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ON EXISTENCE OF CANONICAL G-BASES

DANIEL MAX HOFFMANN

Abstract. We describe a general method for expanding a truncated G-

iterative Hasse–Schmidt derivation, where G is an algebraic group. We give

examples of algebraic groups for which our method works.

§1. Introduction

Our motivation for this paper is [3, 14], where some nice model-theoretic

properties are obtained for fields equipped with HS-derivations satisfying

the standard iterativity rule. Analyzing the reasoning in [3, 14], we deduce

that one of the most important properties of an iterative Hasse–Schmidt

derivation is Matsumura’s strong integrability (a notion from [4], see:

Definition 2.15). Thus we are especially interested in it.

Briefly, strong integrability means that a truncated iterative HS-

derivation can be expanded to a not-truncated one, satisfying the same

iterativity conditions. We prove (Theorem 3.8) that the existence of a

canonical basis (Definition 3.6) implies strong integrability for an arbitrary

iterativity condition. However, the converse is not true in general (see

Remark 3.9), which is related to the problem of the existence of canonical

basis in a given field.

Finding a canonical basis is not an easy task. Matsumura in [4] proved

the existence of canonical basis for Ga (the standard iterativity). Afterward

Tyc in [9] did the same for Gm and one-dimensional formal groups over

algebraically closed fields. Ziegler showed existence of canonical bases for

powers of Ga proving the quantifier elimination for the theory of separably

closed fields in [13, 14] (see Example 3.7). Before this paper only products of

Ga and Gm were considered. We cover the case of commutative, connected,

unipotent groups of dimension 2 over an algebraically closed field. This

leads us to Theorem 4.17, stating that, over an algebraically closed field,
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2 D. M. HOFFMANN

linear algebraic groups that are connected and commutative have canonical

basis if unipotent elements form a subgroup of dimension 6 2. This theorem

includes all the previous results (mentioned above).

Kowalski and I in [2] are treating iterative HS-derivations in a much

more abstract way. Many proofs from [2] would be obvious if canonical

bases exist for the HS-derivations considered there (a similar sentence was

noted at the end of [3, Section 2]). Moreover, [2, Section 6] suggests possible

generalizations for the notion of canonical basis.

§2. Basic notions about F -derivations

2.1 HS-derivations

All the rings considered in this paper are commutative and with unity. Fix

a field k of the characteristic p > 0, e ∈ N>0 and m ∈ N>0 ∪ {∞}. Let R be

any k-algebra. In this subsection we recall some definitions and well-known

facts about HS-derivations.

Definition 2.1. We say that D = (Di :R→R)i∈Ne is an e-dimensional

HS-derivation over k if the map

D :R→RJX̄K, r 7→
∑
i∈Ne

Di(r)X̄
i,

where X̄ i =Xi1
1 · . . . ·Xie

e for i = (i1, . . . , ie), is a k-algebra homomorphism

and D0 = idR.

We introduce R[v̄] :=R[X̄]/(Xpm

1 , . . . , Xpm
e ), so vi =Xi + (Xpm

1 , . . . ,

Xpm
e ) and v̄ = (v1, . . . , ve) (for m=∞ we set vi =Xi, R[v̄] =RJX̄K). After

composing D with the natural mapping R[X̄]→R[v̄] we obtain a truncation

of D, denoted by D[m] = (Di :R→R)i∈[pm]e . This lead us to the following:

Definition 2.2. A collection D = (Di :R→R)i∈[pm]e is called an m-

truncated e-dimensional HS-derivation over k if the map

D :R→R[v̄], r 7→
∑

i∈[pm]e

Di(r)v̄
i,

where v̄i = vi11 · . . . · viee for i = (i1, . . . , ie), is a k-algebra homomorphism

and D0 = idR.

Clearly, any∞-truncated HS-derivation is just an HS-derivation. We have

seen that it is easy to obtain from an HS-derivation an m-truncated one.

For a field R=K the converse is also true.
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ON EXISTENCE OF CANONICAL G-BASES 3

Theorem 2.3. Let R be a smooth k-algebra, D = (Di :R→R)i∈[pm]e

an m-truncated e-dimensional HS-derivation over k. There exists an e-

dimensional HS-derivation D′ = (D′i :R→R)i∈Ne over k such that for every

i ∈ [pm]e we have D′i =Di.

Proof. We recursively construct D′ as was done at [4, page 236], but

using the following diagram

R
ϕ

//

**

R[X]/(Xpn

1 , . . . , Xpn
e )

k

OO

// R[X]/(Xpn+1

1 , . . . , Xpn+1

e )

π

OO

where ϕ(x) :=
∑

i∈[pn]e Di(x)X̄ i + (Xpn

1 , . . . , Xpn
e ) and π is the quotient

map.

Remark 2.4. Theorem 2.3 is a generalization of [4, Theorem 6]. Note

that the best possible situation is for a k-algebra R which is étale over

k. In such a case there exists a unique expansion of every m-truncated e-

dimensional HS-derivation.

By [5, Theorem 26.9], separability implies smoothness, so Theorem 2.3

works in particular for a separable fields extension k ⊆K. Because so far we

do not demand anything from k we can take k = Fp, hence the assumption

about a separable extension k ⊆K is negligible in the following way:

Corollary 2.5. Every m-truncated e-dimensional HS-derivation on a

field K has an extension to an e-dimensional HS-derivation.

We call an m-truncated e-dimensional HS-derivation D on R integrable

if there exists e-dimensional HS-derivation D′ on R such that D′i =Di for

every i ∈ [pm]e. Corollary 2.5 says that truncated HS-derivations on a field

are always integrable, but it is not true for arbitrary rings [4, Example 3].

Moreover, the described situation dramatically changes after adding some

iterativity conditions. Before considering iterative HS-derivations, we state

more well-known facts about general HS-derivations, which will be needed

in the remainder of this article.

Lemma 2.6. Assume that R
f−→ S is a homomorphism of k-algebras. Let

D be an m-truncated e-dimensional HS-derivation on R over k.
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4 D. M. HOFFMANN

(i) If S is smooth over R, then there exists an m-truncated e-dimensional

HS-derivation D′ on S over k such that for every i1, . . . , ie < pm

(1) fD(i1,...,ie) =D′(i1,...,ie)f.

(ii) If S is unramified over R, then there exists at most one m-truncated

e-dimensional HS-derivation D′ on S over k such that for every

i1, . . . , ie < pm

fD(i1,...,ie) =D′(i1,...,ie)f.

Proof. The lemma just reformulates [2, Proposition 3.3].

Fact 2.7. For every m-truncated e-dimensional HS-derivation and every

x ∈R the following holds

D(i1,...,ie)(x
p) =

{
D(i1/p,...,ie/p)(x)p if p|i1, . . . , ie,
0 otherwise.

Proof. It follows from the definition (see e.g. [6, Lemma 1.1]).

2.2 Iterative HS-derivations

In this subsection we deal with iterative HS-derivations. The main pur-

pose is to provide basic properties. Let F (v̄, w̄) = (F1(v̄, w̄), . . . , Fe(v̄, w̄)) ∈
(k[v̄, w̄])e (still k[v̄, w̄] = kJX̄, Ȳ K for m=∞) and let D be an m-truncated

e-dimensional HS-derivation on R over k. Sometimes we need to distinguish

between D :R→R[v̄] and D :R→R[w̄]; Therefore, they will be denoted by

Dv̄ and Dw̄ respectively.

Definition 2.8. We call D F -iterative if the following diagram com-

mutes

R
Dv̄ //

Dv̄
��

R[v̄]

Dw̄[v̄]
��

R[v̄]
evF

// R[v̄, w̄]

where Dw̄[v̄](
∑

i riv̄
i) :=

∑
i Dw̄(ri)v̄

i. We write shortly F -derivation for an

F -iterative m-truncated e-dimensional HS-derivation over k.

Example 2.9. For m=∞ and e= 1 we can take F = Ga =X + Y . It

encodes the classical iterativity rule

Di ◦Dj =

(
i+ j

i

)
Di+j .
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ON EXISTENCE OF CANONICAL G-BASES 5

An example of a Ga-derivation is the following collection of functions on

k[X]:

Dn

( k∑
i=0

αiX
i

)
=


0 if n > k,
k∑
i=n

αi

(
i

n

)
Xi−n if n6 k,

where n ∈ N. For the formal group law F = Gm =X + Y +XY above

formulas are more complicated (see [1, Example 3.6]).

Example 2.10. For every formal group law F (X̄, Ȳ ) ∈ (kJX̄, Ȳ K)e we

have canonical F -derivation

DF := evF (X̄,Ȳ ) : kJX̄K→ kJX̄KJȲ K.

Compare with [2, Example 3.25].

Example 2.11. For actions of finite group schemes, which underlying

Hopf algebra is defined on k[v̄], we have a natural correspondence with the

truncated F -derivations for an appropriate F (see [2, Section 3]). Therefore,

we are especially interested in group scheme actions of k-group schemes of

the form g = Spec k[v̄] on the scheme SpecR. By [2, Remark 3.9], such a

group scheme action corresponds to an F -derivation on R, where F is the

Hopf algebra comultiplication given by g.

Assume that R is a k-algebra with an F -derivation D. The pair (R, D)

will be called an F -ring. If K is a field and (K, D) is an F -ring, then

(K, D) will be called an F -field. Let (R, D) be an F -ring, similarly (S, D′).
A morphism of k-algebras f :R→ S is an F -morphism if for every i,

fDi =D′if . Moreover, if such f is injective, R is F -subring of S (similarly

F -subfield for F -fields).

Example 2.12. Let G be an algebraic group over k, we denote by

OG the local ring of G at the identity (it is a regular local ring) and

by x̄= (x1, . . . , xe) a choice of its local parameters. For F = Ĝ we have

F (x̄, Ȳ ) ∈ OGJȲ K, so (OG, DF |OG
) is an F -subring of (kJX̄K, DF ). Hence

k(G) is equipped with a natural Ĝ-derivation, which will be denoted by

DG and called canonical G-derivation. It depends on the choice of local

parameters, but we prefer the adjective “canonical”. For more details

check [2, Example 3.27].
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6 D. M. HOFFMANN

For an F -ring (R, D) and i ∈ [pm]e we introduce Ci := kerDi, and two

more sets:

CR := C(1,0...,0) ∩ · · · ∩ C(0,...,0,1) (the ring of constants),

and

Cabs
R :=

⋂
i6=0

Ci (the ring of absolute constants).

Both, CR and Cabs
R , are subrings of R (see Remark 3.1).

Lemma 2.13. Assume that R
f−→ S is a homomorphism of k-algebras.

Let D be an F -derivation on R.

(i) If S is étale (smooth and unramified) over R, then there exists a unique

F -derivation D′ on S such that for every i1, . . . , ie < pm

fD(i1,...,ie) =D′(i1,...,ie)f.

(ii) If S is unramified over R, then there exists at most one F -derivation

D′ on S such that for every i1, . . . , ie < pm

fD(i1,...,ie) =D′(i1,...,ie)f.

Proof. Compare to [2, Proposition 3.18]. Part (ii) is, by Lemma 2.6(ii),

true even without the iterativity assumption. For the proof of part (i), it

is enough to show that an HS-derivation D′ from Lemma 2.6 is F -iterative,

that is, the following diagram is commutative

S
D′v̄ //

D′v̄
��

S[v]

D′w̄[v]
��

S[v]
evF

// S[v, w]

It is similar to the proof of [5, Theorem 27.2] and we leave it to the reader.

Let F (v̄, w̄) ∈ (k[v̄, w̄])e, m′ 6m and let v̄′, w̄′ denote the m′-truncated

variables (k[v̄′, w̄′] = k[X̄, Ȳ ]/(Xpm
′

1 , . . . , Xpm
′

e , Y pm
′

1 , . . . , Y pm
′

e )). By F [m′]

we denote the m′-truncation of F which is equal to ev(v̄′,w̄′) F (v̄, w̄) (the

image of F in the ring of truncated polynomials (k[v̄′, w̄′])e). If D is F -

iterative, then D[m′] is F [m′]-iterative as well (for the notion of D[m], check

the first lines after Definition 2.1).
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ON EXISTENCE OF CANONICAL G-BASES 7

Example 2.14. For every m ∈ N>0 we get a Ĝ[m]-field structure on

k(G)–just consider DG[m].

Definition 2.15. Let F (X̄, Ȳ ) ∈ (kJX̄, Ȳ K)e and let D be an F [m]-

derivation on a k-algebra R. We call D strongly integrable if there exists

an F -derivation D′ on R such that D′[m] = D.

In the next few facts we give simple properties of F -derivations on a k-

algebra R. Those facts were intended for a formal group law F , but it is

enough to demand that F (v̄, w̄) ∈ (k[v̄, w̄])e, F (v̄, 0̄) = v̄ and F (0̄, w̄) = w̄.

However, we do not consider F -derivations in the case when F is not a

formal group law, even the existence for such (nontrivial) derivations is not

clear in general.

Fact 2.16. For every i and j there exists r(Dj′)0<|j′|<|i+j|, a k-linear

combination of Dj′ , where 0< |j′|< |i + j|, such that

DjDi =

(
i1 + j1
i1

)
· · ·
(
ie + je
ie

)
Di+j + r(Dj′)0<|j′|<|i+j|.

Proof. It is clear for i = 0 or j = 0, so assume that both i and j

differ from 0. Since F (v̄, 0) = v̄, F (0, w̄) = w̄, we have F (v̄, w̄) = (v1 + w1 +

S1, . . . , ve + we + Se) for some S1, . . . , Se belonging to the ideal (viwj)i,j6e.

Therefore, for every r ∈R∑
j1,...,je,i1,...,ie

D(j1,...,je)D(i1,...,ie)(r)v
i1
1 · . . . · v

ie
e · w

j1
1 · . . . · w

je
e

=
∑

k1,...,ke

D(k1,...,ke)(r)(v1 + w1 + S1)k1 · . . . · (ve + we + Se)
ke .

We are interested in the coefficients at A := vi11 · . . . · viee · w
j1
1 · . . . · w

je
e on

the right side of the above equation. First of all, note that vi + wi + Si,

i6 e, is an element of the maximal ideal (v1, . . . , ve, w1, . . . , we), hence it

is of the form

α1v1 + · · ·+ αeve + β1w1 + · · ·+ βewe,

for some α1, . . . , αe, β1, . . . , βe ∈ k[v̄, w̄]. Each component of the above

sum has total degree at least 1, so the total degree of each summand of

(vi + wi + Si)
ki is at least ki. Therefore, the total degree of

(v1 + w1 + S1)k1 · . . . · (ve + we + Se)
ke
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8 D. M. HOFFMANN

is at least equal to k1 + · · ·+ ke. On the other hand, the total degree of A is

equal to |i + j|. After comparing degrees, we see that if k1 + · · ·+ ke > |i + j|
then there is no chance to find a component of

D(k1,...,ke)(r)(v1 + w1 + S1)k1 · . . . · (ve + we + Se)
ke

equal to A multiplied by some element of R.

Let k1 + · · ·+ ke = |i + j|. Since S1, . . . , Se ∈ (viwj)i,j6e, each summand

of Si, i6 e, has total degree at least 2. The only component of

D(k1,...,ke)(r)(v1 + w1 + S1)k1 · . . . · (ve + we + Se)
ke

for which the total degree will be equal to |i + j| “omits” S1, . . . , Se.

Therefore, we are looking for the coefficient of

D(k1,...,ke)(r)(v1 + w1)k1 · . . . · (ve + we)
ke ,

which is divisible by A.

Fact 2.17. Assume that also D′ is an F -derivation on R. If for all l 6 e

and i < m we have D(0,...,0, pi
lth place

,0,...,0) =D′
(0,...,0, pi

lth place
,0,...,0)

then D = D′.

Proof. Induction on |j|. Clearly, D(0,...,0) = idR =D′(0,...,0). Take j =

(j1, . . . , je) 6= (0, . . . , 0) and assume that Dj′ =D′j′ for every j′ such that

|j′|< |j|. Without loss of generality, we set j1 6= 0. Let j1 = γ0 + γ1p+ · · ·+
γsp

s, where γ0, . . . , γs < p and γs 6= 0. Fact 2.16 implies that

D(ps,0,...,0)D(j1−ps,j2,...,je) = γsDj + r(Dj′)0<|j′|<|j|,

D′(ps,0,...,0)D
′
(j1−ps,j2,...,je) = γsD

′
j + r(D′j′)0<|j′|<|j|.

A k-linear combination r(Dj′)0<|j′|<|j| is unique for F (what can be deduced

from the proof of Fact 2.16), hence, by the inductive assumption, it is equal

to r(D′j′)0<|j′|<|j|. Moreover, it follows from the inductive assumption that

D(ps,0,...,0)D(j1−ps,j2,...,je) =D′(ps,0,...,0)D
′
(j1−ps,j2,...,je),

so Dj =D′j.

Lemma 2.18. Let (K, D) be an F -field and let ∂1, . . . , ∂pe be all different

elements of {D(i0,...,ie) | i0, . . . , ie < p}. Take any x1, . . . , xn ∈K. Elements

x1, . . . , xn are linearly dependent over CK if and only if the rank of the

matrix (∂i(xj))i6pe,j6n is smaller than n.
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ON EXISTENCE OF CANONICAL G-BASES 9

Proof. The proof of [2, Proposition 3.20] works well for the above, more

general lemma.

Corollary 2.19. For every F -field extension K ⊆ L, K and CL are

linearly disjoint over CK .

Definition 2.20. We call an F -field (K, D) strict if CK =Kp.

Remark 2.21. Let K ⊆ L be an F -field extension. If K is strict, then

K ⊆ L is separable.

Proof. By Corollary 2.19, K and Lp ⊆ CL are linearly disjoint over

Kp = CK , so by [5, Theorem 26.4] L is separable over K.

Lemma 2.22. For any F -field (K, D) we have [K : CK ] 6 pe.

Proof. It follows from Lemma 2.18.

2.3 Commutative HS-derivations

In this subsection we deal with formulas for D
(p)
i (the pth composi-

tion) in the case of an F -derivation D = (Di)i∈[pm]e for a commutative

F (i.e., F (v̄, w̄) = F (w̄, v̄)). The main idea follows [1, Section 3.3], but

improves the reasoning of [1, Proposition 3.11] and [1, Remark 3.12.(4)]. The

idea to focus on the ring of symmetric polynomials comes from Kowalski.

We assume only that F (v̄, w̄) ∈ (k[v̄, w̄])e is commutative and that (R, D)

is an F -ring. Obviously:

Fact 2.23. We have the following

Dj ◦Di =Di ◦Dj.

For every N > 1 we introduce the following k-algebra homomorphism

EN :R[v̄1, . . . , v̄N−1]→R[v̄1, . . . , v̄N ],

EN = Dv̄N [v̄1, . . . , v̄N−1],

where v̄1, . . . , v̄N are e-tuples of m-truncated variables and

Dv̄N [v̄1, . . . , v̄N−1]

( ∑
i1,...,iN−1

αi1,...,iN−1
v̄i11 · . . . · v̄

iN−1

N−1

)
=
∑

i1,...,iN

DiN (αi1,...,iN−1
)v̄i11 · . . . · v̄

iN
N .
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10 D. M. HOFFMANN

For N > 1 we define inductively

F1(v̄1) := v̄1,

FN+1(v̄1, . . . , v̄N+1) := FN (v̄1, . . . , v̄N−1, F (v̄N , v̄N+1)).

Lemma 2.24. For every N > 1 the following diagram commutes

R
EN◦···◦E1 //

E1 $$

R[v̄1, . . . , v̄N ]

R[v̄1]

evFN

66

Proof. It is clear for N = 1, so assume for the induction step that the

last diagram is commutative. Consider

R
EN−1◦···◦E1

//

E1
��

R[v̄1, . . . , v̄N−1]

EN
��

EN // R[v̄1, . . . , v̄N ]

EN+1
��

R[v̄1]
evFN

// R[v̄1, . . . , v̄N ]
ev(v̄1,...,v̄N−1,F (v̄N ,v̄N+1))

// R[v̄1, . . . , v̄N+1]

Left part is commutative by the inductive assumption. For commutativity

of the right side, just apply the functor

R→R[v̄1, . . . , v̄N−1]

to the diagram from the F -iterativity definition and change v̄, w̄ to v̄N ,

v̄N+1. Finally

ev(v̄1,...,v̄N−1,F (v̄N ,v̄N+1)) ◦ evFN
= evFN+1

.

Note that the following composition of mappings

R
E1−→R[v̄1]

E2−→R[v̄1, v̄2]→ · · · Ep−−→R[v̄1, . . . , v̄p]

is a k-algebra homomorphism such that im(Ep ◦ · · · ◦ E1) is, by Fact 2.23, a

subset of the ring of symmetric polynomials in v̄1, . . . , v̄p, that is, elements

of R[v̄1, . . . , v̄p] invariant under the action of Sp,

σ : v̄i = (vi,1, . . . , vi,e) 7→ v̄σ(i) = (vσ(i),1, . . . , vσ(i),e),
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for σ ∈ Sp and i6 p. In other words the map Ep ◦ · · · ◦ E1 factors as in

following the diagram

R

Ep◦···◦E1 **

// R[v̄1, . . . , v̄p]
Sp

⊆
��

R[v̄1, . . . , v̄p]

For ϕ :R[v̄1, . . . , v̄p]
Sp →R[v̄

1/p
1 ], given by vi,j 7→ v

1/p
1,j , where i6 p and

j 6 e, also the map ϕ factors as in the following diagram

R[v̄1, . . . , v̄p]
Sp

ϕ
**

// R[v̄1]

⊆
��

R[v̄
1/p
1 ]

Therefore, ϕ : im(Ep ◦ · · · ◦ E1)→R[v̄1], defined is a well-defined k-algebra

homomorphism.

For any N > 1 we define inductively the “multiplication by N map”:

[1]F := v̄,

[N + 1]F := F (v̄, [N ]F ).

For example [2]F = F (v̄, v̄).

Corollary 2.25. For any r ∈R we have∑
i

D
(p)
i (r)v̄i = ev[p]F (v̄1/p)

(∑
i

Di(r)v̄
i

)
.

Proof. By Lemma 2.24 we know that

Ep ◦ · · · ◦ E1(r) = evFp ◦E1(r),

so ∑
i

D
(p)
i (r)v̄i1 = ϕ ◦ Ep ◦ · · · ◦ E1(r) = ϕ ◦ evFp ◦E1(r)

= ev
[p]F (v̄

1/p
1 )

(∑
i

Di(r)v̄
i
1

)
.

The first equality is similar to [1, Lemma 3.7], the last follows from

definitions of [p]F , Fp and ϕ. For example let p= 2:

ϕ ◦ evF2(v̄1,v̄2) = ev
F2(v̄

1/p
1 ,v̄

1/p
1 )

= ev
[2]F (v̄

1/p
1 )

.
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12 D. M. HOFFMANN

§3. Canonical G-bases and the integrability

The results of this section focus on proving the integrability for a field

equipped with an iterative HS-derivation and endowed with a p-basis of

a special kind. For the notion of p-independence, p-basis and their basic

properties, the reader is referred to [5, page 202]. Recall that k is a perfect

field. Assume thatG is an algebraic group over k of dimension e (perhaps not

commutative). We write G[m]-derivation, G[m]-ring, G[m]-field, . . . instead

of Ĝ[m]-derivation, Ĝ[m]-ring, Ĝ[m]-field, . . .

Let (K, D) be a G[m]-field. For every s ∈ {0, . . . , m− 1} we introduce

Fs :=
s⋂
j=0

C(pj ,0,...,0) ∩ C(0,pj ,0,...,0) ∩ · · · ∩ C(0,...,0,pj), F−1 :=K.

Remark 3.1. Sets Fs are, due to Fact 2.17, subfields of K. In fact Fs is

equal to the field of constants of order s (the absolute constants of D[s+ 1]).

For the clarity of the following proofs, we note an obvious fact:

Fact 3.2. Let L⊆ L′ be an extension of fields. If y ∈ L1/p\L⊆ L′, then

[L(y) : L] = p.

Lemma 3.3. Let z1, . . . , ze ∈K form a p-basis of (or equivalently, by

Lemma 2.22, “are p-independent in”) K over CK = F0. For every s ∈
{0, . . . , m− 1} we have

[Fs−1 : Fs] = pe, Fs−1 = Fs(z
ps

1 , . . . , z
ps

e ).

Proof. Being a p-basis for K over F0, due to Kp ⊆ F0, means that K =

F0(z1, . . . , ze) and that [F0(z1, . . . , ze) : F0] = pe. Notice that, by [2, Lemma

3.31] and Lemma 2.22,

[Fs(z
ps

1 , . . . , z
ps

e ) : Fs] 6 [Fs−1 : Fs] 6 pe.

It is enough to show that [Fs(z
ps

1 , . . . , z
ps
e ) : Fs] = pe. We know that {zi11 ·

. . . · ziee | 0 6 i1, . . . , ie < p} is F0-linearly independent, thus {zi1p
s

1 · . . . ·
ziep

s

e | 0 6 i1, . . . , ie < p} is F p
s

0 -linearly independent. Consider

(Kps , D[s+ 1]|Kps )⊆ (Fs−1, D[s+ 1]|Fs−1).

By [2, Lemma 3.31], it is an extension of G[1]Frp
s

-fields. Therefore, by

Corollary 2.19, Kps is linearly disjoint from constants ofD[s+ 1]|Fs−1
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ON EXISTENCE OF CANONICAL G-BASES 13

over constants of D[s+ 1]|Kps . So F p
s

0 -linear independence of {zi1p
s

1 ·
. . . · ziep

s

e | 0 6 i1, . . . , ie < p} implies its Fs-linear independence. Hence

[Fs(z
ps

1 , . . . , z
ps
e ) : Fs] = pe.

Remark 3.4. The equality

[Fs−1 : Fs] = pe,

where s ∈ {0, . . . , m− 1}, does not depend on the choice of a p-basis.

Therefore, it is true if [K : CK ] = pe.

Proposition 3.5. Let z1, . . . , ze ∈K form a p-basis of (or equivalently

“are p-independent in”) K over CK = F0. Then there exists a subset B0 ⊆
Cabs
K = Fm−1, for which B := B0 ∪ {z1, . . . , ze} is a p-basis for K over k.

Proof. In particular, Lemma 3.3 implies that the set {zp
m

1 , . . . zp
m

e } is p-

independent over k in Fm−1. Let B′ be a p-basis B′ of the field Fm−1 over k of

the formB′ = B0 ∪· {zp
m

1 , . . . , zp
m

e }. We show that B := B0 ∪ {z1, . . . , ze} is a

p-basis of K over k. Since for s=m, B0 ∪ {zp
m

1 , . . . , zp
m

e }= B′ is, as above,

a p-basis for Fm−1 over k, it is enough to show the following induction step

if B0 ∪ {zp
s

1 , . . . , z
ps

e } is p-basis for Fs−1 over k,

then B0 ∪ {zp
s−1

1 , . . . , zp
s−1

e } is p-basis for Fs−2 over k,

where s descends from m to 1.

Firstly, we argue for the p-independence of B0 in Fs−2. For any n ∈ N and

pairwise distinct x1, . . . , xn ∈ B0, by Lemma 3.3, we have

[F ps−2(x1, . . . , xn) : F ps−1] = [F ps−1(zp
s

1 , . . . , z
ps

e , x1, . . . , xn) : F ps−1] = pn+e,

using Lemma 3.3 again, we get

pn+e = [F ps−2(x1, . . . , xn) : F ps−2] · [F ps−1(zp
s

1 , . . . , z
ps

e ) : F ps−1]

= [F ps−2(x1, . . . , xn) : F ps−2] · pe.

Elements x1, . . . , xn were chosen arbitrary, so indeed B0 is p-independent

over k in Fs−2.
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14 D. M. HOFFMANN

We show now the p-independence of B0 ∪ {zp
s−1

1 , . . . , zp
s−1

e } in Fs−2. For

any n ∈ N, pairwise distinct x1, . . . , xn ∈ B0,

[F ps−2(zp
s−1

1 , . . . , zp
s−1

e , x1, . . . , xn) : F ps−2]

= [F ps−2(zp
s−1

1 , . . . , zp
s−1

e , x1, . . . , xn) : F ps−2(x1, . . . , xn)]

· [F ps−2(x1, . . . , xn) : F ps−2].

To show the p-independence of B0 ∪ {zp
s−1

1 , . . . , zp
s−1

e } over k in Fs−2 we

need only to prove

[F ps−2(zp
s−1

1 , . . . , zp
s−1

e , x1, . . . , xn) : F ps−2(x1, . . . , xn)] = pe.

By Fact 3.2 it reduces to show that for each i6 e we have

zp
s−1

i 6∈ F ps−2(zp
s−1

i+1 , . . . , z
ps−1

e , x1, . . . , xn)

(clearly zp
s

i ∈ F
p
s−2). It holds due to Lemma 3.3 and

F ps−2(zp
s−1

i+1 , . . . , z
ps−1

e , x1, . . . , xn)⊆ Fs−1(zp
s−1

i+1 , . . . , z
ps−1

e ).

Finally, we see that

Fs−2 = Fs−1(zp
s−1

1 , . . . , zp
s−1

e )

= F ps−1(B0 ∪ {zp
s

1 , . . . , z
ps

e })(z
ps−1

1 , . . . , zp
s−1

)

= F ps−1(zp
s

1 , . . . , z
ps

e )(B0 ∪ {zp
s−1

1 , . . . , zp
s−1})

= F ps−2(B0 ∪ {zp
s−1

1 , . . . , zp
s−1}),

and that ends proof of the induction, after last step we obtain that B0 ∪
{z1, . . . ze} is a p-basis for F1−2 =K over k.

In the spirit of [2, Definition 6.1] we introduce the following term:

Definition 3.6. Let (K, D[m]) be a G[m]-field. A subset B ⊆K is

called a canonical G-basis if:

• |B|= e;

• B is p-independent in K over CK ;

• there is an embedding of G[m]-fields (k(G), DG[m])→ (K, D[m]) (see

Example 2.12) such that B is the image of the set of canonical parameters

of G corresponding to the canonical G-derivation.
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ON EXISTENCE OF CANONICAL G-BASES 15

Example 3.7. Let us take G= Ge
a. By [5, Theorem 27.3] and

Lemma 4.15 if [K : CK ] = pe then (K, D[m]) has a canonical Ge
a-basis. This

fact was used in [14], to obtain the quantifier elimination for the theory of

separably closed strict Ge
a-fields, satisfying [K : CK ] = pe.

Theorem 3.8. Assume that a G[m]-field (K, D[m]) has a canonical G-

basis, then D[m] is strongly integrable.

Proof. Let B = {z1, . . . , ze} be a canonical G-basis of (K, D[m]) and

let X̄ be an e-tuple of variables. By a choice of local parameters of G at

the identity we get an embedding k(X̄)⊆ k(G). Proposition 3.5 assures

the existence of a set B0 ⊆ Cabs
K such that B0 ∪B is a p-basis of K over

k. Let K ′ := k(B0). Because B0 ∪B is algebraically independent over k,

B0 is algebraically independent over k(B). Moreover, k(B)∼= k(X̄)⊂ k(G)

is an algebraic extension, thus B0 is algebraically independent over k(G).

Therefore, K ′ and k(G) are linearly disjoint over k, so the “multiplication”

map µ : k(G)⊗k K ′→K is an injection, and therefore it extends to µ̃ :

(k(G)⊗k K ′)0→K.

By [5, Theorem 26.8], K ′(B) is purely transcendental over K ′ and

K ′(B)⊆K is 0-étale. Hence we have K ′(B)∼=K ′(X̄)∼= (k(X̄)⊗k K ′)0 ⊆
(k(G)⊗k K ′)0 (k(G)⊗k K ′ is a domain as a subring of K). Therefore, we

have a natural mapping K ′(B)→ (k(G)⊗k K ′)0 =:K ′(G).

Note that the following diagram commutes

K ′(G)
µ̃

%%
K ′(B)

88

⊆
// K

The extension of fields K ′(B)⊆K is smooth, and by [5, Theorem 26.9]

it is also separable. In particular, K ′(G) is separable over K ′(B). The

algebraicity of the extension k(B)⊆ k(G) implies the algebraicity of the

extension K ′(B)⊆K ′(G), and that, due to [5, Theorem 26.1], means that

K ′(B)⊆K ′(G) is 0-étale. Therefore, also µ̃ :K ′(G)→K is 0-étale. We have

the following tower of k-algebras

k(G)⊗k K ′ ⊆ (k(G)⊗k K ′)0 =K ′(G)
µ̃−→K,

where both extensions are 0-étale. By [5, Theorem 26.7] k(G)⊗k K ′
µ−→K

is 0-étale.
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16 D. M. HOFFMANN

Now we are going to define a G-ring structure on R := k(G)⊗k K ′. For

every i ∈ Ne, v ∈ k(G) and w ∈K ′ we define

D′i(v ⊗ w) :=DG
i (v)⊗ w.

Note that for every i ∈ [pm]e, we have µ ◦D′i =Di ◦ µ. Thus (R, D′[m])
µ−→

(K, D) is a G[m]-morphism. By Lemma 2.13 for (R, D), there exists a unique

G-derivation D̃ on K. Since both D and D̃[m] extend D′[m], by Lemma 2.13

for every i ∈ [pm]e we have Di = D̃i.

Remark 3.9. The converse to Theorem 3.8 is not true in general. First

of all, we need enough “space” to have a canonical G-basis, so we assume

(2) [K : CK ] = pe

for an integrable G[m]-field (K, D). For example Di = 0, for all i 6= 0,

is integrable, but [K : CK ] = 1 and there are not enough p-independent

elements to form a G-basis. Equality (2) in dimension e= 1 means that

D1 6= 0 and such an assumption is needed in [5, Theorem 27.3(ii)] to obtain

the existence of a one-element canonical basis. Hence it is morally justified

to assume (2) in the next Section, where we find a canonical G-basis

for a special algebraic group G. Perhaps there are no general reasons for

the converse theorem to hold and finding a canonical G-basis is the only

possibility for proving the existence of such a basis for a given algebraic

group G.

§4. New examples of groups with canonical G-bases

4.1 Unipotent groups of dimension two

In this subsection, we are going to find a canonicalG-basis for an algebraic

group G of a special type. Firstly we provide a well-known fact about

derivations, then define G and its group law. After this we specify which

tuples satisfy the canonical G-basis condition in this case and prove the

existence of such basis for a G[m]-field (K, D) satisfying [K : CK ] = pe.

Fact 4.1. Let L be a field, ∂ ∈DerC(L), ker ∂ = C 6= L, ∂(p) = 0, then:

(i) there exists an element z ∈ L such that ∂(z) = 1, and 1, z, z2, . . . , zp−1

form a basis of L over C;

(ii) ker ∂(p−1) = im ∂.

https://doi.org/10.1017/nmj.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.25


ON EXISTENCE OF CANONICAL G-BASES 17

Proof. The first item is contained in [5, Theorem 27.3]. The second

item is in [13, Lemma 3.], but for reader’s convenience, we include a

short proof. The derivation ∂ is a C-linear map, after computing ∂ on

1, z, z2, . . . , zp−1 we see that dimC ker ∂ = 1. Therefore, dimC im ∂ = p− 1,

moreover dimC ker ∂(p−1) 6 p− 1. The condition ∂(p) = 0 implies that

im ∂ ⊆ ker ∂(p−1), but dimC ker ∂(p−1) 6 dimC im ∂.

For i6 p let λi := (p− 1)!/(p− i)!i! mod p, which is equal to the image

of (1/p)
(
p
i

)
in Fp. Following the [7, page 171], we define

Hn(X2, Y2) :=

[
1

p
((X2 + Y2)p −Xp

2 − Y
p

2 )

]pn
=

1

p
((Xpn

2 + Y pn

2 )p −Xpn+1

2 − Y pn+1

2 ) ∈ Fp[X2, Y2],

Hn(X2, Y2) =

p−1∑
i=1

λiX
ipn

2 Y
(p−i)pn

2 .

Consider the extension of commutative algebraic groups

0→Ga→G→Ga→ 0,

where the group operation ∗ on G is given by

(X1, X2) ∗ (Y1, Y2) = F (X1, X2, Y1, Y2)

:=

(
X1 + Y1 +

M∑
n=0

αnHn(X2, Y2), X2 + Y2

)
,

for a fixed M ∈ N and αi ∈ k for i6M . We are interested in the following

m-truncation

F [m](v1, v2, w1, w2) =

(
v1 + w1 +

N∑
n=0

αnHn(v2, w2), v2 + w2

)
,

where v1, v2, w1 and w2 are m-truncated variables and N := min{M,m−
1}. Without loss of generality we assume that N =m− 1. Let (K, D) be a

G[m]-field (i.e., (K, D) is a Ĝ[m]-field, but Ĝ= F̂ = F , so we consider just

an F [m]-field), such that [K : CK ] = p2.

Lemma 4.2. We have the following:

(i) D(i,j) =D(i,0)D(0,j) =D(0,j)D(i,0);

(ii) D(i2,0) ◦D(i1,0) =
(
i1+i2
i1

)
D(i1+i2,0);

(iii) [p]F [m](v1, v2) = (−
∑N

n=0 αnv
pn+1

2 , 0);
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18 D. M. HOFFMANN

(iv) D
(p)
(i,j) = 0 for every i, j 6 pm−1 such that i 6= 0;

(v) if j < m then

D
(p)

(0,pj)
=−αjD(1,0) +

pj∑
n=p

βnD(n,0),

for some βn ∈ k.

Proof. The first two items are easy. For the proof of third item it is

sufficient to prove inductively the following

[l]F (v1, v2) =

(
lv1 +

N∑
n=0

αn

[(
1

p
(lp − l)

)
vp2

]pn
, lv2

)
.

The fourth and the fifth item use the third part and Corollary 2.25.

Specifically, one needs to show

D
(p)
(0,j) =

∑
i0+i1p+···+iNpN=j

(−1)i0+···+iN

· (i0 + · · ·+ iN )!

i0! · . . . · iN !
αi00 · . . . · α

iN
N D(i0+···+iN ,0),

for every j 6 pm−1. We leave it to the reader.

Let us consider the canonical F -derivation from Example 2.10:

evF : kJX1, X2K→ (kJX1, X2K)JY1, Y2K,

where

X1 7→X1 + Y1 +

N∑
n=0

αn

p−1∑
i=1

λiX
ipn

2 Y
(p−i)pn

2 ,

X2 7→X2 + Y2.

As in Example 2.12, the above F -derivation could be considered as a G-

derivation on k(G) (because F = Ĝ). In this situation k(G) = k(X1, X2), so

we need to find an embedding ϕ of (k(X1, X2), DG[m]) in (K, D) such that

for x= ϕ(X1) and y = ϕ(X2) we have:

(i) [CK(x, y) : CK ] = p2;
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(ii)
∑pm−1

i,j=0 D(i,j)(x)vi1v
j
2 = x+ v1 +

∑N
n=0 αn

∑p−1
i=1 λiy

ipnv
(p−i)pn
2 ;

(iii)
∑pm−1

i,j=0 D(i,j)(y)vi1v
j
2 = y + v2.

The conditions (i), (ii) and (iii) above are equivalent to

D(1,0)(x) = 1, D(0,1)(x) = α0λ1y
p−1, . . . ,

D(pn,0)(x) = 0, D(0,pn)(x) = αnλ1y
(p−1)pn , . . .

D(1,0)(y) = 0, , D(0,1)(y) = 1, D(p,0)(y) = 0, D(0,p)(y) = 0, . . .

(since D(1,0)(x) = 1, D(1,0)(y) = 0 and D(0,1)(y) = 1 imply, by Fact 3.2, that

[CK(x, y) : CK ] = p2). We are concerned now only with the terms of the

form D(pi,0) and D(0,pj). It will turn out later that it is enough to consider

such terms to obtain expected G-basis. Recall that G is commutative, so

each subset of constants is preserved, that is,

D(i,j)(C(i′,j′))⊆ C(i′,j′),

for every i, j, i′, j′ < pm.

Recall also that [Fs−1 : Fs] = p2 for every s ∈ {0, . . . , m− 1}
(Remark 3.4).

Fact 4.3. There exists x, y ∈K such that D(1,0)(x) = 1, D(1,0)(y) = 0 and

D(0,1)(y) = 1.

Proof. Note that D(1,0) ∈DerC(1,0)
(F−1) and D

(p)
(1,0) = 0, so we can use

Lemma 2.22 and obtain [F−1 : C(1,0)] 6 p (Lemma 2.22 works for iterative

HS-derivations, but by [5, Theorem 27.4], D
(p)
(1,0) = 0 implies Ga-iterativity).

Moreover, from Lemma 4.2,

D
(p)
(0,1)|C(1,0)

=−α0D(1,0)|C(1,0)
= 0,

so similarly [C(1,0) : F0] 6 p. Since [F−1 : F0] = [K : CK ] = p2, both D(1,0) ∈
DerC(1,0)

(F−1) and D(0,1)|C(1,0)
∈DerF0(C(1,0)) are nonzero, so they satisfy

assumptions of Fact 4.1(i).

Lemma 4.4. Let n> 0 and i, j < pn+1, be such that (i, j) 6= (0, 0). Then

we have Fn ⊆ C(i,j).

Proof. We argue inductively on l = i+ j to show that D(i,j)|Fn = 0 for

i, j < pn+1 such that (i, j) 6= (0, 0). For l = 1 it is clear. Assume that i, j <

pn+1, (i, j) 6= (0, 0) and for every i′ + j′ < i+ j such that (i′, j′) 6= (0, 0)
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20 D. M. HOFFMANN

we have D(i′,j′)|Fn = 0. If i= γ0 + · · ·+ γrp
r, j = β0 + · · ·+ βsp

s, r, s6 n,

0 6 γ0, . . . , γr, β0, . . . , βs < p, and γr, βs 6= 0, then from Fact 2.16

γrβsD(i,j) =D(i−pr,j−ps) ◦D(pr,ps) − r(D(i′,j′))0<i′+j′<i+j .

By Lemma 4.2 Fn ⊆ kerD(pr,0) ⊆ kerD(pr,ps).

Lemma 4.5. For each n>−1 sets Fn and Fn ∩ C(pn+1,0) are subfields

of K.

Proof. By Remark 3.1 Fn is a subfield. Using Lemma 4.4, we get

that D(pn+1,0)|Fn ∈Der(Fn) and therefore kerD(pn+1,0)|Fn , equal to Fn ∩
C(pn+1,0), also is a subfield.

4.1.1 Finding y

Fact 4.6. There exists an element y ∈K such that:

(i) D(1,0)(y) = 0 and D(0,1)(y) = 1;

(ii) for every 0< n <m we have D(pn,0)(y) =D(0,pn)(y) = 0.

Proof. For the proof of (i) consider the element y ∈K from Fact 4.3. For

the proof of (ii) we inductively correct y. Take the maximal 0< l <m such

that for every 0< l′ < l

D(pl′ ,0)(y) =D(0,pl′ )(y) = 0.

Assume that D(pl,0)(y) 6= 0 or D(0,pl)(y) 6= 0, otherwise we have nothing to

do.

Let D(pl,0)(y) 6= 0, clearly D(pl,0)(y) ∈ Fl−1, so D(pl,0)(y) ∈ kerD(pl,0)|
(p−1)
Fl−1

equal, due to Fact 4.1, to the image of D(pl,0)|Fl−1
. There exists z ∈ Fl−1 such

that D(pl,0)(y) =D(pl,0)(z). We exchange y with y − z.
Now let D(pl,0)(y) = 0 and D(0,pl)(y) 6= 0. We have D(0,pl)(y) ∈ Fl−1 ∩

C(pl,0) and as before D(0,pl)(y) ∈ kerD(0,pl)|
(p−1)
Fl−1∩C(pl,0)

. Again, we would like

to use Fact 4.1, so it is enough to check that D(0,pl)|
(p)
Fl−1∩C(pl,0)

= 0, which

follows from Lemmas 4.2 and 4.4.

For the rest of this subsection we fix y ∈K as in the fact above.

Remark 4.7. If pq 6 n < pq+1 andD(pq ,0)(a) = 0, then alsoD(n,0)(a) = 0.

Proof. It is a property of the standard iterativity rule.
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The values of D(pn,0) and D(0,pn) (n <m) at the element y determine the

value of D(i,j) (for every (i, j)) at y, which we show below. Moreover, the

proposition below assures us that y fulfills the canonical G-basis conditions.

Proposition 4.8. We have the following:

(i) for all n > 0 D(n,0)(y) = 0;

(ii) D(n,0)(y
s) = 0 for all n > 0 and 1 6 s6 p− 1;

(iii) for all n > 1 D(0,n)(y) = 0;

(iv) D(0,pn)(y
s) = 0 for all n > 1 and 1 6 s6 p− 1;

(v)

D(i,j)(y) =


y if (i, j) = (0, 0),

1 if (i, j) = (0, 1),

0 otherwise.

Proof. The item (i) follows from Remark 4.7. The item (ii) is a

consequence of the equality D(n,0)(y
s) = yD(n,0)(y

s−1). Our iterativity rule

forces (by Fact 2.16) that

(3) D(0,j2)D(0,j1) =

(
j1 + j2
j1

)
D(0,j1+j2) + r(D(i,j))0<i+j<j1+j2

i 6=0
.

For the proof of item (iii) we use the equation above in an induction

argument. If p= 2, then D(0,2)(y) = 0. For p > 2 we have

0 =D(0,1)D(0,1)(y) = 2D(0,2)(y) + r(D(0,j)D(i,0))i 6=0(y) = 2D(0,2)(y).

Assume that n> 2 and D(0,2)(y) = · · ·=D(0,n)(y) = 0. Take n+ 1 = γ0 +

γ1p+ · · ·+ γsp
s, where γ0, . . . , γs < p, γs 6= 0.

D(0,n+1−ps)D(0,ps)(y) = γsD(0,n+1)(y) + r(D(0,j)D(i,0))i 6=0(y)

= γsD(0,n+1)(y).

If s= 0, then the left-hand side of the last expression is equal to

D(0,n)D(0,1)(y) = 0, if s 6= 0 we proceed similarly due to the equation

D(0,ps)(y) = 0. The proof of the item (iv) uses the equation

D(0,l)(y
s) = yD(0,l)(y

s−1) +D(0,l−1)(y
s−1)

and it is a simple induction on s. The item (v) follows from Lemma 4.2(i).

https://doi.org/10.1017/nmj.2017.25 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2017.25


22 D. M. HOFFMANN

4.1.2 Finding x

Fact 4.9. There exists an element w ∈K such that:

(i) D(1,0)(w) = 1 and D(0,1)(w) = 0;

(ii) for every 0< n <m we have D(pn,0)(w) =D(0,pn)(w) = 0.

Proof. We define D∗(0,1) :=D(0,1)|C(1,0)
, note that D

∗(p)
(0,1) = 0 and D∗(0,1) 6=

0. We start with an element x from the statement of Fact 4.3, for which we

have D(0,1)(x) ∈ C(1,0). Naturally D(0,1)(x) ∈ kerD
∗(p−1)
(0,1) = imD∗(0,1). Hence

there exists an element z ∈ C(1,0) such that D(0,1)(x) =D(0,1)(z). Taking

w = x− z give us the first part. The second part follows as in the proof of

Fact 4.6.

Lemma 4.10. There exists an element x ∈K satisfying:

(i) D(1,0)(x) = 1, D(0,1)(x) = α0y
p−1;

(ii) D(pn,0)(x) = 0 and D(0,pn)(x) = αny
(p−1)pn for each 0< n6N ;

(iii) D(pn,0)(x) =D(0,pn)(x) = 0 for each N < n <m.

Proof. The proof of item (ii) is more complicated, but reasoning is similar

to the proof of the point (i).

(i) We start with x ∈K from Fact 4.3. If α0 = 0, we proceed like in the

proof of Fact 4.6. Assume α0 6= 0, we need x′ ∈ C(1,0) such that D(0,1)(x+

x′) = α0y
p−1. We have

D(1,0)(α0y
p−1 −D(0,1)(x)) = α0D(1,0)(y

p−1) = 0,

therefore α0y
p−1 −D(0,1)(x) ∈ kerD(1,0) ⊆ kerD

(p−1)
(1,0) = imD(1,0). So there

exists z ∈K such that

α0y
p−1 −D(0,1)(x) =D(1,0)(z) =− 1

α0
D

(p)
(0,1)(z).

The last equality comes from Lemma 4.2, since D
(p)
(0,1) =−α0D(1,0). Then we

can take x′ =−(1/α0)D
(p−1)
(0,1) (z), since:

D(1,0)

(
x− 1

α0
D

(p−1)
(0,1) (z)

)
= 1− 1

α0
D

(p−1)
(0,1) (D(1,0)(z)),
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but

D
(p−1)
(0,1) (D(1,0)(z)) = D

(p−1)
(0,1) (α0y

p−1 −D(0,1)(x))

= α0D
(p−1)
(0,1) (yp−1)−D(p)

(0,1)(x)

= α0(p− 1)! + α0D(1,0)(x) = α0((p− 1)! + 1)(4)

and by Wilson’s theorem it is equal to 0.

(ii) As in the proof of 4.6, we take the maximal 0< l 6N such that for

every 0< l′ < l

D(pl′ ,0)(x) = 0, D(0,pl′ )(x) = αl′y
(p−1)pl

′
.

Case 1. D(pl,0)(x) 6= 0.

Clearly, D(pl,0)(x) ∈ C(pl′ ,0) for every 0 6 l′ < l. Moreover, for every 0 6
l′ < l

D(0,pl′ )D(pl,0)(x) = D(pl,0)D(0,pl′ )(x)

= D(pl,0)(αl′y
(p−1)pl

′
)

= αl′D(pl−l′ ,0)(y
p−1)p

l′
= 0,(5)

by Proposition 4.8(ii) where the last equation follows. This means

that D(pl,0)(x) ∈ Fl−1 and furthermore D(pl,0)(x) ∈ kerD(pl,0)|
(p−1)
Fl−1

=

imD(pl,0)|Fl−1
. Hence there exists z ∈ Fl−1 such that D(pl,0)(x) =D(pl,0)(z)

and we replace x with x− z.

Case 2. D(pl,0)(x) = 0 and D(0,pl)(x) 6= αly
(p−1)pl .

If αl = 0 we argue similarly as many times before (compare also with the

proof of item (iii)), so let αl 6= 0. The aim of this part is to find an element

x′ ∈ Fl−1 ∩ C(pl,0) such that

D(0,pl)(x+ x′) = αly
(p−1)pl .

We introduce

W := C(0,1) ∩ C(pl,0) ∩
⋂

16l′<l

C(pl′ ,0) ∩ C(0,pl′ ).

Note that the element w from Fact 4.9 satisfies w ∈W\ kerD∗(1,0), where

D∗(1,0) :=D(1,0)|W .
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Claim. kerD∗(1,0) ⊆ imD∗(1,0).

Proof of the Claim. Note that W0 :=W ∩ C(1,0) = Fl−1 ∩ C(pl,0) =

kerD∗(1,0) is a subfield of K (by Lemma 4.5). Using Lemma 4.4 we

obtain that W is a vector space over W0. Now take a ∈W such that

D∗(1,0)(a) = 0, that means a ∈W0. The element a · w belongs to W and

moreover D∗(1,0)(aw) = aD∗(1,0)(w) = a, so a ∈ imD∗(1,0).

It is not to hard to see that

αly
(p−1)pl −D(0,pl)(x) ∈ Fl−1.

Moreover, since D(1,0)(y) = 0, we have

D(pl,0)(αly
(p−1)pl) = αlD(1,0)(y

(p−1))p
l
= αl(p− 1)(yp−2D(1,0)(y))p

l
= 0.

We conclude that

αly
(p−1)pl −D(0,pl)(x) ∈ Fl−1 ∩ C(pl,0) =W ∩ C(1,0).

In other words αly
(p−1)pl −D(0,pl)(x) ∈ kerD∗(1,0) ⊆ imD∗(1,0), and there is

z ∈W such that

αly
(p−1)pl −D(0,pl)(x) =D(1,0)(z).

From Lemma 4.2 we know that

D
(p)

(0,pl)
=−αlD(1,0) +

pl∑
n=p

βnD(n,0),

for some βn ∈ k. By Remark 4.7 for every p6 i6 pl D(i,0)|W = 0, conse-

quently D(1,0)(z) =−(1/αl)D
(p)

(0,pl)
(z). For x′ take −(1/αl)D

(p−1)

(0,pl)
(z), only

an argument for D
(p−1)

(0,pl)
(z) ∈ C(1,0) is missing, and it is straightforward

modification of the equation (4).

(iii) It follows the proof of Fact 4.6, we need to check only that

D(pl,0)(x), D(0,pl)(x) ∈ Fl−1 for l > N . Obviously, D(pl,0)(x), D(0,pl)(x) ∈⋂l−1
l′=0 C(pl′ ,0) ∩

⋂l−1
l′=N+1 C(0,pl′ ). Let 0 6 l′ 6N , then

D(pl,0)D(0,pl′ )(x) =D(pl,0)(αl′y
(p−1)pl

′
) = αl′D(pl−l′ ,0)(y

p−1)p
l′

= 0,
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as in (5). Furthermore,

D(0,pl)D(0,pl′ )(x) =D(0,pl)(αl′y
(p−1)pl

′
) = αl′D(0,pl−l′ )(y

p−1)p
l′
,

so we are done if D(0,pl−l′ )(y
p−1) = 0, which is a part of Proposition 4.8.

We fix x ∈K as in the above fact.

Lemma 4.11. We have the following:

(i) for all n > 1 D(n,0)(x) = 0;

(ii) for all n > 0

D(0,n)(x) =

{
αlλiy

(p−i)pl if 0 6 l 6N, 1 6 i < p, n= ipl,

0 otherwise.

Proof. The item (i) for n> p follows from Remark 4.7, and for 1<

n < p from Lemma 4.2 and D(1,0)(x) = 1. To prove the item (ii) we argue

inductively. Note that λ1 = 1, so for n= 1 it is clear. Assume that for every

n′ < n our thesis is true. Let n= γ0 + γ1p+ · · ·+ γsp
s, where γ0, . . . , γs < p

and γs 6= 0.

Claim 1.

D(0,n−ps)D(0,ps)(x) = γsD(0,n)(x),(6)

D(0,n−γsps)D(0,γsps)(x) =D(0,n)(x).(7)

Proof of the Claim 1. Both equations have similar proofs, so we consider

only the first one. We start with the equation (3) for j1 = ps and js = n− ps:

D(0,n−ps)D(0,ps) = γsD(0,n) + r(D(i,j))0<i+j<n
i 6=0

.

Our aim is to show that D(i,j)(x) = 0 for 0< i+ j < n, i 6= 0. The component

with D(1,0) (i= 1 and j = 0) does not occur. To see this, we compare

the sides of the equation from the iterativity definition for our chosen

iterativity rule, where on the left-hand side we focus on D(0,n−ps)D(0,ps).

A nonzero component with D(1,0) implies that n= ps+1 and this is impos-

sible. Let us assume that i= 1 and j > 0. Because of j < n, D(0,j)(x)

is, due to the inductive assumption, equal to βyr for some β ∈ k and

r > 0, and then D(1,0)D(0,j)(x) =D(1,0)(βy
r) = 0. If i > 1, then D(i,j)(x) =

D(0,j)D(i,0)(x) = 0.
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Claim 2. For every 0 6 l 6N and 0< i < p we haveD(0,ipl)(x) = αlλiy
(p−i)pl .

Proof of the Claim 2. It is quite an obvious induction, using Claim 1:

D(0,(1+i)pl)(x) =
1

i+ 1
D(0,pl)D(0,ipl)(x) =

1

i+ 1
D(0,pl)(αlλiy

(p−i)pl)

=
αlλi
i+ 1

D(0,1)(y
p−i)p

l
=
αlλi
i+ 1

(p− i)y(p−i−1)pl

= αlλi+1y
(p−i−1)pl .

Now we are going to the proof of the main induction step. We deal with

several cases. If s > N , then D(0,ps)(x) = 0 and the equation (6) implies

that D(0,n)(x) = 0. We can assume that s6N and n− γsps 6= 0 (otherwise

we apply claim 2),

D(0,n)(x) =D(0,n−γsps)D(0,γsps)(x) = αsλγsD(0,n−γsps)((y
p−γs)p

s
).

Recall that for every a ∈K the element ap
s

belongs to Fs−1, thus by

Lemma 4.4 D(0,n−γsps)(a
ps) = 0.

We show below that fixed element x satisfies the required properties.

Proposition 4.12.

D(i,j)(x) =


x if (i, j) = (0, 0),

1 if (i, j) = (1, 0),

αlλiy
(p−i)pl if (i, j) = (0, ipl), 0 6 l 6N, 1 6 i < p,

0 otherwise.

Proof. By Lemma 4.2(i) we decompose D(i,j) into D(0,j)D(i,0). For

i> p Remark 4.7 and D(pn,0)(x) = 0, where 0< n <m, ensure us that

D(i,0)(x) = 0, thus also D(i,j)(x) = 0. For 1< i < p Remark 4.7(ii) used in

an inductive argument give D(i,0)(x) = 0. If i= 1, then D(i,j)(x) =D(j,0)(1).

Hence D(i,j)(x) 6= 0 if and only if j = 0. The case with i= 0 is exactly

Lemma 4.11.

By Propositions 4.8 and 4.12 the pair {x, y} is a canonical G-basis (see

the beginning of Section 4.1). Thus we end with the following:

Corollary 4.13. For G as defined above, any m ∈ N>0 and any G[m]-

field (K, D[m]) such that [K : CK ] = p2, there is a canonical G-basis in K.
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4.2 Canonical G-bases for commutative and connected groups

In the previous subsection we showed the existence of a canonical G-

basis for every G[m]-field (K, D) such that [K : CK ] = pe, where G was very

specific. Now we are going to apply those results to a more general class of

algebraic groups.

Definition 4.14. Let G be an algebraic group over k

(1) We call G integrable if for any m ∈ N>0, every G[m]-derivation on a

field K such that [K : CK ] = pdimG is strongly integrable.

(2) If for any m ∈ N>0, every G[m]-field K such that [K : CK ] = pdimG has

a canonical G-basis, we call G canonically integrable.

By Theorem 3.8 each canonically integrable algebraic group is integrable.

Lemma 4.15. Let G and H be algebraic groups over k. If both are

canonically integrable, then also G×H is canonically integrable.

Proof. Introduce A :=G×H, e1 : dimG, e2 := dimH and let (K, D) be

an A[m]-field such that [K : CK ] = pe1+e2 . We define

D′ := (D′(j1,...,je1 ) :=D(j1,...,je1 ,0, . . . , 0︸ ︷︷ ︸
e2 times

))j1,...,je1<p
m ,

D′′ := (D′′(je1+1,...,je1+e2 ) :=D(0, . . . , 0︸ ︷︷ ︸
e1 times

,je1+1,...,je1+e2 ))je1+1,...,je1+e2<p
m .

From the A[m]-iterativity diagram (see Definition 2.8) it follows that

D(j1,...,je1+e2 ) =D′(j1,...,je1 )D
′′
(je1+1,...,je1+e2 ),

D′ is G[m]-iterative and the second one, D′′ is H[m]-iterative.

Taking any p-basis of K over CK and using Remark 3.4 assures us that

for every s <m [Fs−1 : Fs] = pe1+e2 . Thus [K : Cabs
K ] = pm(e1+e2). For s <m

we introduce

F ′s :=
s⋂
j=0

C(pj ,0,...,0) ∩ · · · ∩ C(0,...,0,pj ,0, . . . , 0︸ ︷︷ ︸
e2 times

), F ′−1 :=K,

F ′′s :=

s⋂
j=0

C(0, . . . , 0︸ ︷︷ ︸
e1 times

,pj ,0...,0) ∩ · · · ∩ C(0,...,0,pj), F ′′−1 :=K.
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Consider the following tower of subfields

K ⊇ F ′0 ⊇ F ′1 ⊇ · · · ⊇ F ′m−1 ⊇ F ′m−1 ∩ F ′′0 ⊇ F ′m−1 ∩ F ′′1 ⊇ · · · F ′m−1 ∩ F ′′m−1.

For every s <m, due to Lemma 2.22 and [K : Cabs
K ] = pm(e1+e2), we have

[F ′s−1 : F ′s] = pe1 , [F ′m−1 ∩ F ′′s−1 : F ′m−1 ∩ F ′′s ] = pe2 .

In particular

[F ′m−1 : F ′m−1 ∩ F ′′0 ] = pe2 ,

so there exists a canonical H[m]-basis {β1, . . . , βe2} of (F ′m−1, D′′). Anal-

ogously, there exists a canonical G[m]-basis {b1, . . . , be1} of (F ′′m−1, D′).
Elements β1, . . . , βe2 are p-independent in F ′m−1 over F ′m−1 ∩ F ′′0 . By

Corollary 2.19, they are also p-independent in K over F ′′0 . Similarly for

elements b1, . . . , be1 , Corollary 2.19 implies that they are p-independent in

F ′′0 over F ′′0 ∩ F ′0. We have

[F ′′0 : F ′′0 ∩ F ′0] 6 pe1 ,

hence F0(b1, . . . , be1) = F ′′0 (note that CK = F0 = F ′′0 ∩ F ′0). Now we have all

the ingredients to state that B := {b1, . . . , be1 , β1, . . . , βe2} is a p-basis of

K over CK . Verification that B is also a canonical A-basis is not hard and

left to the reader.

We note the obvious fact:

Fact 4.16. Let G and H be isomorphic algebraic groups over k. If G is

canonically integrable, then also H is canonically integrable.

We can prove now the main theorem of this paper.

Theorem 4.17. Let G be a commutative and connected linear algebraic

group over an algebraically closed field k. If maximal unipotent subgroup of

G has dimension at most 2, then G is integrable.

Proof. Due to “Jordan decomposition” (last theorem on [10, page 70]),

G decomposes as GU ×GS , where GU consists of unipotent elements and

GS of semisimple elements. If the dimension of GU is equal to 2 we know

by [7, Proposition 8, page 171] that GU is isomorphic to the group defined

at the beginning of the previous subsection, so it is canonically integrable. If

dimGU = 1, then by [8, Theorem 3.4.9] it is isomorphic to Ga, so canonically

integrable by [1, Proposition 4.5]. We focus now on the semisimple part.
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By [8, Lemma 2.4.2(ii)], GS is diagonalizable, and by [8, Corollary 3.2.7(ii)]

it is a torus. Proposition 4.10 from [1] states that also Gm is canonically

integrable, so our group G is isomorphic to the product of canonically

integrable groups. Finally, we use Lemma 4.15, Fact 4.16 and Theorem 3.8.

In most cases of applications of the model theory to the differential

algebra, we are dealing with an algebraic group G over a field k, which is

assumed only to be perfect. One may wonder if Theorem 4.17 can be used

for such G[m]-fields, that is, for models of G[m]−DCF [2]. The answer

is positive, because separable closure of k, which is also algebraic closure,

is contained in the absolute constants for models of G[m]−DCF (for an

argument check e.g. proof of [12, Theorem 10]).

4.3 Possible generalizations

The desired generalization is to drop, in the assumptions of Theorem 4.17,

the condition for the dimension of the unipotent component of group G.

Unfortunately, the ideas from the above proof do not work in the case of

unipotent groups of dimension higher than 2. There are several reasons for

that, which will be explained below.

First of all, we are using in Section 4.1 formulas for the group law of

our group G. Commutative, connected unipotent groups of dimension 2

are characterized by [7, Proposition 8, page 171], so the explicit formulas

for the group law are known. For the unipotent groups of dimension 3 or

greater, the best known to the author results coincide with [7, Theorem 1,

page 176] and [7, Theorem 2, page 177]. It is unknown how the condition

“being a subgroup” translates to the case of iterative derivations, hence the

last reference does not help in finding a canonical basis. However, there is

a hope to use [7, Theorem 1, page 176]. We sketch this idea and reveal

difficulties in extending our technique to this context.

Assume that G is isogenous to Wn (the Witt group of dimension n). We

should give a modification of [1, Lemma 2.6], from which we would conclude

that G is integrable if and only if Wn is integrable. If this can be done, then

we need to check whether Wn is integrable. Unluckily, the whole procedure

from Section 4.1 cannot be extended to show the existence of a canonical

basis for Wn. Even in the case p= 2 and n= 3, some issues appear. If we

translate the group law of W3 (given by e.g. the formulas (a) and (b) in [11,

page 128]) for p= 2 into the conditions for a canonical basis:
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(i) [CK(x, y, z) : CK ] = 23;

(ii)
∑2m−1

i,j,l=0 D(i,j,l)(x)vi1v
j
2v
l
3 = x+ v1 − yv2 + yzv3 + zv2v3 − zv3

3 − z3v3;

(iii)
∑2m−1

i,j,l=0 D(i,j,l)(y)vi1v
j
2v
l
3 = y + v2 − zv3;

(iv)
∑2m−1

i,j,l=0 D(i,j,l)(z)v
i
1v
j
2v
l
3 = z + v3;

we can notice occurrence of equations of a new kind:

D(0,1,1)(x) = z.

Proofs from Section 4.1 involve only “one-dimensional differential equa-

tions” and the above equation is not of such a form. The “one-dimensional

differential equations” appear, because after diminishing the dimension by

1, at the induction step, we deal with one-dimensional subgroup, what is

the case for two-dimensional group G.

To summarize, generalizations of Theorem 4.17 to the higher dimensional

unipotent component case need to involve new proofs. It is also possible that

such a generalization cannot be done without some additional assumptions,

or even cannot be done at all.

Acknowledgments. I thank my advisor, Piotr Kowalski, for his invaluable

contribution. I am also grateful to the referee for a very useful report.

References

[1] D. Hoffmann and P. Kowalski, Integrating Hasse–Schmidt derivations, J. Pure Appl.
Algebra 219(4) (2015), 875–896.

[2] D. Hoffmann and P. Kowalski, Existentially closed fields with G-derivations, J. Lond.
Math. Soc. 93(3) (2016), 590–618.

[3] P. Kowalski, Geometric axioms for existentially closed Hasse fields, Ann. Pure Appl.
Logic 135 (2005), 286–302.

[4] H. Matsumura, Integrable derivations, Nagoya Math. J. 87 (1982), 227–245.
[5] H. Matsumura, Commutative Ring Theory, Cambridge University Press, 1986.
[6] K. Okugawa, Basic properties of differential fields of an arbitrary characteristic and

the Picard–Vessiot theory, J. Math. Kyoto Univ. 2(3) (1962), 295–322.
[7] J. P. Serre, Algebraic Groups and Class Fields: Translation of the French Edition,

Graduate Texts in Mathematics Series, Springer-Verlag New York Incorporated,
1988.

[8] T. A. Springer, Linear Algebraic Groups, 2nd ed., Birkhäuser, Basel, 1998.
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