J. Austral. Math. Soc. 19 (Series A) (1975), 292-296.

HEREDITARILY UNIVERSAL SETS

ERIK ELLENTUCK*

(Received 16 April 1973)

Communicated by J. N. Crossley

Abstract

An immune set is found such that the recursive equivalence type of its infinite subsets are universal in a very strong sense.

1. Introduction

Let ω be the non-negative integers and for $\xi \subseteq \omega$ let $\langle \xi \rangle$ be the recursive equivalence type of ξ . A is of course the isols.

THEOREM 1. There is an immune $\eta \subseteq \omega$ such that for every infinite $\xi \subseteq \eta$ and $R \subseteq \omega \times \omega$ the graph of a function r, if $(\exists z \in \Lambda)(\langle \xi \rangle, z) \in R_{\Lambda}$ then r is eventually recursive combinatorial.

THEOREM 2. There is an immune $\tau \subseteq \omega$ such that for every infinite $\xi \subseteq \tau$ and $R \subseteq \omega \times \omega$ the graph of a function r, if $(\exists z \in \Lambda)(\langle \xi \rangle, z) \in R_{\Lambda}$ then r is eventually recursive increasing.

THEOREM 3. η may be taken to be Δ_2^1 and τ may be taken to be Π_1^0 (and retraceable).

Theorem 3 is a rather curious result. Theorems 1 and 2 look very much alike, the requirements on η appearing only slightly stronger than those on τ . We have no idea as to what degree the of η might be, our τ on the other hand is of degree 0'. As an open problem we ask if better upper bounds or perhaps some lower bounds could be found for η and τ ?

2. Details

Use lower case Greek letters for subsets of ω and let \emptyset be the empty set. Define $(\alpha, \beta)^{\omega} = \{\alpha \cup \xi \mid \xi \subseteq \beta \land \xi \text{ is infinite}\}, (\alpha, \beta)^{<\omega} = \{\alpha \cup \xi \mid \xi \subseteq \beta \land \xi \text{ is } \beta \land \xi \}$

^{*} Supported by The Institute for Advanced Study

finite}, $P = (\emptyset, \omega)^{\omega}$, $Q = (\emptyset, \omega)^{<\omega}$. A set $S \subseteq 2^{\omega} = P \cup Q$ is completely Ramsey if for every $\alpha \in Q$ and $\beta \in P$ there is a $\xi \in (\emptyset, \beta)^{\omega}$ such that $(\alpha, \xi)^{\omega} \subseteq S$ or $(\alpha, \xi)^{\omega} \subseteq 2^{\omega} - S$. The Galvin-Prikry theorem asserts that every Borel set is completely Ramsey (cf. Galvin and Prikry (1973)). We refer to this result as GP.

Let $R \subseteq \omega \times \omega$ be the graph of a function which is not eventually recursive combinatorial and let F be a recursive R-frame. We use standard frame notation from Nerode (1961). If $\gamma \in F^*$ and i < 2 let $C_F^i(\gamma)$ be the *i*th coordinate of $C_F(\gamma)$. dom and rng denote domain and range respectively. If $(\gamma, \emptyset) \in F^*$ put $\phi(\gamma) = C_F^0(\gamma, \emptyset)$ and then define

$$B(F) = \left\{ \xi \in P \, \middle| \, (\exists \gamma \in (\emptyset, \xi)^{<\omega}) (\forall \delta \in (\gamma, \xi)^{<\omega}) \phi(\delta) \subseteq \delta \right\}.$$

Note that we always have $\delta \subseteq \phi(\delta)$ provided $\delta \in \text{dom}(\phi)$. Let $\alpha \in Q$ and $\beta \in P$. Since B(F) is clearly Borel, GP gives us an $\eta \in (\emptyset, \beta)^{\omega}$ such that $(\alpha, \eta)^{\omega} \subseteq B(F)$ or $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - B(F)$. That the latter always holds is given by

Lemma 1. $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - B(F)$.

PROOF. Assume $(\alpha, \eta)^{\omega} \subseteq B(F)$. We strive for a contradiction. Now $\alpha \cup \eta \in B(F)$ and hence there is a $\gamma \in (\emptyset, \alpha \cup \eta)^{<\omega}$ such that $\phi(\delta) = \delta$ for all $\delta \in (\gamma, \alpha \cup \eta)^{<\omega}$. Without loss of generality we may assume that $\alpha \subseteq \gamma$ so that $\phi(\delta) = \delta$ for all $\delta \in (\gamma, \eta)^{<\omega}$. By shrinking η slightly we may also assume that $\gamma \cap \eta = \emptyset$. For the moment let δ range over $(\gamma, \eta)^{<\omega}$ and define $\psi(\delta) = C_F^1(\delta, \emptyset)$. Then $(\delta, \psi(\delta)) \in F$. Let $|\delta|$ be the cardinality of δ . Since R is single valued $|\delta| = |\delta'|$ implies $|\psi(\delta)| = |\psi(\delta')|$. Also

$$(\delta \cap \delta', \emptyset) \leq (\delta, \psi(\delta)) \land (\delta', \psi(\delta')) = (\delta \cap \delta', \psi(\delta) \cap \psi(\delta')) \in F$$

and thus $\psi(\delta \cap \delta') \subseteq \psi(\delta) \cap \psi(\delta')$. Since $(\delta \cap \delta', \psi(\delta \cap \delta')) \in F$ as well we have $\psi(\delta \cap \delta') = \psi(\delta) \cap \psi(\delta')$. Let p be a one-one function mapping ω onto η . Define θ on Q by $\theta(\lambda) = \psi(\gamma \cup p(\lambda))$. Then $|\lambda| = |\lambda'|$ implies $|\theta(\lambda)| = |\theta(\lambda')|$ and $\theta(\lambda \cap \lambda') = \theta(\lambda) \cap \theta(\lambda')$. These properties are inherited from the corresponding ones for ψ . θ is therefore a combinatorial operator inducing a combinatorial function $r: \omega \to \omega$ such that $(x + |\gamma|, r(x)) \in R$ for $x \in \omega$. Thus R is the graph of an eventually combinatorial function. Let $B = \{(\lambda, \mu) \in Q \times Q \mid \lambda \cap \gamma = \emptyset \land (\gamma \cup \lambda, \mu) \in F\}$ and $S = \{(x, y) \in \omega \times \omega \mid (\exists (\lambda, \mu) \in B) x = |\lambda| \land y = |\mu|\}$. B and hence S are r.e., the latter being the graph of r. Thus R is the graph of an eventually recursive combinatorial function. Since R was initially specified as not being such a relation, we have the desired contradiction.

Let $R \subseteq \omega \times \omega$ be the graph of a function and let F be a recursive R-frame. ϕ is as above and define

$$D(F) = \left\{ \xi \in P \, \middle| \, (\forall \gamma \in (\emptyset, \xi)^{<\omega}) \, \phi(\gamma) \subseteq \xi \right\}.$$

Let $\alpha \in Q$ and $\beta \in P$. Since D(F) is clearly Borel, GP gives us an $\eta \in (\emptyset, \beta)^{\omega}$ such

that $(\alpha, \eta)^{\omega} \subseteq D(F)$ or $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - D(F)$. We relate D(F) to the previous lemma by

LEMMA 2. If $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - B(F)$ then $(\alpha, \eta)^{\omega} \not\subseteq D(F)$.

PROOF. Assume $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - B(F)$, $\xi \in (\alpha, \eta)^{\omega}$ and $(\alpha \eta, \eta)^{\omega} \subseteq D(F)$. Since $\xi \in 2^{\omega} - B(F)$ there is a $\delta \in (\alpha, \xi)^{<\omega}$ such that $\delta \notin \operatorname{dom}(\phi)$ or $\phi(\delta) \notin \delta$. In the former case $\xi \notin D(F)$ and in the latter $\delta \cup (\xi - \phi(\delta)) \in (\alpha, \eta)^{\omega} - D(F)$, both of which contradict $(\alpha, \eta)^{\omega} \subseteq D(F)$.

Let $E(F) = \{\xi \in P \mid (\exists \zeta)(\xi, \zeta) \text{ is attainable from } F\}$.

LEMMA 3. $2^{\omega} - D(F) \subseteq 2^{\omega} - E(F)$.

PROOF. An immediate consequence of definitions.

Let $S_n \subseteq 2^{\omega}$ be a sequence such that for each $n \in \omega$, $\alpha \in Q$ and $\beta \in P$ there is an $\eta \in (\emptyset, \beta)^{\omega}$ such that $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - S_n$. That we can find a uniform η is given by

LEMMA 4. For each $\alpha \in Q$ and $\beta \in P$ there is an $\eta \in (\emptyset, \beta)^{\omega}$ such that $(\alpha, \eta)^{\omega} \subseteq 2^{\omega} - S_n$ for every $n \in \omega$.

PROOF. Shrink β slightly so that every element of α is less than every element of β . Let $\alpha_0 = \alpha$ and choose $\eta_0 \in (\emptyset, \beta)^{\omega}$ so that $(\alpha_0, \eta_0)^{\omega} \subseteq 2^{\omega} - S_0$. Now suppose we have defined α_n and η_n such that every element of α_n is less than every element of η_n . Let a_n be the least element of η_n . Set $\alpha_{n+1} = \alpha_n \cup \{a_n\}$ and choose $\eta_{n+1} \in (\emptyset, \eta_n - \{a_n\})^{\omega}$ so that for each $\alpha_0 \subseteq \gamma \subseteq \alpha_{n+1}$ we have $(\gamma, \eta_{n+1})^{\omega} \subseteq 2^{\omega} - S_{n+1}$. Then $\eta = \bigcup \alpha_n$ has the required property.

PROOF OF THEOREM 1. Let F_n be an enumeration of all recursive *R*-frames where $R \subseteq \omega \times \omega$ is the graph of a which is not eventually recursive combinatorial. Start with an immune set β and use GP and lemma 1 to get an $\eta \in (\emptyset, \beta)^{\omega}$ such that $(\emptyset, \eta)^{\omega} \subseteq 2^{\omega} - B(F_n)$ and either $(\emptyset, \eta)^{\omega} \subseteq D(F_n)$ or $(\emptyset, \eta)^{\omega} \subseteq 2^{\omega} D(F_n)$. By lemma 2, $(\emptyset, \eta)^{\omega} \subseteq 2^{\omega} - D(F_n)$ and by lemma 3, $(\emptyset, \eta)^{\omega} \subseteq 2^{\omega} - E(F_n)$. Lemma 4 gives an η which uniformly works for all $n \in \omega$. Thus if *R* is as above and $\xi \in (\emptyset, \eta)^{\omega}$ then for no recursive *R*-frame *F* and ζ [an (ξ, ζ) be attainable from *F*. This is the contrapositive of our theorem.

Let j be the usual pairing function with k, l as its first, second inverse. Order the elements of Q according to their canonical indices so that we can effectively speak of a first, second... element of Q. Let $q_n(\alpha)$ be a partial recursive function of $n \in \omega$ and $\alpha \in Q$ which with index n enumerates partial recursive functions mapping subsets of Q into ω . Put $q_n^s(\alpha) = y$ if $q_n(\alpha) = y$ in s or fewer computation stages, otherwise we say that $q_n^s(\alpha)$ is undefined. Denote the largest element in $\alpha \in Q$ by max(α). A retraceable function, t, is called *hereditarily* 1-meager if for every $e \in \omega$ there is an $m \in \omega$ such that for all n > m and $\alpha \subseteq \{t(i) \mid i < n\}$ $q_e(\alpha)$ is undefined or $q_e(\alpha) < t(n)$. The following lemma is closely related to our proof (cf. Ellentuck (1973)) of McLaughlin's theorem on the existence of hereditarily retraceable isols (cf. McLaughlin (1967)).

LEMMA 5. There exists a hereditarily 1-meager function with cosimple range.

PROOF. Our proof is a stage by stage construction of functions $t^{s}(n)$ whose limit $t(n) = \lim_{s} t^{s}(n)$ is hereditarily 1-meager.

Stage s = 0: Let $t^{0}(0) = 1$ and then go on to stage 1.

Stage s + 1: As inductive hypothesis assume at the end of stage s that we have defined $t^{s}(n)$ for $n \leq s$, that $t^{s}(0) = 1$, and that $kt^{s}(n+1) = t^{s}(n)$ for n < s. Search for the least $n \leq s$, and for it the least m < n, and for them the least $\alpha \leq \{t^{s}(i) \mid i < n\}$ such that

 $q_m^s(\alpha)$ is defined and $t^s(n) \leq q_m^s(\alpha)$.

If there is no such (n, m, α) go to case A below, otherwise go to case B.

CASE A. Let $t^{s+1}(x) = t^{s}(x)$ for $x \leq s$, $t^{s+1}(s+1) = j(t^{s}(s), 0)$.

CASE B. Find the least y such that

$$\max\{q_m^s(\alpha), t^s(s)\} < j(t^s(n-1), y)$$

(note that n > 0) and let $t^{s+1}(x) = t^s(x)$ for x < n, $t^{s+1}(n) = j(t^{s}(n-1), y)$, and $t^{s+1}(x+1) = j(t^{s+1}(x), 0)$ for $n \le x \le s$. This completes stage n+1 of the construction. Now go on to stage s+2. It is easy to see that our inductive hypothesis is maintained as we pass through stages. $t(n) = \lim_{s} t^{s}(n)$ exists for every n because $t^{s}(0) = 1$ for every s, and once $t^{s}(n-1)$ has reached its final value $t^{s}(n)$ changes its value at most $n \cdot 2^{n}$ times. t(0) = 1 and kt(n+1) = t(n) by our inductive hypothesis and t is one-one since $t(0) \neq 0$. Thus t is retraceable, and the construction in case B insures that $x \notin rng(t)$ if and only if $(\exists x > s)x \notin rng(t^{s})$. This makes rng(t) co-r.e. The immunity of rng(t) follows from the meageness of t. We demonstrate the latter. Let m < n and choose a stage r so large that t'(i) for $i \leq n$ have reached their final values. There can be no $\alpha \subseteq \{t(i) \mid i < n\}$ such that $t(n) \leq q_m(\alpha)$, otherwise t'(n) would subsequently change its value.

PROOF OF THEOREM 2. Let $\zeta = \operatorname{rng}(t)$, $\sigma \in (\emptyset, \tau)^{\omega}$ and s_n a strictly increasing enumeration of σ . Let $R \subseteq \omega \times \omega$ be the graph of a function r for which $(\exists z \in \Lambda)(\langle \sigma \rangle, z) \in R_{\Lambda}$. Then there is an isolated ζ and a recursive R-frame F such that (σ, ζ) is attainable from F. If $(\alpha, \emptyset) \in F^*$ put $\phi(\alpha) = \max C_F^0(\alpha, \emptyset)$ and let $A = \{\alpha \in Q \mid C_F^0(\alpha, \emptyset) = \alpha\}$. By applying Lemma 5 to ϕ we see that there is an $m \in \omega$ such that $\{s_i \mid i < n\} \in A$ for any n > m. Let $\psi(\alpha) = C_F^1(\alpha, \emptyset)$ for $\alpha \in A$. A is a r.e. family of finite sets, ψ is a partial recursive function taking finite sets into finite sets and $(\alpha, \psi(\alpha)) \in F$ for every $\alpha \in A$. If $\alpha, \alpha' \in A$ and $\alpha \subseteq \alpha'$ then $(\alpha, \emptyset) \leq (\alpha', \psi(\alpha'))$ and hence $\psi(\alpha) \subseteq \psi(\alpha')$. Let $S = \{(a, b) \mid (\exists \alpha \in A)a =$ $|\alpha| \wedge b = |\psi(\alpha)|$. S is r.e. subset of R and the graph of a partial function whose domain contains all n > m. It is also the graph of an eventually increasing function by the monotonicity of ψ . Thus r is eventually recursive increasing.

PROOF OF THEOREM 3. We have already dealt with τ . For η notice that $(\emptyset, \eta)^{\omega} \subseteq 2^{\omega} - B(F)$ is a Π_1^1 predicate. Since 'R is the graph of a function which is not eventually recursive combinatorial' is an arithmetical predicate, and there is an arithmetical enumeration of all recursive frames, we see that the condition required of η in the proof of Theorem 1 is Π_1^1 . By Addison's modification of the Kondo theorem (cf. Rogers (1967)) η may be chosen as Δ_2^1 .

We had originally hoped to get η recursive in the ordinal notations. We have not been able to do so; however, such an attempt seems promising.

References

- E. Ellentuck (1973), 'On the degrees of universal regressive isols,' Math. Scand. 32, 145-164.
- T. McLaughlin (1967), 'Hereditarily regtaceable isols', Bull. Amer. Math. Soc. 73, 113-115.
- A. Nerode (1961), 'Extensions to isols', Ann. of Math. 73, 362-403.
- H. Rogers Jr. (1967), Theory of Recursive Finctions and Effective Computability, (McGraw-Hill, New York, 1967).

Rutgers, The State University New Brunswick, New Jersey U. S. A.

F. Galvin and K. Prikry 1973), 'Borel sets and Ramsey's theorem', J. Symbolic Logic 38, 193-198.