = (1 — uw)l + s/2)(1 — s/2)-*. Then the condition s <
2u(2 — w)~' implies a < 1. Let {27} be the n-th power of the stochastic
matrix {2,,}, then for any 7 (¢« <7 < 1),

E(r, + 2rr")"<E 21 (x+2r "m0, 0 < >Z a™(x + 2r°") %22'3 ,
4 >-2r=n Yy

x>-=2r—"n,

since E(j, x) < a(1/2N) 3., 2,5, ¥). By homogeneity of 1,,, we have
2, e+ 2 Ay = 20 AP 2 (et 2
y<

z>=2r—" 2<2r— " —-2r— <L ~2
< 22 Aap2rrl+ 1 =22 "1 + 2 - 2)2.
22"

Let P° be the probability measure of the random walk X, with transition
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probabilities 1,, and with the initial point 0, then the last term is bounded
above by 1+ (3/2){[2r "] + 1 — nE°X}) + (3/2nE°(X, — E°X))* < 4r-** for
all large enough n. Therefore

lim 7"E(r, + 2r-")* < lim 4(%) ~0.
This implies P(r,> — 7 ") —0 as n— oo, and r,/n > — oo in law as
n — co. Because r,/n — « a.s. by Lemma 3, we can obtain & = — oo.

Q.E.D.

We use the result on limit Theorems by Corollary 2 of Theorem 1 in
Nagaev, S.V. [8] as following:

Let &,&, ---,&, -+ be a sequence of identically distributed inde-
pendent random variables with distribution function F(x), E&; = 0 and
variance of & = 1, and let F,(x) be the distribution function of >72_, &,.
If ¢, = E|&;," < o0, m > 2, then

1— F(x) < Bnlall.
xm

for

x> 4Jn max [log 'Iz;ﬂ_l X O] ,

m>m

where B, is an absolute constant depending only on m, and
K,=1+(m+4 1)m*%e ™.

Lemma 7. Assume (2.3) and suppose s < s,. Then there is a positive
constant K depending only on s such that

(3.4 P4y, # 0) < K|Aln~'~*
for all finite set AC W, and n > 0.

Proof. Using the additive property of g.p.p., we see that it suffices
to prove the following inequality.

Prom(y, # 0) < Kn~'-?.

By Lemmas 4, 5, a(s) < f(s). Let h be a constant such that a(s) < h <
B(s). Then by part (a) of Lemma 3, a,(s) < mh for some m > 0. Using
the notation in the proof of Lemma 3, recall that

{r(n—l)m,nm’ n 2 1}
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are independent and identically distributed random variables with mean
an(s). Furthermore, let 7, = r, — nh and 7,, = r,.— (n — m)h. Then

n
(3.5) Fam = To,nm < kZE Fe-1ym,m «

The condition (2.3) implies
E((ri)) < + oo.
Since «,(s) < mh, we have
EF,V(—M)<o0

for sufficiently large M. Hence we get

P(é Fotymm = 0) < Kin~-*
by Nagaev’s result, where K, is a positive constant. Therefore by the
relation (3.5)
P, >0 < Kn'?
for all sufficiently large n. Similarly
P, — nmh < 0) < K,n~'-*?

for all sufficiently large n and for some positive constant K.
For 7, = X4,0, the relation {y, # 0} C {¢, < r, for all { < n} implies

PraoN(y,, + 0) < P(¢, < r;, for all i < nm)
< P(lyn < Tom)
< P(lyn < nmh) + P(r,n, > nmbh)
< (K, + K)n°.

Since P*@wol(p, = 0) is monotone in i, it follows that (8.4) holds with
K = m"(K, + K,). Q.E.D.

LemmA 8. Assume (2.3) and suppose s < s,. Then there is a positive
constant ¢ so that

(3.6) P(r,>—n'**)—>0 as n—> .
In particular, a(s) = — oo.

Proof. Write the initial state 7,(j, x) = X(_...o(x) which is used in
defining r, as
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x(—w,O](x) = X(-w,—2nl+€](x) + X(—2nl+$.0](x) .

By the additivity property and the translation invariance of the spin
system 7,, it follows that

P(r, > — n'**) < P(r, > n'*%) + Poavxmsa0=(y, = (),
By the subadditivity of r,, for any e ¢ (0, §)
P(r, > — n'*) < P(r, > n'*%) + 2K@2N)n'*<n--*
where K is a constant in Lemma 7. By Lemma 3 we have,
P(r, > n'*s)—>0.

Combining the last two inequalities gives (3.6). Q.E.D.

§4. Proof of Theorems 1 and 2

Because {327, 7.(j, ¥)/(2N)} has same law as the stepping stone model,
the statement (a) of Theorem 1 holds by Lemma 3.

Let &,(x) and £(x) be the original oriented bond percolation processes
on Z' satisfying initial states X _..,(x) and X (x), respectively (see [1]).
Let p be the probability that each bond from (x,n) to (y,n + 1) satis-
fying y = x + 1 is open.

Proof of Theorem 1. By [1] there exists the critical value p, > 0 such
that a,(p) = lim,_., sup {x; £,(x) = 0}/n > 0 if p > p.. Define the map G,
from Z' to Z' by G,(x) = {(x, — x)x — n(x, + x)}/2, and let 7,(j, x), j =
1, ---,2N be independent copies of &,(x). Note that {7.(j, x)} is a spin
system with transition law corresponding to {p}; ()} where

ot,0® = pp(j, x — 1) + pp(j, x + 1) — pp(j, x — Dy, x + 1).

Define the spin system 7. corresponding to {5, .(n)} with #(j, x) =
X(—w,oi(x) and

Btro® = pp(, x + x) + pp(J, x + %) — p*p(J, x + x)9(J, x + x,).

Then {7.(J, G,(x))} has the same law as {7.(j, )}. Recall that the spin
system {7,(j, x)} has the transition law corresponding to {p (7))} We
will show there exists a positive constant s,€(0,2) such that for s > s,
the inequality

(4.1) B, < 0,
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for any (j, x) € W and 7€ {0,1}”. Note that

(1 + 8/2)(1 _ u)(]-/(ZN)) min {2011’ 2102}
@2 euald) 2 T T = wA@N) min (e, 2]

X {9, x + %) + 9(j, x + %) — 5(J, x + x)9(j, x + x,)}.

Put
b = (1 - u)(]-/(zN)) min {201‘1$ 2012} 9
and
_ I 2p — p’ _1_ _ 2
fo) = 2p —pt — b} /{2 1 (1 — 2p 4 p*)} .
Obviously we see that if s > f(p),

(1 + 5/2)0 — wW)(A/CN)Az,E1 + Aoibo}
1—5/24s(1— u)(1/(2N)){2011§1 + Aoanfo}

for any &, &,€1{0,1}. Hence, by (4.2), if s > f(p), (4.1) holds. The com-
parison theorem (Lemma 1) and the inequality (4.1) imply that

D& + p&, — P&, <

4.3) P(sup {x; 7.(J, x) # 0 for some j} > a)
> P(sup {x; 75(J, x) = 0 for some j} > a)
> P(sup {G.(x); 7:(j, x) = 0 for some j} > a).

Evaluating the both sides of (4.3) at a = na’, we get
P(r,/n > a) > P(mjax Finln > a)
where
Fin = sup {G.(x); 9:(J, ®) # O}

Since the laws of r,/n and max; 7, ./n converge to the laws of constants
a(s) and {(x, — x,)a(p) — %, — %,}/2, which may be — oo, we obtain

a(s) > (x: — x)a(p) — % — %
- 2

and

Bls) < — (o, — xl)“oz(P) — %%

Therefore if s > f(p.), a(s) > p(s) holds. Hence, by the fact that «(s) —
B(s) is strictly increasing if a(s) > — oo and p(s) < o in Lemma 5 and
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that a(s) = — o and f(s) = oo if § < 2u(2 — u)~' in Lemma 6, the state-
ment (b) of Theorem 1 is proved with 2u(2 — u)~! < s, < f(p.).

If we assume (2.3) in place of (2.2), then from Lemmas 7 and 8, we
obtain the results

a(s) = — oo and p(s) = o for s <s,. Q.E.D.

Proof of Theorem 2. By [1}], if p > p., P(&%x) #= 0 for all n) > 0 and
lim,_., sup {x; &X(x) + O}/n = a(p) a.s. on {£%(x) # 0 for all n}, with initial
state &£)(x) = X;(x) for xe Z. Let 7i(1, x) be an independent copy of &%(x)
and let 7(j,x) =0, j=2,---,2N. Note that {5(j, x)} is a spin system
corresponding to {pi; ()} Define the spin system 7. corresponding to
{8t} with 7%(j, ¥) = Xq,0)(J, x). Put

E, = {x; 9.(j, x) # 0 for some j},
F, = {x; 73(j, ®) # 0 for some j},
F, = {x;74(j, x) # 0 for some j}.

Then by the comparison between 7, and 7}
P(lim inf (sup E,)/n > a and limsup (inf E,)/n < o')
> P(lim i;f (supF)n>a and lim s;p (nf F)/n < o)
= P(liyxtn (Zup F)n>a and liin (inf}',,)/n <a),
if
(44 s> f(p).
Therefore, if we put
A = {liminfr,/n = {(x, — x)ay(p) — % — %}/2},
B = {limsup 4,/n < {— (%, — x)ay(p) — x, — %:}/2},
2, = {p(n) :& 0 for all n},
A’ = {lim sup {x; £,(x) # O}/n = (D)},
B = {liminf {x; §,(x) # Ol/n = — (D)},
and 2] = {&, # 0 for all n}, then
(4.5) P(ANBN2)>PA' NB N

where p = §,0,. Therefore if

s > f(p.),
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we can find p > p, such that the pair s, p satisfies (4.4), and P,({lim infr,/n
> « and limsup ¢4,/n < '} N 2,) > 0 where

a = {(x, — x)a(p) — %, — x}/2 and B = {(x, — x)a(p) — % — x,}/2.

The inequality &« > g’ holds, because «(p) >0 for p > p,. Hence we
have 2, D {liminfr,/n > « and limsup ¢,/n < g’} N £,. Compare the two
spin systems {7.(j, x)} corresponding to {o,,(7)} satisfying initial states
X cwo(®) and %;q,0,(J, x), to obtain lim sup, r,/n < a(s) and lim inf, ¢,/n >
B(s). Hence, if s <s,;, then P{p(n) + 0 for all n} = 0. Thus Theorem 2
is proved. Q.E.D.

§5. Proof of Theorem 3

In this section, S denotes the set {0,1}” which will be a compact
metric space with product topology. We shall prove in the way similar
to Ch.III, Theorem 5.18 in [6] and Theorem 1.3 in [11]. We will use a
Lemma for the mixing properties of the distribution of 7,.

Denote by C(S) the continuous functions on S and by C(S) the
functions on S depending finitely many coordinates. Then since p,(-) €
C(S) and C(S) is dense in C(S), the map Q,: f — E*(f()) is a contrac-
tion from C(S) into C(S) with sup-norm ||-|. For any a e Z? define the
shift translation z, on S by z.(j, x) = 7(j, x + @) for any xe Z¢ and
define an operator T, on C(S) by

T.f(p) = f(zey)  for any peS.
Then we have

LemmA 9. For any f, g€ C(S), n > 1,

lim sup sup [ E7(f(7)g (za72)) — E*(fu))E"(8(zana))] = 0.

laj—e  y

Proof. The statement of the Lemma is equivalent to
(5.1) llli_rfl |Q(fTeg) — Q(NRNT.8) =0  foranyf geC(S), n=>1.

We will show the equality (5.1) by induction on n. First, we suppose
that f and g depend only on {5(j, x); x€ A, j} and {3({j, x); x € B, j}, respec-
tively, with finite A, B < Z% Let |a| to be large so that A N (c,) '(B)
= ¢j. Then

Ef(n)g(can)] = E[f(n))E"[g(za,)]
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holds. Since C,(S) is dense in C(S) and the map @, is a contraction
from C(S) into C(S), we get the equality (5.1) in the case where n = 1.
Translation invariance of p; ,(3) implies that

QT,=T,0, for any a e Z°.

Suppose n > 1. Assume the statement (4.1) is true for all £ < n. Then
by the assumption of induction,

lim sup |Q5*(fT.8) — Q¢*'f- Qi (T.8)|

la|—e
< lim sup | Q4(fT.8) — Qf Qi(T.8)]
+ lilrg sup |@(Q7f- T.Qr'g) — Q@) Q(T.Qrg)| = 0. Q.E.D.
Denote by &, the set of all translation invariant probability meas-
ures on S. Suppose that pc &, and that u{y; y = 0} = 0. Denote by P*

the probability measure of the Markov chain A, on F = {finite subsets
on W} with transition probabilities Q(A, B) defined by

0 — e =S QA B[ - 9] for any n€{0, "

wEA

then

62 A =E [0 — )] = [ BT 1 — )l
Then we need to show that

lim E* [ [1 — n.(w)] = 11113 EfxwL]A 1 — 7. (w)]

N
for all finite A C W. This is equivalent to lim,_. > 5., P*(A, = B)i(B)
=0, where AB)= J [Mwes [1 — p(w)ldy, because E* [[,eq [l — n.(w)] =
2.5 P4AA, = B)UB).

We shall show that for any ¢ > 0 there exists an m for which
(5.3 lil}cljoup sup {fn(B); |Bl|=k, BC W}<e¢

holds. By Lemma 9, for any ¢ > 0, C and n > 0 there is an L depending
on ¢, C, and n such that

(5.4) E”wIeTC [1—7w)]< wfelc E"1 — 9 (w)] + e,
whenever
(5.5) min {lx — y|; (G, x), (,»eC, (G x) = ({, N =>L.
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By Hodler’s inequality and the fact that ue &,
[ LI Bl — @) < [ 1B — 5,00, 00 “'u(dp
From (56.2) and (5.4), we see that for any B satisfying (5.5)
5.6) Aa0) < & + [ BT — 7,(1, Oy .

Since p{n; n =0} =0, {x; 47’ # 0} - Z* as n — oo, and the relation that

R, = {we W, there exists C such that w e C and that P'“(4, = C) > 0}
D {(J, x); 47 + 0},

holds, we see
;p=0on R} —>0, as n—> .
Combining with the relation

Bl — (1, 0 = B T] [1 — gw)],

we get that for any ¢ > 0 there exists an m depending only on ¢ such
that
pn; Emn(1,0) > 0} > 1 — &

holds. It follows from the Dominated Convergence Theorem that

(6.7 lim sup | [E"[1 — 7.(1, O]F'u(dy) < ¢

£— o0

Now, let £ be any positive integer, and let ¢ be any positive constant. If
| B| is ssufficiently large, there is a C C B so that |C| = ¢ and C satisfies
(5.4) and (5.5) for suitably chosen L. Then (5.6) gives

n(B) < n(C) < & + [ LBV — (1, O
so that
lim sup sup {£w(B); | B| = b, BC W} < ¢ + j [E"[1 — 7.(1, O)]Fu(dy)

for every ¢ > 0 and ¢ > 1. By (5.7), it follows that p, satisfies (5.3) for

some m.
Next we shall show

(5.8) lim P4(A,|=k) =0 for any k> 1.

n—oo
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Since
PYA,., =D, A, # @) = E*[P*(A, = @); A, #+ @] = E*[ci*JA,}+ &]
where ¢, = (1 — s/2)u/{1 + s(1/2 — w)} > 0, we have

ggCgPA(lAnl = k) = n}.;PA[AnH =@, A, + @] <1,
therefore we have
S PH(A|= B < + o0 for k>1,
n=1

to obtain (5.8). From (5.3) and (5.8) we get

(5.9) lim supBZ P4A, = B)i,(B) < ¢ for any e.
n—oo +Q
Note that
(6.10) > P4A,= B)uB)= >, (> P4A,.. = C)P°(A, = B)iB))
B+@ B+@ C+@Q
S Z PA(An-m = C)/jm(C) ’
C*+g

because @ is a trap of A,. From (5.9) and (5.10) we have
limsup > P4A, = B)a(B) < ¢
B£g

n—oo

for any e. Thus completing the proof. Q.E.D.
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