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Abstract

Let (xn)n≥0 be a linear recurrence of order k ≥ 2 satisfying xn = a1xn−1 + a2xn−2 + · · · + akxn−k for all
integers n ≥ k, where a1, . . . , ak, x0, . . . , xk−1 ∈ Z, with ak � 0. Sanna [‘The quotient set of k-generalised
Fibonacci numbers is dense in Qp’, Bull. Aust. Math. Soc. 96(1) (2017), 24–29] posed the question of
classifying primes p for which the quotient set of (xn)n≥0 is dense in Qp. We find a sufficient condition for
denseness of the quotient set of the kth-order linear recurrence (xn)n≥0 satisfying xn = a1xn−1 + a2xn−2 +

· · · + akxn−k for all integers n ≥ k with initial values x0 = · · · = xk−2 = 0, xk−1 = 1, where a1, . . . , ak ∈ Z
and ak = 1. We show that, given a prime p, there are infinitely many recurrence sequences of order k ≥ 2
whose quotient sets are not dense in Qp. We also study the quotient sets of linear recurrence sequences
with coefficients in certain arithmetic and geometric progressions.
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1. Introduction and statement of results

For a set of integers A, the set R(A) = {a/b : a, b ∈ A, b � 0} is called the ratio set or
quotient set of A. Several authors have studied the denseness of ratio sets of different
subsets of N in the positive real numbers (see [3, 5–7, 15, 16–20, 24, 25, 29, 30]). An
analogous study has also been done for algebraic number fields (see [12, 28]).

For a prime p, let Qp denote the field of p-adic numbers. The denseness of ratio
sets in Qp has been studied by several authors (see [1, 2, 10, 13, 14, 21–23, 27]).
Let (Fn)n≥0 be the sequence of Fibonacci numbers, defined by F0 = 0, F1 = 1 and
Fn = Fn−1 + Fn−2 for all integers n ≥ 2. In [14], Garcia and Luca showed that the
ratio set of Fibonacci numbers is dense in Qp for all primes p. Later, Sanna
[27, Theorem 1.2] showed that, for any k ≥ 2 and any prime p, the ratio set of the
k-generalised Fibonacci numbers is dense in Qp. Sanna remarked that his result could
be extended to other linear recurrences over the integers. However, he used some
specific properties of the k-generalised Fibonacci numbers in the proof. Therefore,
he asked the following question.
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QUESTION 1.1 [27, Question 1.3]. Let (Sn)n≥0 be a linear recurrence of order
k ≥ 2 satisfying Sn = a1Sn−1 + a2Sn−2 + · · · + akSn−k for all integers n ≥ k, where
a1, . . . , ak, S0, . . . , Sk−1 ∈ Z, with ak � 0. For which prime numbers p is the quotient
set of (Sn)n≥0 dense in Qp?

In [13], Garcia et al. studied the quotient sets of certain second-order recurrences:
given two fixed integers r and s, let (an)n≥0 be defined by an = ran−1 + san−2 for n ≥ 2
with initial values a0 = 0 and a1 = 1, and let (bn)n≥0 be defined by bn = rbn−1 + sbn−2
for n ≥ 2 with initial values b0 = 2 and b1 = r.

THEOREM 1.2 [13, Theorem 5.2]. With the notation as above, let A = {an : n ≥ 0} and
B = {bn : n ≥ 0}.

(a) If p | s and p � r, then R(A) is not dense in Qp.
(b) If p � s, then R(A) is dense in Qp.
(c) For all odd primes p, R(B) is dense in Qp if and only if there exists a positive

integer n such that p | bn.

We study ratio sets of some other linear recurrences over the set of integers.
Our results give some answers to Question 1.1. Our first result gives a sufficient
condition for the denseness of the ratio sets of certain kth-order recurrence sequences.
Finding a general solution to Question 1.1 seems to be a difficult problem. Hence, in
Theorem 1.3, we consider kth-order recurrence sequences for which ak = 1 and with
initial values x0 = · · · = xk−2 = 0, xk−1 = 1. Recall that a Pisot number is a positive
algebraic integer greater than 1 all of whose conjugate elements have absolute value
less than 1.

THEOREM 1.3. Let (xn)n≥0 be a kth-order linear recurrence satisfying

xn = a1xn−1 + a2xn−2 + · · · + ak−1xn−k+1 + xn−k

for all integers n ≥ k with initial values x0 = x1 = · · · = xk−2 = 0, xk−1 = 1 and
a1, . . . , ak−1 ∈ Z. Suppose that the characteristic polynomial of the recurrence
sequence has a root ±α, where α is a Pisot number. If p is a prime such that the
characteristic polynomial of the recurrence sequence is irreducible in Qp, then the
quotient set of (xn)n≥0 is dense in Qp.

If we take k = 3 in Theorem 1.3, then we have the following corollary.

COROLLARY 1.4. Let (xn)n≥0 be a third-order linear recurrence satisfying

xn = axn−1 + bxn−2 + xn−3

for all integers n ≥ 3 with initial values x0 = x1 = 0, x2 = 1, where the integers a and
b are such that (a + b)(b − a − 2) < 0. If p is a prime such that the characteristic
polynomial of the recurrence sequence is irreducible in Qp, then the quotient set of
(xn)n≥0 is dense in Qp.

We discuss two examples as applications of Corollary 1.4.
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EXAMPLE 1.5. For a ∈ N, let � be an odd positive integer less than 2a. Let
(xn)n≥0 be a linear recurrence satisfying xn = axn−1 + (a − �)xn−2 + xn−3 for all
integers n ≥ 3 with initial values x0 = x1 = 0, x2 = 1. Then a and b := a − � satisfy
(a + b)(b − a − 2) < 0. The characteristic polynomial p(x) = x3 − ax2 − (a − �)x − 1
is irreducible in Q2 because p(0) � 0 and p(1) = −2a + � � 0 (mod 2). Therefore, by
Theorem 1.3, R((xn)n≥0) is dense in Q2.

EXAMPLE 1.6. For a ∈ N such that 3 � a, let � be an odd positive integer less than
2a and such that 3 | �. Let (xn)n≥0 be a linear recurrence satisfying xn = axn−1 +

(a − �)xn−2 + xn−3 for all integers n ≥ 3 with initial values x0 = x1 = 0, x2 = 1.
Then a and b = a − � satisfy (a + b)(b − a − 2) < 0. The characteristic polynomial
p(x) = x3 − ax2 − (a − �)x − 1 is irreducible in Q3 because p(0) � 0, p(1) = −2a +
� � 0 (mod 3) and p(2) = −6a + 2� + 7 � 0 (mod 3). Therefore, by Theorem 1.3,
R((xn)n≥0) is dense in Q3.

Next, we consider recurrence sequences whose nth term depends on all the previous
n − 1 terms and obtain the following results.

THEOREM 1.7. Let (xn)n≥0 be a linear recurrence satisfying

xn = xn−1 + 2xn−2 + · · · + (n − 1)x1 + nx0

for all integers n ≥ 1 with initial value x0 = 1. Then the quotient set of (xn)n≥0 is dense
in Qp for all primes p.

The recurrence relation given in Theorem 1.7 generates a subsequence of the
Fibonacci sequence.

THEOREM 1.8. Let (xn)n≥0 be a linear recurrence satisfying

xn = axn−1 + arxn−2 + · · · + arn−1x0

for all integers n ≥ 1, with x0, a, r ∈ Z. Then the quotient set of (xn)n≥0 is not dense in
Qp for all primes p.

In Theorem 1.2, Garcia et al. studied second-order recurrence relations with specific
initial values. In the following result, we consider a particular second-order recurrence
sequence with arbitrary initial values x0 and x1 in the set of integers.

THEOREM 1.9. Let (xn)n≥0 be a second-order linear recurrence satisfying xn =

2axn−1 − a2xn−2 for all integers n ≥ 2, where a, x0, x1 ∈ Z. Then the quotient set of
(xn)n≥0 is dense in Qp for all primes p satisfying p � a(x1 − ax0).

For a prime p, let νp denote the p-adic valuation. The following theorem gives a set
of linear recurrence sequences of order k whose ratio sets are not dense in Qp.

THEOREM 1.10. Let (xn)n≥0 be a linear recurrence of order k ≥ 2 satisfying

xn = a1xn−1 + · · · + akxn−k
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for all integers n ≥ k, where x0, . . . , xk−1, a1, . . . , ak ∈ Z. If p is a prime such that
p � ak and min{νp(aj) : 1 ≤ j < k} > max{νp(xm) − νp(xn) : 0 ≤ m, n < k}, then the
quotient set of (xn)n≥0 is not dense in Qp.

The next example is an application of Theorem 1.10. Given a prime p, this example
gives infinitely many recurrence sequences of order k ≥ 2 whose quotient sets are not
dense in Qp.

EXAMPLE 1.11. Let (xn)n≥0 be a linear recurrence of order k ≥ 2 satisfying

xn = a1xn−1 + · · · + akxn−k

for all integers n ≥ k, where x0 = x1 = · · · = xk−1 = 1 and a1, . . . , ak ∈ Z. If p is a prime
such that p | aj, 1 ≤ j ≤ k − 1, and p � ak, then by Theorem 1.10, the quotient set of
(xn)n≥0 is not dense in Qp.

2. Preliminaries

Let p be a prime and r be a nonzero rational number. Then r has a unique repres-
entation of the form r = ±pka/b, where k ∈ Z, a, b ∈ N and gcd(a, p) = gcd(p, b) =
gcd(a, b) = 1. The p-adic valuation of r is νp(r) = k and its p-adic absolute value
is ‖r‖p = p−k. By convention, νp(0) = ∞ and ‖0‖p = 0. The p-adic metric on Q is
d(x, y) = ‖x − y‖p. The field Qp of p-adic numbers is the completion of Q with respect
to the p-adic metric. The p-adic absolute value can be extended to a finite normal
extension field K over Qp of degree n. For α ∈ K, define ‖α‖p as the nth root of the
determinant of the matrix of the linear transformation from the vector space K over
Qp to itself defined by x �→ αx for all x ∈ K. Also, define νp(α) as the unique rational
number satisfying ‖α‖p = p−νp(α).

The following results will be used in the proofs of our theorems.

LEMMA 2.1 [13, Lemma 2.1]. If S is dense in Qp, then for each finite value of the
p-adic valuation, there is an element of S with that valuation.

LEMMA 2.2 [13, Lemma 2.3]. Let A ⊂ N.

(1) If A is p-adically dense in N, then R(A) is dense in Qp.
(2) If R(A) is p-adically dense in N, then R(A) is dense in Qp.

THEOREM 2.3 [4, Theorem 1]. Let α1, . . . ,αn be units in Ωp, the completion of
the algebraic closure of Qp, which are algebraic over the rationals Q and whose
p-adic logarithms are linearly independent over Q. These logarithms are then linearly
independent over the algebraic closure of Q in Ωp.

3. Proof of the theorems

PROOF OF THEOREM 1.3. Let p(x) = xk − a1xk−1 − a2xk−2 − · · · − ak−1x − 1 be the
characteristic polynomial of the recurrence. Let α1, . . . ,αk be the k distinct roots of the
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characteristic polynomial in its splitting field, say, K over Qp. The generating function
of the sequence is

t(x) =
xk−1

1 − a1x − a2x2 − · · · − xk =

k∑
i=1

1
q(αi)

∞∑
n=0

αn
i xn,

where q(x) := p′(x), the derivative of the polynomial p(x). Hence, the nth term of the
sequence is given by

xn =

k∑
i=1

1
q(αi)

αn
i , n ≥ 0.

Since p(0) = −1, the roots of p(x) are units in the ring formed by elements in
K with p-adic absolute value less than or equal to 1. Following Sanna’s proof of
[27, Theorem 1.2], we can choose an even t ∈ N such that the function

G(z) :=
k∑

i=1

1
q(αi)

expp(z logp(αt
i))

is analytic over Zp and the Taylor series of G(z) around 0 converges for all z ∈ Zp.
Also, note that xnt = G(n) for n ≥ 0.

We now use a variant of the following lemma which gives the multiplicative
independence of any k − 1 roots among the k roots α1, . . . ,αk of the characteristic
polynomial xk − xk−1 − · · · − x − 1 of the k-generalised Fibonacci sequence in the field
of complex numbers.

LEMMA 3.1 [11, Lemma 1]. With the notation above, each set of k − 1 different roots
α1, . . . ,αk−1 is multiplicatively independent, that is, αe1

1 · · ·α
ek−1
k−1 = 1 for some integers

e1, . . . , ek−1 if and only if e1 = · · · = ek−1 = 0.

Let σ(α1) = ±α, where α is a Pisot number with absolute value greater than 1,
the other roots, σ(α2), . . . ,σ(αk), having absolute values less than 1, where σ is an
isomorphism from Q(α1, . . . ,αk) to the splitting field of p(x) over Q in the field of
complex numbers. Therefore, the proof of Lemma 3.1 holds true for the roots of p(x),
which are σ(α1), . . . ,σ(αk), since log |σ(α1)| is positive and log |σ(α2)|, . . . , log |σ(αk)|
are negative. Hence, σ(α1), . . . ,σ(αk−1) are multiplicatively independent, implying
that αt

1, . . . ,αt
k−1 are multiplicatively independent. Thus, logp(αt

1), . . . , logp(αt
k−1) are

linearly independent over Z and hence linearly independent over the algebraic numbers
by Theorem 2.3.

Suppose G′(0) =
∑k

i=0(1/q(αi)) logp(αt
i) = 0. Since logp(αt

k) = − logp(αt
1) − · · · −

logp(αt
k) as the product of the roots is −1 and t is even, we obtain

k−1∑
i=1

( 1
q(αi)

− 1
q(αk)

)
logp(αt

i) = 0.
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By linear independence of logp(αt
1), . . . , logp(αt

k−1), we have 1/q(α1) = · · · =
1/q(αk) = c, for some p-adic number c. This gives k distinct roots α1, . . . ,αk of
the (k − 1)-degree polynomial q(x) − 1/c, which is not possible.Therefore, G′(0) � 0.
Since

G(z) =
∞∑

j=0

G( j)(0)
j!

z j

converges at z = 1, it follows that ‖G( j)(0)/j!‖p → 0. Hence, there exists an integer �
such that νp(G( j)(0)/j! ) ≥ −� for all j. Thus, we obtain G(mph) = G′(0)mph + d where
νp(d) ≥ 2h − � for all m, h ≥ 0. Also, G(0) = 0 for h > h0 := � + νp(G′(0)) and hence

νp

(G(mph)
G(ph)

− m
)
≥ h − h0.

This yields

lim
h→∞

∥∥∥∥∥
G(mph)
G(ph)

− m
∥∥∥∥∥

p
= 0,

and hence R(G(n)n≥0) is p-adically dense in N. Since xnt = G(n), n ≥ 0, we find that
R((xn)n≥0) is also p-adically dense in N. Therefore, by Lemma 2.2, R((xn)n≥0) is dense
in Qp. �

PROOF OF COROLLARY 1.4. Since p(1)p(−1)= (−a−b)(b−a−2)> 0 and p(0)= −1,
by continuity of the polynomial function in R, p(x) has one real root with absolute
value greater than 1 and two other roots with absolute values less than 1. Hence, the
characteristic polynomial has a root ±α, where α is a Pisot number, and the corollary
follows from Theorem 1.3. �

We need the following result to prove Theorem 1.7.

COROLLARY 3.2 [9, Corollary 2.2]. The linear recurrence relation xn+1 = xn +

2xn−1 + · · · + nx1 + (n + 1)x0, n ≥ 0, with the initial data x0 = 1 has the solution

xn =
1
√

5

((3 + √5
2

)n
−
(3 − √5

2

)n)
, n ≥ 1.

PROOF OF THEOREM 1.7. By Corollary 3.2, for n ≥ 1,

xn =
1
√

5

((3 + √5
2

)n
−
(3 − √5

2

)n)
=
α2n − β2n

√
5

= F2n,

where α = (1 +
√

5)/2, β = (1 −
√

5)/2 and Fn denotes the nth Fibonacci number
which is obtained by the Binet formula. From [14], the ratio set of the Fibonacci
numbers is dense in Qp for all primes p. Therefore, by Lemma 2.1, νp(Fn) is
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not bounded. Hence, for any j ∈ N, there exists Fm such that νp(Fm) ≥ j, that is,
(αm − βm)/

√
5 ≡ 0 (mod p j) which gives αm ≡ βm (mod p j). This yields

α2mp j−1(p−1) = (αmαm)p j−1(p−1) ≡ (αmβm)p j−1(p−1) (mod p j).

Since αβ = −1, by using Euler’s theorem, we find that

α2mp j−1(p−1) ≡ (αmβm)p j−1(p−1) ≡ 1 (mod p j).

This gives α2k ≡ β2k ≡ 1 (mod p j), where k = mp j−1(p − 1). Hence,

xkn

xk
=

F2kn

F2k
=

(α2k)n − (β2k)n

α2k − β2k = (α2k)(n−1) + (α2k)n−2β2k + · · · + (β2k)n−1,

which is congruent to n modulo p j. Since, for n ∈ N, there exists k ∈ N such that
‖xkn/xk − n‖p ≤ p−j, R((xn)n≥0) is p-adically dense in N. Therefore, by Lemma 2.2,
R((xn)n≥0) is dense in Qp. �

We need the following results to prove Theorem 1.8.

THEOREM 3.3 [9, Theorem 3.1]. The numbers xn are solutions of the linear recurrence
relation with constant coefficients in geometric progression xn+1 = axn + aqxn−1 +

· · · + aqn−1x1 + aqnx0, n ≥ 0, with initial data x0, if and only if they form the geometric
progression given by the formula xn = ax0(a + q)n−1, n ≥ 1.

LEMMA 3.4 [13, Lemma 2.2]. If A is a geometric progression in Z, then R(A) is not
dense in any Qp.

PROOF OF THEOREM 1.8. By Theorem 3.3, (xn)n≥1 forms a geometric progression
whose nth term is ax0(a + r)n−1 for n ≥ 1. Hence, by Lemma 3.4, R((xn)n≥0) is not
dense in Qp for any prime p. �

To prove Theorem 1.9 we need some results on the uniform distribution of
sequences of integers. Recall that a sequence (xn)n≥0 is said to be uniformly distributed
modulo m if each residue occurs equally often, that is,

lim
N→∞

#{n ≤ N | xn ≡ t (mod m)}
N

=
1
m

for all t ∈ Z.

PROPOSITION 3.5 [8, Proposition 1]. Suppose (Gn)n≥0 is the sequence of integers
determined by the recurrence relation Gn+1 = AGn − BGn−1 with initial values G0, G1
where A, B, G0, G1 ∈ Z. If A = 2a, B = a2, then (Gn)n≥0 is uniformly distributed modulo
a prime p if and only if p � a(G1 − aG0).

THEOREM 3.6 [8, Theorem]. Suppose (Gn)n≥0 is the sequence of integers determined
by the recurrence relation Gn+1 = AGn − BGn−1 with initial values G0, G1 where
A, B, G0, G1 ∈ Z. If (Gn)n≥0 is uniformly distributed modulo p, then (Gn)n≥0 is uniformly
distributed modulo ph with h > 1 if and only if
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(1) p > 3; or
(2) p = 3 and A2 � B (mod 9); or
(3) p = 2, A ≡ 2 (mod 4), B ≡ 1 (mod 4).

PROOF OF THEOREM 1.9. Let p be a prime. The given recurrence sequence (xn)n≥0
satisfies the hypotheses of Proposition 3.5, and hence (xn)n≥0 is uniformly distributed
modulo p. If p > 3, then by Theorem 3.6(1), (xn)n≥0 is uniformly distributed modulo
pk with k > 1, that is,

lim
N→∞

#{n ≤ N | xn ≡ t (mod pk)}
N

=
1
pk > 0.

Therefore, for all t ∈ N and for all k > 1, there exists xn such that ‖xn − t‖p ≤ p−k.
Hence, R((xn)n≥0) is p-adically dense in N. Therefore, by Lemma 2.2, R((xn)n≥0) is
dense in Qp.

We next consider the remaining primes p = 2, 3. Since p � a(x1 − ax0), we have
p � a. It is easy to check that p = 3 satisfies the condition given in Theorem 3.6(2) and
p = 2 satisfies the condition given in Theorem 3.6(3). The rest of the proof follows
similarly as shown in the case p > 3. This completes the proof of the theorem. �

We need the following lemma to prove Theorem 1.10.

LEMMA 3.7 [26, Lemma 3.3]. Let (rn)n≥0 be a linearly recurring sequence of order
k ≥ 2 given by rn = a1rn−1 + · · · + akrn−k for each integer n ≥ k, where r0, . . . , rk−1
and a1, . . . , ak are all integers. Suppose that there exists a prime number p such
that p � ak and min{νp(aj) : 1 ≤ j < k} > max{νp(rm) − νp(rn) : 0 ≤ m, n < k}. Then
νp(rn) = νp(rn (mod k)) for each nonnegative integer n.

PROOF OF THEOREM 1.10. By Lemma 3.7,

νp(xn/xm) = νp(xn (mod k)) − νp(xm (mod k)) ≤ M

for all n, m ∈ N ∪ {0}, where M = max{νp(xi) : i = 0, 1, . . . , k − 1}. Therefore, by
Lemma 2.1, R((xn)n≥0) is not dense in Qp. �
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[6] J. Bukor, P. Erdős, T. Šalát and J. T. Tóth, ‘Remarks on the (R)-density of sets of numbers. II’, Math.

Slovaca 4(5) (1997), 517–526.
[7] J. Bukor and J. T. Tóth, ‘On accumulation points of ratio sets of positive integers’, Amer. Math.

Monthly 103(6) (1996), 502–504.
[8] R. T. Bumby, ‘A distribution property for linear recurrence of the second order’, Proc. Amer. Math.

Soc. 50 (1975), 101–106.
[9] M. I. Cîrnu, ‘Linear recurrence relations with the coefficients in progression’, Ann. Math. Inform.

42 (2013), 119–127.
[10] C. Donnay, S. R. Garcia and J. Rouse, ‘p-adic quotient sets II: quadratic forms’, J. Number Theory

201 (2019), 23–39.
[11] C. Fuchs, C. Hutle, F. Luca and L. Szalay, ‘Diophantine triples and k-generalized Fibonacci

sequences’, Bull. Malays. Math. Sci. Soc. 41 (2018), 1449–1465.
[12] S. R. Garcia, ‘Quotients of Gaussian primes’, Amer. Math. Monthly 120(9) (2013), 851–853.
[13] S. R. Garcia, Y. X. Hong, F. Luca, E. Pinsker, C. Sanna, E. Schechter and A. Starr, ‘p-adic quotient

sets’, Acta Arith. 179(2) (2017), 163–184.
[14] S. R. Garcia and F. Luca, ‘Quotients of Fibonacci numbers’, Amer. Math. Monthly 123 (2016),

1039–1044.
[15] S. R. Garcia, D. E. Poore, V. Selhorst-Jones and N. Simon, ‘Quotient sets and Diophantine

equations’, Amer. Math. Monthly 118(8) (2011), 704–711.
[16] S. Hedman and D. Rose, ‘Light subsets of N with dense quotient sets’, Amer. Math. Monthly 116(7)

(2009), 635–641.
[17] D. Hobby and D. M. Silberger, ‘Quotients of primes’, Amer. Math. Monthly 100(1) (1993),

50–52.
[18] F. Luca, C. Pomerance and Š. Porubský, ‘Sets with prescribed arithmetic densities’, Unif. Distrib.

Theory 3(2) (2008), 67–80.
[19] A. Micholson, ‘Quotients of primes in arithmetic progressions’, Notes Number Theory Discrete

Math. 18(2) (2012), 56–57.
[20] L. Mišík, ‘Sets of positive integers with prescribed values of densities’, Math. Slovaca 52(3) (2002),

289–296.
[21] P. Miska, ‘A note on p-adic denseness of quotients of values of quadratic forms’, Indag. Math.

(N.S.) 32 (2021), 639–645.
[22] P. Miska, N. Murru and C. Sanna, ‘On the p-adic denseness of the quotient set of a polynomial

image’, J. Number Theory 197 (2019), 218–227.
[23] P. Miska and C. Sanna, ‘p-adic denseness of members of partitions of N and their ratio sets’, Bull.

Malays. Math. Sci. Soc. 43(2) (2020), 1127–1133.
[24] T. Šalát, ‘On ratio sets of natural numbers’, Acta Arith. 15 (1968/1969), 273–278.
[25] T. Šalát, ‘Corrigendum to the paper “On ratio sets of natural numbers”’, Acta Arith. 16 (1969/1970),

103.
[26] C. Sanna, ‘The p-adic valuation of Lucas sequences’, Fibonacci Quart. 54(2) (2016), 118–124.
[27] C. Sanna, ‘The quotient set of k-generalised Fibonacci numbers is dense in Qp’, Bull. Aust. Math.

Soc. 96(1) (2017), 24–29.
[28] B. D. Sittinger, ‘Quotients of primes in an algebraic number ring’, Notes Number Theory Discrete

Math. 24(2) (2018), 55–62.
[29] P. Starni, ‘Answers to two questions concerning quotients of primes’, Amer. Math. Monthly 102(4)

(1995), 347–349.
[30] O. Strauch and J. T. Tóth, ‘Asymptotic density of A ⊂ N and density of the ratio set R(A)’, Acta

Arith. 87(1) (1998), 67–78.

https://doi.org/10.1017/S0004972722001563 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972722001563


28 D. Antony and R. Barman [10]

DEEPA ANTONY, Department of Mathematics,
Indian Institute of Technology Guwahati, Assam PIN-781039, India
e-mail: deepa172123009@iitg.ac.in

RUPAM BARMAN, Department of Mathematics,
Indian Institute of Technology Guwahati, Assam PIN-781039, India
e-mail: rupam@iitg.ac.in

https://doi.org/10.1017/S0004972722001563 Published online by Cambridge University Press

mailto:deepa172123009@iitg.ac.in
mailto:rupam@iitg.ac.in
https://doi.org/10.1017/S0004972722001563

	1 Introduction and statement of results
	2 Preliminaries
	3 Proof of the theorems

