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Abstract

An immune set is found such that the recursive equivalence type of its infinite subsets are
universal in a very strong sense.

1. Introduction

Let co be the non-negative integers and for ^ c o let <£> be the recursive
equivalence type of £. A is of course the isols.

THEOREM 1. There is an immune n £ co such that for every infinite £ £ n
and R £ co x co the graph of a function r, if (3z e A) «|>, z) e RA then r is even-
tually recursive combinatorial.

THEOREM 2. There is an immune T £ co such that for every infinite £ £ T

and R £ co x co the graph of a function r, if (3ze A) «<!;>, z)e.RA then r is
eventually recursive increasing.

THEOREM 3. n may be taken to be A\ and t may be taken to be II? {and
retraceable).

Theorem 3 is a rather curious result. Theorems 1 and 2 look very much
alike, the requirements on r\ appearing only slightly stronger than those on T.
We have no idea as to what degree the of n might be, our T on the other hand
is of degree 0'. As an open problem we ask if better upper bounds or perhaps
some lower bounds could be found for n and x?

2. Details

Use lower case Greek letters for subsets of co and let 0 be the empty set.
Define (<*,£)" = { a u £ | £ £ j&A§ is infinite}, (<x,j3)<w = { a u £ | £ £ J ? A £ is
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finite}, P = (0,(0)'°, Q = (0,co)<m. A set S £ 20) = P u Q is completely
Ramsey if for every a e g and J?eP there is a £e(0,P)a such that (a,^)40 £ S
or (a, ^)t0 S 2ra — S. The Galvin-Prikry theorem asserts that every Borel set is
completely Ramsey (cf. Galvin and Prikry (1973)). We refer to this result as GP.

Let R £ (o x co be the graph of a function which is not eventually recursive
combinatorial and let F be a recursive R-frame. We use standard frame notation
from Nerode (1961). If y e F * and i<2 let CF(y) be the ith coordinate of
CF(y). dom and rng denote domain and range respectively. If (y, 0 ) e F* put <j)(y) =
CF(y,0) and then define

B(F) = {£eP|(37e(0,O<<o)(V<5e(y,O<raW>(<5) £ <5}.

Note that we always have 8 £ <̂ (<5) provided 8edom(<j>). Let a e Q and /?eP.
Since B(F) is clearly Borel, GP gives us an ne(0,Pf such that {a,r\f £ B(F)
or (a, n)m £ 2ro - £(F) . That the latter always holds is given by

LEMMA 1. (a,»/)ra £ 2"° - £(F).

PROOF. Assume (a, tff £ J3(F). We strive for a contradiction. Now a u r\ e £(F)
and hence there is a y e ( 0 , a u r\)<a such that 0(5) = 8 for all 5 e(7,a u '7)<0'-
Without loss of generality we may assume that a £ y so that </>(<5) = 5 for all
(5£(y,^)<<o. By shrinking t\ slightly we may also assume that ynrj =0. For
the moment let 5 range over (y, rj)<a> and define \j/(5) = CP(5,0). Then (5, i/<<5)) e F.
Let 151 be the cardinality of <5. Since R is single valued [ 51 = 15' | implies

Also

n 5', 0 ) ^ (5, ̂ (5)) A 05', «K<5')) = ( i n 5', ^(5) n (̂<5')) e F

and thus ^r(5 n 5') £ iK<5) O ^(5 ') . Since (8 O 5', t^(5 n §')) e F as well we have
ij/(SnS') = i//(8) r\\l/(5'). Let p be a one-one function mapping a> onto r\.
Define 0 on Q by 0(A) = #(y ^ PW)- Then | A | = | A' | implies 10(1) \ = \ 0(A') |
and 8(1 n A') = 0(A) n 6(1'). These properties are inherited from the corre-
sponding ones for tj/. 9 is therefore a combinatorial operator inducing a com-
binatorial function r:co -> co such that (x + |y |, r(x))e.R for xeco. Thus R is
the graph of an eventually combinatorial function. Let B = {(1, /x) 6 Q x Q | A O y
= 0 A ( y u A , / x ) e F } and S = {(x,y)6co x a> |(3(A,/i)eB)x = 11\ A y = |A*|>-
B and hence S are r.e., the latter being the graph of r. Thus R is the graph of an
eventually recursive combinatorial function. Since R was initially specified as
not being such a relation, we have the desired contradiction.

Let R £ co x co be the graph of a function and let F be a recursive R-frame.
<j> is as above and define

D(F) = {£eP|(Vye(0,£)< a >)<«y) £ « .

Let a e g and fi e P . Since D(F) is clearly Borel, GP gives us an r\ e ( 0 , fif such
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that (a, n)m £ £>(F) or (a,*/)0" £ 2a - D(F). We relate D(F) to the previous
lemma by

LEMMA 2. 7/ (a,^)" £ 2a - B{F) then (a,*/)01 $ D(.F).

PROOF. Assume (a,*/)" £ 2<° - J3(F), |6(a , / / ) w and (aj/,)" £ £>(F). Sincere
2<°-B(F) there is a £5e(a ,0< 0 ) such that <5£dom(c/>) or # 5 ) $ 5. In the
former case £<£D(F) and in the latter <5 u (£ - 0(<5)) e {a,n)'° - £ (F) , both of
which contradict (a, n)m £ D(F).

Let£(F) = {£eP[ (30(£ ,O is attainable from F}.

LEMMA 3. 2<° - D(F) £ 2ra - £(F).

PROOF. An immediate consequence of definitions.

Let SB £ 203 be a sequence such that for each n e co, a e Q and /? e P there is
an n e ( 0 , )S)e" such that (a, r\f £ 2m - Sn. That we can find a uniform r\ is given by

LEMMA 4. For eacft a e Q and PeP there is an J7e (0 ,pT such that
(a, 7/)m £ 2°" - Sn for every new.

PROOF. Shrink ft slightly so that every element of a is less than every element
of p. Let a0 = a and choose noe{0,py° so that (<xo,no)

m £ 2a - SO. Now
suppose we have defined <xn and nn such that every element of an is less than every
element of nn. Let an be the least element of nn. Set an+1 = an u {«„} and choose
Vn+ie(0)»7n-{a( I})a ) so that for each a0 £ y £ aB+1 we have (y,?/n+1)ra£
2m — S n + 1 . Then ?; = u a n has the required property.

PROOF OF THEOREM 1. Let Fn be an enumeration of all recursive ^-frames
where R £ a> x a> is the graph of a which is not eventually recursive combinatorial.
Start with an immune set p" and use GP and lemma 1 to get an n e ( 0 , P)m such
that (0,nr £ 2<° - B(Fn) and either (0,r,T £ D(Fn) or ( 0 j f ? r £ 2<aD(Fn). By
lemma 2, (0,?/)a> £ 2a - D(Fn) and by lemma 3, (0,tj)a £ 2° - E(Fn). Lemma 4
gives an n which uniformly works for all neco. Thus if R is as above and
£ e ( 0 , z/)'0 then for no recursive .R-frame F and £ [an (c;, Q be attainable from F.
This is the contrapositive of our theorem.

Let j be the usual pairing function with k, I as its first, second inverse. Order
the elements of Q according to their canonical indices so that we can effectively
speak of a first, second... element of Q. Let qjct) be a partial recursive function
of neco and ueQ which with index n enumerates partial recursive functions
mapping subsets of Q into co. Put q*n{a) = y if qn(a) = y in s or fewer compu-
tation stages, otherwise we say that qs

n{a) is undefined. Denote the largest element
in aeQ by max(a). A retraceable function, / , is called hereditarily l-meager
if for every e e co there is an m e co such that for all n>m and a £ {t(i) \i <n}
qe(x) is undefined or qe(a) < t(n). The following lemma is closely related to our
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proof (cf. Ellen tuck (1973)) of McLaughlin's theorem on the existence of here-
ditarily retraceable isols (cf. McLaughlin (1967)).

LEMMA 5. There exists a hereditarily l-meager function with cosimple
range.

PROOF. Our proof is a stage by stage construction of functions ts(n) whose
limit t{n) = \\msf(n) is hereditarily 1-meager.

Stage s = 0: Let f°(0) = 1 and then go on to stage 1.
Stage s + 1 : As inductive hypothesis assume at the end of stage s that we

have defined t\n) for n ^ s, that f(0) = 1, and that kf{n + 1) = f(n) for
n < s. Search for the least n ^ s, and for it the least m < n, and for them the
least a £ {f(i)\i< n} such that

q'Ja) is denned and t\n) ^ qs
m(oi).

If there is no such (n, m, a) go to case A below, otherwise go to case B.

CASE A. Let ts+\x) = ts(x) fotx^s, ts+\s+ 1) = ;0s(s),0).

CASE B. Find the least y such that

(note that n > 0) and let ts+1(x) = ts(x) for x < n, f*l(n) = K?(n-i),y), and
f+1(x + 1) = j(ts+1(x),0) for n ^ x ^ s. This completes stage n + 1 of the
construction. Now go on to stage s+2. It is easy to see that our inductive hypoth-
esis is maintained as we pass through stages. t(n) = linys(") exists for every n
because f(0) = 1 for every s, and once f(n — 1) has reached its final value f(n)
changes its value at most n • 2" times. t(0) = 1 and kt(n + 1) = t(n) by our induc-
tive hypothesis and t is one-one since /(0) # 0. Thus t is retraceable, and the
construction in case B insures that x $ rng(0 if and only if (3x > s)x $ rng(fs).
This makes rng(0 co-r.e. The immunity of rng(f) follows from the meagerness
of /. We demonstrate the latter. Let m < n and choose a stage r so large that
tp(i) for i ^ n have reached their final values. There can be no a £ (<(i) | i < n}
such that /(n) ^ qjo^, otherwise t\n) would subsequently change its value.

PROOF OF THEOREM 2. Let f = rng(f), a s ( 0 , T)60 and sn a strictly increasing
enumeration of a. Let R £ co x co be the graph of a function r for which
(3zeA)«cr>,z)e£A. Then there is an isolated £ and a recursive R-frame F such
that (cr, 0 is attainable from F. If (a,0) e F* put </>(a) = max C?(a, 0 ) and let
A = {a e Q | C%cc,0) = a}. By applying Lemma 5 to <f> we see that there is an
meco such that {st\i< n}eA for any n> m. Let î (a) = Cj.(a,0) for oceA.
A is a r.e. family of finite sets, ij/ is a partial recursive function taking finite sets
into finite sets and (a,^(a))e.F for every aeA. If a,a'eA and oc£<x' then
(«»0) ^ (<*',<Ka') a n d hence ^(a) s "A (<*')• Let S = {(a, fc) | (3a e A)o =
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| a | A b = | }]/(<£) | }. S is r.e. subset of R and the graph of a partial function whose
domain contains all n > m. It is also the graph of an eventually increasing func-
tion by the monotonicity of t/r. Thus r is eventually recursive increasing.

PROOF OF THEOREM 3. We have already dealt with T. For n notice that
(0,»/)a> £ 2a — B(F) is a 11} predicate. Since 'R is the graph of a function
which is not eventually recursive combinatorial^ is an arithmetical predicate,
and there is an arithmetical enumeration of all recursive frames, we see that the
condition required of i\ in the proof of Theorem 1 is II}. By Addison's modifi-
cation of the Kondo theorem (cf. Rogers (1967)) n may be chosen as Aj.

We had originally hoped to get t\ recursive in the ordinal notations. We
have not been able to do so; however, such an attempt seems promising.
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