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This paper explores an idealized model of the ocean surface in which widely separated
surface-wave packets and point vortices interact in two horizontal dimensions. We start
with a Lagrangian which, in its general form, depends on the fields of wave action,
wave phase, stream function and two additional fields that label and track the vertical
component of vorticity. By assuming that the wave action and vorticity are confined to
infinitesimally small, widely separated regions of the flow, we obtain model equations
that are analogous to, but significantly more general than, the familiar system consisting
solely of point vortices. We analyse stable and unstable harmonic solutions, solutions in
which wave packets eventually coincide with point vortices (violating our assumptions),
and solutions in which the wave vector eventually blows up. Additionally, we show that a
wave packet induces a net drift on a passive vortex in the direction of wave propagation
which is equivalent to Darwin drift. Generalizing our analysis to many wave packets and
vortices, we examine the influence of wave packets on an otherwise unstable vortex street
and show analytically, according to linear stability analysis, that the wave-packet-induced
drift can stabilize the vortex street. The system is then numerically integrated for long
times and an example is shown in which the configuration remains stable, which may be
particularly relevant for the upper ocean.
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1. Introduction

This paper explores an idealized model of the ocean surface in which widely separated
surface-wave packets and point vortices interact in two horizontal dimensions. Each wave
packet p is defined by its location x,,(?), its wave action .4,, and its wave vector k(). Each
point vortex i is defined by its location x;(¢) and its strength 7. In reality, wave breaking
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converts wave action into vorticity, and vorticity is destroyed by viscosity. However, in this
initial study we consider only the ideal case, in which .4, and I are conserved.

The velocity field attached to the wave packets is dipolar; it is sometimes called
a ‘Bretherton flow’. Wave packets advect the point vortices by their Bretherton flow.
Point vortices advect wave packets and other point vortices, and change the wave vector
of the wave packets by refraction. For simplicity, we omit the interactions between wave
packets, which are expected to be weak.

In §2 we derive the equations governing x,(7), k,(#) and x;(r) from a Lagrangian
which, in its general form, depends on the fields of wave action, wave phase, stream
function and two additional fields that label and track the vertical component of vorticity.
In our application, the Lagrangian couples Whitham’s Lagrangian for surface waves
to the Langrangian for two-dimensional, incompressible flow. Coupling is achieved by
replacing the ‘mean velocity’ in the Doppler term of the dispersion relationship with the
velocity field corresponding to the stream function of the vortical flow. We obtain our final
equations by assuming that the wave action and vorticity are confined to infinitesimally
small, widely separated regions of the flow. To leading order, each wave packet induces
a dipolar horizontal flow, and each vortex patch induces a monopolar flow. In its general
formulation (Salmon 2020), the method applies to any type of wave and any type of mean
flow in two or three dimensions. It seems easier to apply than other, apparently equivalent
methods that do not employ a Lagrangian.

In § 3 we consider the system consisting of a single wave packet and a single point
vortex. We analyse harmonic solutions in which the two particles move in circular orbits.
For these configurations, we show that solutions in which the vortex orbit lies outside the
orbit of the wave packet are stable, whereas solutions in which the vortex orbit lies inside
that of the wave packet are unstable. We also investigate solutions in which the vortex and
wave packet eventually coincide, violating the assumption of our model, and solutions in
which the wave vector grows without bound.

In §4 we consider the case of a wave packet encountering a pair of counter-rotating
point vortices. The highly symmetric arrangement permits thorough analysis, which is
confirmed by numerical solutions. This solution is very similar to that discussed by
Biihler & Mclntyre (2005) and invites a comparison with their method of analysis. We
also show that, in the limit that the circulation of the vortices is much weaker than the
wave action, the equations are equivalent to those diagnosing the motion of a particle in
the presence of a uniformly translating cylinder. Following classical analysis (Maxwell
1870; Darwin 1953) it is shown that the wave packet induces a net displacement on the
vortices.

In §5 we study a solution in which N > 1 wave packets are equidistant from, and
symmetrically arranged about, a single vortex. The wave packets circle the vortex at a
uniform angular velocity, while the vortex remains stationary at the centre of the pattern.

In § 6 we generalize our system to be periodic in one dimension, and investigate the
motion of a periodic array of weak point vortices in the presence of a periodic array of
wave packets. We find asymptotic solutions in which the wave packets induce a net drift
on the vortices.

In § 7 we use the analysis in § 6 to investigate the linear stability of a vortex street in
the presence of a wave packet. We find that the wave packet can change the stability of
the vortex street. Numerical analysis demonstrates that vortex streets can be stable for long
times in the presence of a wave packet.

Section 8 concludes with an assessment of our results and their oceanographic
implications.
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2. The equations of motion

In this section we derive the equations governing a mixture of widely separated vortex
patches and surface-wave packets. In the wide-separation limit, the vortex patches
correspond to point vortices and the wave packets correspond to ‘point dipoles’. We obtain
our equations by coupling the Lagrangian for the wave field in the form proposed
by Whitham (1965, 1974) to the Lagrangian for two-dimensional incompressible flow
representing the surface current. We use the Doppler term in the dispersion relation to
couple the two Lagrangians together. This appears to be a simple and powerful method
for deriving equations governing the interactions between waves and mean flows. Further
details of the method are given by Salmon (2020).
For the waves by themselves, the Lagrangian proposed by Whitham is

Ly[0, Al = /// dtdx (w — w(k) — U - k) A, 2.1)
where the integral is over time and the ocean surface; the frequency w = —6; and wave
vector k = V6 are abbreviations for the derivatives of the wave phase 6 (x, 1);

E
A=— (2.2)
Wy

is the wave action; E is the wave energy per unit area; and w, (k) is the prescribed relative
frequency of the waves — the frequency measured in a reference frame moving at the mean
flow velocity U (x, ). Our notation is k = (k, [), x = (x,y) and V = (0, dy). For surface
waves,

wr(k) =/ glk|. (2.3)

At this stage, we consider the mean flow to be prescribed. For the sake of
completeness, Appendix A provides a systematic derivation of (2.1) following Whitham’s
averaged-Lagrangian method. Variations of A yield the dispersion relation:

w=/glkl+U-k. 2.4)

From variations of & we obtain

SL,[6, A] = //f drdx (—(59), - a‘l"; .V($0)— U - V(59)) A

0
= /// drdx (A, +V - [(cg + U).ADSO, (2.5)

where c¢g(k) = 0w,/0k is the relative group velocity. Thus we obtain the action
conservation equation:

A +V - [(cg + U)A] = 0. (2.6)

We emphasize that the Lagrangian (2.1) applies to any truly two-dimensional system
with arbitrary dispersion relation w, (k). However, the mixed layer of the ocean is not
a two-dimensional system. To obtain a closed, two-dimensional model of the waves,
one must do more than to assert (2.3); one must isolate the waves from their deeper
surroundings. The most straightforward way to do this is to assume the existence of a
rigid lower mixed-layer boundary at depth Hy. The need for such a strong assumption, and
its implications, becomes more obvious as we proceed.
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The Lagrangian for two-dimensional incompressible flow is

Lulat, B, 9] = f/fdrdx%( aﬂtwa((“ ﬂ)) vy - Vl/f) @.7)

where the subscript m stands for ‘mean flow” and

0(A, B)
a(x,y)
is the Jacobian, defined for any two functions A(x, y) and B(x, y). The variables «(x, 1),

B(x, 1) and ¥ (x, 1) represent averages over the constant mixed-layer depth Hy. We assume
that the mean flow is depth-independent in this range. Stationarity of L,, implies

=[A, Bl = A,B, — B,A, (2.8)

Sa: B+ 1Y, Bl =0, (2.9)
8 o+ [, al =0, (2.10)
8v : [a, Bl = V2. (2.11)

We see that « and g are vorticity labels in the following sense: first, by (2.9) and (2.10),
they are conserved following the fluid motion, and hence each fluid particle is identified
by its two labels («, B); second, by (2.11), the vorticity in an arbitrary area of the flow is

given by
//dxdyvzw //d dy 2@ P) //dozdﬁ, (2.12)
Ax,y)

where the integration is over the arbitrary area in physical space and the corresponding
area in label space. Taking the time derivative of (2.11) and using the Jacobi identity,

[A, [B, CI] + [B, [C, Al + [C, [A, B]] = 0, (2.13)
we obtain the vorticity equation,
V2 + [, V2] =0, (2.14)

for the mean flow by itself.
We couple L,, to Ly, by replacing the mean velocity U in (2.1) with uy, = (=, ¥y),
and by assuming that the Lagrangian for the entire system is the sum

L6, A a, B, ¥]=L,+L =/// dtdx(—GtA—HOaﬁt)—/dtH (2.15)

of (2.1) and (2.7), where

D@ p)  Hy
3Gey) — 7V1ﬁ Vi + Vi x kA(>2 o

is the Hamiltonian, and (0, A) and («, B) are canonical pairs. Using (2.2), (2.11) and
integrations by parts to evaluate (2.16) we find that

H://dx<E+ %wp-vw). (2.17)

H[O, A a, B, Y] = // dx (a)r.A — Hyyr
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Thus, as expected, our dynamics conserves the sum of the wave energy and the kinetic
energy of the mean flow. The equations corresponding to §L = 0 are

SA: w=—6,=wk ) +uy -k, (2.18)
80 1 A+ V - [(cg +uy)Al =0, (2.19)
8v 1 Hola, Bl = HyV¢ — V x (kA), (2.20)
Sa: B+ (¥, B1 =0, (2.21)

8B ar+ Y, a] =0, (2.22)

where V x (A, B) = B, — Ay will be our notation for the vertical component of the curl of
a horizontal vector. By the Jacobian identity, (2.20)—(2.22) imply

g:+ ¥, q1 =0, (2.23)
where
q=HoV*y —V xp, (2.24)
and
p=kA (2.25)

is the pseudomomentum. The wave action equation (2.5) is unchanged, but now U = uy,.
That is, the previously arbitrary mean flow is now specifically identified with the velocity
field (—y, ¥) induced by the point vortices and wave packets.

The most interesting effect of the coupling and summation of Lagrangians is the
generalization of (2.14) to (2.23)—(2.24). By these equations, the quantity H()Vzw —Vxp
is conserved following the mean motion of fluid particles. Consider waves propagating into
a region of fluid that is initially at rest. Before the arrival of the waves, V2 = p = 0, and
hence

HoV?*y =V x p. (2.26)

By (2.23), (2.26) applies at all times, including when waves are present. Equation (2.26) is
a concise definition of Bretherton flow, the flow generated by a wave packet in a formerly
quiescent fluid. If wave breaking destroys the pseudomomentum p before the broad mean
flow represented by i has time to react, then real, actual, vorticity is created and remains
behind after the remaining wave energy propagates away.

Taking the gradient of the dispersion relation (2.4) and using Vo = —V6, = —k;, we
obtain the refraction equation

% + (g +U)-V)k=—kVU - IVV. (2.27)
The refractive change in k predicted by (2.27) causes a change in w,(k) that can be
determined from (2.3). If the waves do not break, then the action A = E/w,(k) is
conserved. If w, (k) increases, then the wave energy E must also increase to keep their ratio
constant. We anticipate that wave vector stretching, which increases |k| and hence w,, is
typical for the same reason that fluid particles typically move apart, and hence wave-mean
interactions typically transfer energy from surface currents to waves. On the other hand,
wave breaking always transfers energy from waves to currents.

Now we specialize the dynamics (2.15)—(2.16) to the case in which the vorticity and wave
action are concentrated at widely separated points. This specialization is motivated by a
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desire to produce equations amenable to analytical and numerical solution. We assume
that the mean flow vorticity consists solely of point vortices. Then

o, B1 =) 18 (x — x;(1), (2.28)

where x;(¢) is the location at time ¢ of a point vortex with strength I5. The subscript i
replaces the continuous vorticity labels o and 8. The Hamiltonian (2.16) becomes

HIO, A, xi, 1= =Y Hol (xi(1))

+ // dx <w,(9x, 0,).A — ?V’Jf VY A+ [, e]A) . (2.29)

To fully convert from (&, 8) to x; we must transform the term

//f dxdrap; (2.30)
in (2.15). It becomes

//fdxdydta .. ) ///dadﬁd . B)
a(x, y, 1) 3(0! B,7)
:///dadﬂdr—xw :///dadﬁdtx—
3(0{,,3, T) T
_ / Y (2.31)

Thus, when point vortices replace continuous vorticity, the Lagrangian (2.15) becomes

Lo, A xi,¢] = /// dxdt (—Q;A — wr(Ox, Oy) A+ %Vlﬁ VY — [, G]A)

/ ( ZHOFX: +ZH0F¢(x,(t))) (2.32)

Instead of (2.20) we now have

8y 1 HoV*y =Y Hold(x — xi(0) + [A, 01, (2.33)
with solution
1
Yo =53 Tiinfx = xi(0)] + ¥ (x. 1), (2.34)
l
where (suppressing the time dependence)
1 1
V(X)) = e // dx’p(x’)ﬂ In|x — x’ (2.35)
and
p=[A,601=VAxk. (2.36)

We now assume that the wave field consists solely of isolated wave packets. The stream
function field generated by a single wave packet at x,, is given by (2.35) and (2.36) with
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k = kj, where k(1) is the wave vector associated with the wave packet. We assume that
kp depends only on time; its variation within the wave packet is assumed negligible. The
integration in (2.35) is over the area of the wave packet, the region of the flow in which
A #0.In Appendix B we show that, far from x,, the stream function generated by a wave
packet at x;, takes the form of a dipole:

1 (x—xp) xk, 2.37)

Vx) =

2nHy |x—x,2 77

where A, = [ dx.A is the total action of the wave packet.
The stream function response to many point vortices and many wave packets is clearly

YD) =Y T, xi) + ) ApWa(x, xp, kp), (2.38)
i p
where
Yin (3 30) = —— In v — x,0) (239
21

is the response to a monopole at x; and

I (x—xp) xkp (2.40)

9 7k E
Va(x, xp, kp) 2y x—

is the response to a dipole with wave vector k, at x,,. The constants I'; and .A, measure the
strength of the monopole and the dipole, respectively. Constant .4, is always positive but
I'; can have either sign. Until dissipation occurs .A,, and I'; remain constant.

Since our aim is to produce a Lagrangian that depends only on the point vortex locations
x;(t), the wave packet locations x,, () and their wave vectors k,(f), we must transform all
of the terms in (2.32). If we integrate the first term in (2.32) over the pth wave packet, we

obtain
dx,
—//fdxdtQ,A ///dxdt@Atz—//fdxdtGE.VA
- —/drdﬁ-f/ dxOVA = /dt—dxp // dxAV0
dr dr

dx
= | dt—=L - k,A,, 2.41
/ 3k (2.41)
where we have used integrations by parts and the relation
0 dxp
— 4+ 2.V ) A(x,1) =0, 242
(az T, ) (.0 (242

which follows from the definition of x,(¢): dx,(r)/dt is the velocity of the wave envelope.
The second term in (2.32) becomes

- / dtw, (k) Ap. (2.43)
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The three terms in (2.32) containing v combine as

/// dtdx (%VW-V@& — [y, 9]A> +/dtZH()Fil//(xi(t),t)
- /// drdx (-%wvzw — [y, 9]A+ZH0BW8(x—xi)>

_ /// drdx (—%wzw F LA O + v (HoV2y — LA, 9]))

— }? / / / dt dxy V2, (2.44)

where we have used (2.33).
Our final step is to substitute (2.38) back into the Lagrangian, removing its dependence
on . The last integral in (2.44) becomes

/ / dxy Vi = f / dx | | D2 Him(x, xi) + Y ApWax, xp, kp)
i p
X VD Tm(ex) + Y Agtrax. xg. k) | |- (2.45)
J q

We simplify (2.45) by neglecting the dipole—dipole interactions, which are expected to
be weak: the velocity field associated with the monopoles falls off like 1/r, whereas the

velocity field associated with Bretherton dipoles falls off like 1/72. Dropping these terms
from (2.45) gives us

/ / dxy Vi ~ / / dx Y LV x) | Y Dm e, x) +2 ) Apvalx, xp, k)
i j p
=/fdx2ﬂ8(x—xi) D L x) + 2 Apvra(x, xp. kp)
i J P

=Y 0| D Tl x) +2)  Apvalxi, xp, k) | - (2.46)
i j P

Putting all this together, we obtain the Lagrangian

Lixi, xp, kp] = / de [ Y Apky -, — Y Holiwiyi — Hixi, xp. kp) | . (2.47)
)4 i

925 A32-8


https://doi.org/10.1017/jfm.2021.661

https://doi.org/10.1017/jfm.2021.661 Published online by Cambridge University Press

Wave packets and point vortices

where

Hix;, xp, k) = ZA,,w,(k,,) ZZFFlnpcl xj|

i j>i
ZZ r,t ’_C”))C Tzk (2.48)

is the Hamiltonian. For every wave packet there are two canonical pairs, (x,, k,) and
(Ip, yp), and for every point vortex there is one canonical pair, (x;, y;). Again, I and A,
are constants. The Hamiltonian (2.48) contains I I" terms and I" A terms. If we had not
dropped the dipole—dipole interactions, it would also contain A.A terms.

We remark that it is generally quite wrong to substitute an equation resulting from the
variational principle back into the Lagrangian. If, for example, we substitute the dispersion
relation back into (2.1), the Lagrangian vanishes. However, it is legitimate to use the
equation obtained by varying a particular field to eliminate that same field from the
Lagrangian; see Appendix C. Thus it is acceptable to use (2.33) to eliminate i from
(2.32).

The equations corresponding to (2.47) and (2.48) are

oH

Sky: xp, = —— =co(ky) + Uy(xy), (2.49)
p - Xp Ap ok, g\Kp m{Xp
1) k —1 _BH k, VU, (x,) — [, VV,(x)) (2.50)
X, = — = — Xp) — Xp), .
P P -Ap 8xp /4 m\p P m\+p
. 1 /0H oH
Oxi: x; = —,—— ) = Unx) + Uu(xy), (2.51)
F dy; 0x;

where

Un) = Un@), Vux) = Y T} (—ﬂ(x, X, l”’" Sl »)

dy

1 (yi =y, x —Xx)
= — —— 2.52
2n & Y x — x|? 2.52)

is the velocity field induced by the point vortices and
IV

U Ay | ——(x,xp, k , Xp, k 2.53
a(x) = Z p( % ¢, xp. k). X p)) (2.53)

is the velocity field induced by the wave packets. The total velocity is U(x) = U, (x) +
U (x). In our approximation, the wave packets talk to point vortices but not to one another,
while the point vortices talk to both point vortices and wave packets. We can add the
missing physics if necessary; it would, for example, add the term Uy(x),) to (2.49).
Equations (2.49)—(2.51) are the fundamental equations of our model. If we were to
regard U, as a prescribed mean flow, then (2.49) and (2.50) would be the standard
equations of ray theory (e.g. Biihler 2014). Similarly, if we omit Uy, then (2.51) is the
standard equation of point vortex dynamics (Kirchhoff 1883). The new feature of our
derivation is that U,, is not prescribed, but rather is determined by the locations of the
point vortices. Similarly, the dipolar velocity field of the wave packets is not dropped,
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but rather contributes to the advection of the point vortices. Again, if the relatively weak
interactions between the wave packets had not been dropped, then U, would also appear in
(2.49) and (2.50). Tchieu, Kanso & Newton (2012) consider a system consisting solely of
interacting point dipoles. In our context, their system corresponds to adding dipole—dipole
interactions but completely omitting the point vortices.

The derivation of (2.49)—(2.51) from a Lagrangian guarantees that our dynamics
maintains important conservation laws. The conservation of energy (2.48) corresponds
to the time-translation symmetry of (2.47)—(2.48). The conservation of momentum

M = Z Apkp + Ho Z Ii(yi, —xi) (2.54)
P i

corresponds to space-translation symmetry and is proved by considering variations of the
form

dx; = dxp = €(1), (2.55)

where €(¢) is an arbitrary infinitesimal vector. If we think of the interactions between
the dipoles and point vortices as the sum of pair interactions between each dipole—vortex
pair, then pairwise conservation of (2.54) shows that the refraction of wave packet p
(i.e. the change in k) caused by vortex i is accompanied by a change in the position of
vortex i. Bithler & Mclntyre (2003) refer to this as ‘remote recoil’. Conservation of (2.54)
also governs wave breaking in the following sense. If the pth wave packet is completely
destroyed by wave breaking, then 4, is suddenly replaced by two counter-rotating vortices
with a dipole moment equal to I"D, where D is the separation between counter-rotating
vortices of strength +1". See also Biihler & Mclntyre (2005), Biihler & Jacobson (2001)
and Biihler (2014). Our dynamics also conserves the angular momentum:

H,
L= Aplky x xp) + 70 PR HEAE L (2.56)
p i

which can be proved by considering variations of the form (x; 4 iy;) — (x; 4 iy;) o0

(xp +iyp) — (xp +1yp) %™ and (kp +ily) — (kp + 1) e®® where 86(r) is an
infinitesimal angle.

The velocity field induced by the point vortices falls off like 7~!, where r is the distance
from the vortex, whereas the velocity field induced by the wave packets falls off at the
faster rate r—2. In reality, the vorticity associated with a surface wave packet resides in a
horseshoe-shaped vortex tube whose surface manifestation is the vortex pair represented
by our dipole. In semi-infinite three-dimensional geometry, the velocity induced by the
horseshoe-shaped vortex falls off like 73, where r is the distance from the wave packet.
This follows from the Biot—Savart law relating vorticity to velocity. However, in our model,
the assumption of a wave layer of finite thickness, with a rigid lower boundary at depth

Hy, converts the r—> fall-off to 7~2, because the rigid mixed-layer bottom confines the
Biot—Savart response to the layer. The need to invoke a rigid lower mixed-layer boundary
demotes our model to something of a toy model. However, some such strong assumption is
unavoidable if one intends to model the wave layer as a two-dimensional system. Despite
the severity of this assumption, we believe that the two-dimensional model captures
enough of the physics to be a useful thinking tool and that some of our conclusions will
survive generalization to a more inclusive three-dimensional model.

Onsager (1949) considered the equilibrium statistical mechanics of a system of point
vortices. Our system reduces to Onsager’s system when no waves are present (A, = 0).
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Our phase space is larger than that considered by Onsager because it contains dimensions
corresponding to the wave packet locations x, and their wave vectors k,. However, the
difference is not merely a matter of extra dimensions. In Onsager’s problem the volume of
the phase space is finite, because the point vortices are confined to a box. In our problem
the phase space has infinite volume because —o0 < kj, < co. We therefore expect an
ultraviolet catastrophe in which energy spreads to ever larger |k, | by the process of wave
vector stretching. If wave vector stretching increases the first term in (2.48), as would be
the case for surface waves, this increase must be compensated by a decrease in the other
two terms.

Our method is easily adapted to other types of waves and mean flows. For example, to
investigate internal waves interacting with a quasigeostrophic mean flow, we need only
replace (2.4) with the dispersion relation for internal waves, and (2.7) with the Lagrangian
for quasigeostrophic flow. This approach offers advantages of simplicity and transparency
over the more formal approaches followed by Biihler & McIntyre (2005), Wagner & Young
(2015) and Salmon (2016). For many further details, see Salmon (2020). In the remainder
of this paper we investigate the dynamics (2.49)—(2.51).

3. One vortex, one wave packet

We begin by considering the system consisting of a single vortex of strength I” located at
x(t), and a single wave packet with action A, and wave vector k() located at x(r) + & (7).
This system exhibits a much more complicated range of behaviour than the more familiar
system consisting of two point vortices. The Langrangian (2.47) takes the form

Lix, & k] = /dt(.Apk (¢ + %) — Hol'xy — HE, k), (3.1)

with Hamiltonian

1 k
HE k) = Ay /slk] — —FA,,LZ'S. 3.2)
2n €]
The equations of motion become
d
5x: d—t(Apk+HoFy) =0, (3.3)
Sy : C%(A,,l — Hol'x) =0, (3.4)
sk: & =co(k I 3.5
T =g )+2n|§|2(—n,é‘), (3.5)
56 U _ (> — n*) — 2k&n) (3.6)
C A 2mg 7 - '
. ﬂ_ I 2 .2

where & = (&, n). We simplify notation by taking g = 1 and choosing a characteristic
wavenumber ky = 1 so that a)g = gko = 1. We also assume Hy = k; 1 - 1, while we take
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I' = 2nawok, 2 — 27 and A, = 2mawok, > = 21. Then the Hamiltonian (3.2) becomes

H=2n ((k2 + Py — H) . (3.8)

The system (3.3)—(3.7) conserves the energy (3.8), the angular momentum
21w, 2
L =2n(k x (x+§))+7(x +y) (3.9)
(cf. (2.56)) and the momentum M = (M., M,) (cf. (2.54)), where

M, =2n(k+y); M, =2n(~-x). (3.10a,b)

We use the conserved momenta (3.10a,b) to eliminate the variables (x, y) in favour of
(k, I, &, n). The resulting system conserves the energy (3.8) and the quantity

1 Mx 2 My 2 £ _1 , ,
" E<(2“) +(E)>_£_§(" +P) —(kn—15)  (3.11)

obtained by eliminating (x, y) between (3.9) and (3.10a,b). We also define

_H
2w

Ho (3.12)

The reduced dynamics takes the form of four coupled ordinary differential equations:

: k(£% — n%) + 21 k
€=—(€ n°) +2I&n _n (3.13)
(52 + ,72)2 2(k2 + 12)3/4 52 + 772
I(€% — n%) — 2k I
) &n n 3 ’ (3.14)
(52 + ,72)2 2(k2 + 12)3/4 52 + ,72
o IE?—n?) =2k
i = (& n°) &n (3.15)
(E2+n?)?
. k(€T —n?) 421
_ k@& 277 );r2 Sn’ (3.16)
(&= +n7)
with the two conserved quantities (3.11) and (3.12).
Define
k+il=«xe?, &+4in=ae”. (3.17a,b)

We shall obtain a single, closed equation for the wavenumber magnitude « (¢). First, using
(3.8), (3.11) and (3.12), we obtain an expression for a® in terms of k'

1,2
2 Ro—zx

= —= 3.18
a Ho— i (3.18)
Then using (3.8) we obtain the constraint
sin(p — 0) = L(Hy — /i) (3.19)
K
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on the phases. From (3.15) and (3.16), we find an evolution equation for ¢, namely

—lk+k 1

Equations (3.15) and (3.16) also imply
kk + 11 K

Combining (3.20) and (3.21), we obtain
2
2
. 5k Ho — /x
K2+ k2p? = A= K2 <m) . (3.22)

Our final step is to eliminate ¢ to arrive at an equation involving only £ and «. We use the
identity

2 2
cos2(¢ —0) = 1 — 2sin’(p — 0) = | — —=(Ho — /i), (3.23)
K
where the last substitution is via (3.18) and (3.19). Then by (3.18) and (3.23) we have
. Ho— K 2
¢ = —1‘/_2 — S (Ho — VK)*. (3.24)
R() - zK K

Substituting (3.24) back into (3.22) we obtain the closed evolution equation
WA+ Mk) =0 (3.25)

for x (¢), where

I 1 fk(Ho — i) ’ 14 1_2 R—l Z)H_f))z 3.26)
(K)_E m < p(o EK (O K . (

Equation (3.25) takes the form of a particle moving in a potential I7(x). This permits a
qualitative analysis of system behaviour based on the form of (3.26). Solutions may be
written out in implicit form, as in Tur & Yanovsky (2017), but a qualitative analysis offers
better physical insight.

3.1. Circular motion

We begin by seeking solutions that exhibit simple harmonic motion. Thus we take k = 0
and look for the «; that satisfy

IT(k;) = 0. (3.27)
Let x; = 1. This implies a simple relation between Hg and Rg. Its solutions are Ho = 1
and Rg a free parameter; or
1+ 2R
 —142Ro’
If we take k; = 1 to be a critical point, then I7’(1) = 0. It may be shown that when Ho = 1,
IT"(1) = 0. Therefore, in order to exhibit unstable and stable solutions, we consider the
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Figure 1. (a) The potentials 7 (k) for the two cases (R§) in which a critical point is present at k = 1. The inset
enlarges the potentials near x = 1. In one case (dashed) the critical point coincides with a maximum of /7 (x)
(implying unstable motion) while in the other case (solid) the critical point is a minimum. (b,c) Numerical
solutions showing the locations of the wave packet (black line) and vortex (red line) in the two cases. The
initial wave vector is indicated by the black arrow.

set of solutions described by (3.28). This leads to the two possibilities
Ry = 2(-3£2V2). (3.29)
The solutions take the form
k=cos¢, [=sin¢g, & =acosf, n=asinb, (3.30a—d)

where a is given by (3.18) and ¢ and 6 are found from (3.19) and (3.20).

An example of this behaviour is shown in figure 1, where the two potentials and
corresponding solutions are shown. In one of these solutions the wave packet orbit lies
inside the orbit of the vortex. In the other solution, the opposite occurs.

3.2. Stability of orbits

The I1(x) graphed in figure 1(a) suggest that the circular orbits shown there may not be
locally stable (in a spectral sense) to perturbations. Therefore we study solutions in the
neighbourhood of kg = 1. We take k = 1 4 €k and expand I1 () about the critical point
k =1, to find

(k) ~ (1) + exct IT' (1) 4 k2" (1) + - - - (3.31)

By construction, I7(1) = IT'(1) = 0. Taking k] = K? e, we find that the spectral stability

of the system will be set by the sign of EZ(K?)ZH ”(1). From figure 1 we see that R(J)“
corresponds to stable orbits and R, corresponds to unstable orbits. This is demonstrated

in figure 2, which shows that the stable orbits are confined to the neighbourhood of their
initial trajectories, whereas the unstable orbits deviate considerably.

3.3. Collapse

The above analysis addresses local spectral stability at a critical point. There are other
solutions in which a — 0 so that the wave packet and the vortex overlap. We call this
phenomenon ‘collapse’. Collapsed solutions violate the assumption of our model that
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Figure 2. (a) Orbit of wave packet and vortex with Ry = ’R(J)r as defined in (3.30a—d). For this case

perturbations are stable, and the orbits remain close to the unperturbed solution. (b) Orbit of wave packet
and vortex with Ry = R, . This orbit is unstable, and the solutions deviate considerably from circles.

the wave packets and vortices remain far apart. Nonetheless, collapse is a real property
of our equations that demands investigation. Vortex collapse for three point vortices has
been extensively studied (see Aref (1983) and references therein). The case of overlapping
vorticity and wave action has been analysed by Mclntyre (2019).

The conditions for collapse are clear from (3.18). Collapse occurs at the time * at which

k2 = 2Ry. (3.32)
As an example we suppose that Hy = Ro = 0. Then the system collapses as k — 0. Under

these assumptions, the governing equation for x reduces to

(3.33)

Define 9 by

tany = £— . (3.34)

Then
1 1
cos® = +—1/2 — ik, sin® = —«!/* (3.35a,b)
V2 V2

and, solving for «, we obtain

Kk = 5(3 — 4cos 20 + cos41). (3.36)
To find t = #(¥), we note that
dr dr dk . .
— = —— =t tan ¥ (2sin 29 — sin4). (3.37)
dd  dxdv
This can be integrated, and we arrive at
t=ty=£ }1(1229 — 8sin2% + sin4d). (3.38)
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Figure 3. An example of collapse, in which the wave packet and the vortex converge, violating model
assumptions. (a) The potential I7 (k) with Ry = 0 and Hy = 0. Note the singularity at « = 0. (b) Converging
particle paths. (¢) The evolution of « (¢), which vanishes in a cusp. The analytic solution is shown by the red
dashed line and is indistinguishable from the numerical result.

Collapse occurs when

dx dr 0 139
v dy (539
Thus the collapse corresponds to the formation of a cusp in k.

Figure 3 confirms these results. Figure 3(b) shows the convergence of the wave packet
and the vortex. Figure 3(c) compares the theoretical prediction of « (#) (where we have
taken the negative branch of the solution corresponding to k < 0) with the numerical
result. The two curves are indistinguishable.

In our model the wave action .4, is fixed. Therefore, the wave energy A, @ (k) vanishes
as k — 0 since w (k) o 4/k for surface gravity waves. The energy lost by the wave packet
appears as an increase in the ‘interaction energy’ between the wave packet and the vortex —
an increase in the last term in (3.2) — but, again, the whole theory breaks down when the
two particles finally converge.

3.4. Blow-up

There are also solutions in which «, the wavenumber modulus, grows without bound. We
call these blow-up solutions. They correspond to wave packets that steepen. In reality,
wave breaking limits the steepness of waves, and could be added to our model to extend its
validity. For example, wave packets that exceed a prescribed steepness could be replaced
by counter-rotating vortices with a dipole moment determined by momentum conservation
(2.54) as in Biihler & Jacobson (2001). In this paper we consider only ideal solutions, and
we do not include wave breaking.

The particle in a potential well analogy implies that « (f) may grow without bound when
IT is a monotonically non-increasing function for large . As an example, we take Ho =
—1. Then for large «:

T~ 2+ 0(1/Vx), (3.40)
which implies that the blow-up solution takes the form
K =Ko+ K1l (3.41)

We examine this numerically in figure 4, and find agreement with the theoretical
prediction.
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Figure 4. An example of a solution that ‘blows up’, meaning k — o0. (a) The trajectories of the wave packet
and vortex. (b) Plot of x. The asymptotic form of the growth is predicted to go like 7, which is shown by the
dashed red line and is seen to agree well with the numerical integration.

4. Two vortices and one wave packet

We now examine the system comprising a single wave packet with action .4, and wave
vector (kp, I,) located at (x,, y,); a point vortex of strength —I" located at x1, y; and a
second point vortex of strength 41" located at x, y>. Refer to figure 5. Initially,

yp=1lp=0 x2=xi, y=-n (4.1a—c)
and, by symmetry, these conditions hold at all later times. The Lagrangian is (with Hy = 1)

L[xpaypak 7l 7x17y17x27y2]
1"2
= fdt |:Ap(kpxp + lpyp - wr(kp, lp)) + I'(x1y1 — x2)2) — E In[x; — x2|

é r (x1 —xp) x k,, 4T (x2 —xp) X K, . 42)
27 |x1 —xpl2 |x2 _xp|2
We vary all the dependent variables, and then apply the symmetry conditions (4.1a—c) to

obtain a closed set of four equations. (It is not legitimate to apply the symmetry condition
before taking the variations.) The reduced set of equations is

+

. Iy

By p = colkp, 0) = 5., (4.3)
2k, (x1 —

s ¢y = L CL (4.4)

- Apky (1 —xp)y1
8x1 1 Y1 = PP d4p , 4.5)

I Ak, (x1 —x)%>—y?

Svi: iy = — PP r 1’ 4.6
Vit X yr + T (4.6)
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Figure 5. (a) A right-moving wave packet (in black), with its wave vector denoted by the straight arrow and
its associated dipolar flow indicated by circles, collides with a left-moving pair of counter-rotating vortices (in
red). As the wave packet approaches the vortices, the flow induced by the vortex pair squeezes the wave packet
in the x direction, stretching its wave vector. The dipolar flow induced by the wave packet pushes the vortices
apart (b). After passage of the wave packet (¢) the solution ‘unwinds’, and all three particles return to their
original configurations. (d) Partition of the energy (4.15) into wave energy H,, (the first term on the left-hand
side of (4.15)), vortex energy H, (the second term) and interaction energy H;,;. Energies H,, and H, increase
during the interaction, while H;,,; decreases.

where ¢, is the x component of the group velocity and
& = (1 —xp) +7 4.7

is the squared distance between the wave packet and either vortex. Because of the
symmetry conditions (4.1a—c), we do not need the evolution equations for y,, /,, x> and y;.
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Equations (4.3)—(4.6) conserve energy in the form

r? ApT yiky
E= a)r(kp)Ap + g lny1 — ? (48)
and momentum in the form
M = Ak, —2Iy1. 4.9)
The angular momentum vanishes. Defining
X(1) = xp (1) — x1(1), (4.10)
we rewrite (4.3)—(4.6) as three equations, namely
) r Ak
X = co(ky) + ——— (X% = 3y7) — L2 (x2 —y}), 4.11
olhy) + (O = 3D = T2 0C =D (4.11)
. 2Tk,
kp = —— %, (4.12)
Apkp
ho— Xy, 4.13
V1 iy (4.13)

in the three unknowns k,, y; and X, where now d> = Xx? +y%. The two conserved
quantities, (4.8) and (4.9), make this an integrable system. Eliminating y; between (4.8)
and (4.9), we obtain an expression for the energy in terms of X and kj,. The motion is
confined to curves of constant E(X, k;,). We can determine the solution by considering
E(X, kp) or, even more conveniently, by considering

re Ak, (Apk, — M)
Elly, d2) = 0,(6) Ay + 5~ In(Apk, — M) — 22500 220

(4.14)

in which we have dropped additive constants. Only the last term in (4.14) involves d2.
Consider a gravity wave packet, initially at X = —oo with k, > 0, approaching the
vortex pair from the left, as shown in figure 5(a). While the wave packet is still far from
the vortex pair (d” very large) the last term in (4.14) is negligible. According to (4.13),
k, increases with time on X < 0. This increase in k, occurs because the velocity field
associated with the vortices squeezes the wave packet in the x direction. Since cg(k,) > 0
the wave energy w,.A, and the vortex-interaction energy — the middle term in (4.14) — both
increase with k. The increase in the latter corresponds to the two vortices being pushed
apart by the velocity field associated with the dipole. The increase in these two terms must
be balanced by the last term in (4.14), which represents the energy stored in the superposed
velocity fields of the wave packets and vortices. These superposed fields tend to cancel as
the wave packet approaches the vortex pair. The value of &, reaches its maximum at X = 0,

where
Aok, — M\?
=y =2 . 4.15
N4l < T (4.15)

Substituting (4.15) into (4.14), we obtain an equation for this maximum value of k. After
passing X = 0, the solution ‘unwinds’, and k;, returns to its original value as X — oco. The
numerical solution shown in figure 5 confirms this analysis.
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4.1. Wave-packet-induced drift
If I' < A, and we define X = —X, then (4.9)—(4.13) imply

- Ak, -
X = —colly) + 3 T’[’di X2 =y, (4.16)
k, =0, (4.17)
Ak o
= Xy1. 4.18
=X (4.18)

Hznce k, and c, are constants. The governing equations (with k,.4, = 27a® and cg0=1)
reduce to

2
Z a“ -~
X = —cg0 + F(x2 —yD, (4.19)
. 2a® -
yi= ?X)/l- (4.20)

In this limit, the point vortices are passive; their motion is the same as that of fluid
particles in the presence of a uniformly translating cylinder. This problem was examined
by Maxwell (1870; see also Morton 1913; Darwin 1953). In the reference frame moving
with the wave packet, the stream function is an integral of motion. Hence

Cl2
Yo =y <1 - d—2> 4.21)

is constant. Define X = )N( —cg0 and 0 = tan~! (yl/)N(). Using (4.21) and following
Maxwell (1870) and Darwin (1953) we find that

2
26
X = f 4 cos d6. (4.22)
Yg + 442 sin% 0

Letcos @ = —sn(v) with the suppressed modulus of the Jacobi elliptic function understood
to be
4 2
Y e — (4.23)
Y5 + 4a?

It is tedious but straightforward to show that

2
x=2 ((1 _ K—) y— E(v)) . (4.24)
K 2

Similar expressions may be found for y;(v) and #(v) but fall outside the scope of our
discussion (Darwin 1953).
From (4.24), the total drift in the x direction is

2
AX = 2—a<(l—K—)K—E), (4.25)
K 2

where £ and K are the complete elliptical integrals of the first and second kind,
respectively.
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The drift volume, D, is defined as

(0,0)
D= / X dYy = na’.
—00

(4.26)

Note that the connection between Stokes drift (specifically the motion in the vertical plane)

and Darwin drift has been examined by Eames & Mclntyre (1999).

5. One vortex, N wave packets

We now search for simple harmonic motion in a system comprising one vortex and N > 1
wave packets (see also the related discussion of a ring of geostrophic vortices in Morikawa
& Swenson (1971)). The single vortex of strength I" = 27 remains stationary at x = 0.
The N wave packets at x;, = (xp, yp) have equal actions A, = Ap, and wave vectors of
equal magnitude |k,| = «. They lie symmetrically on the circle |x,| = x. Both « and x

are constants. We take the depth parameter to be unity, Hy = 1.
A vortex at x induces the velocity field

Un(xX, x) = =y, x' —x)
T =2+ -y’
at x’. Hence,
(_y 7x)
Un(oip, 0) = = 3=

We also need
_ 1 2 2
VUm(xp» O) - F(prypv Xp - yp)
and

1
VVin(xp, 0) = F(—x,% + Yo —2X3p)-

The wave packet at x;, induces the velocity

Ao
Ua = _W(lexp)’p + kp(xg - yg), 2kpXpyp — lp(xfz’ B y’%))

at the vortex.
The equations of motion reduce to

. 1 | 8 (_)’p,xp)
Xp = E K_S(kp’ lp) + T,

X ey = (—2kpxpyp + lp(x;% - Yﬁ% 2Upxpyp + kp(x,z, - y,z,))

and

D Ao(=2lpxpyp — kp (2 — ¥2), =2kpxpyp + Ip (% — 2)) = 0,
P

The last equation is the condition that the vortex remains stationary.

(5.1

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)
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Figure 6. Trajectories exhibiting circular motion for a system with four wave packets and one vortex. The wave
packets are shown in black, with their intensity increasing with time. The red circle represents the stationary
vortex.

We look for solutions exhibiting simple harmonic motion with k, = «(sin 6, — cos 6,)
and x, = x (cos 0, sin ). This leads to the constraints

2
X
= — 5.

K 6 (5.9)

d9p )
— =1 5.10
” /X (5.10)

and

A E (cos By, sin6),) = 0. (5.11)

We observe that solutions to this system are related to the Nth roots of unity. This sets the
initial phase of 6,. We find that

3x ~ Ao
16 2n’
Figure 6 shows a solution of this type with four wave packets.

M=0;, H= (5.12a,b)

6. The Lagrangian motion of a particle near a periodic wave packet

We now consider the motion of a very weak point vortex near a periodic array of wave
packets. In the limit of vanishing circulation, the vortex acts as a passive tracer, and
sets the foundation for the stability analysis performed in § 7. This is a generalization of
the motion considered by Maxwell (1870) and Darwin (1953). Unlike the analysis there,
closed-form solutions for the motion of a particle are not found, but asymptotic analysis
reveals interesting features of the induced flow.

The system we now consider is unbounded in x and y, and infinitely periodic in the x
direction. Initially, the wave packet propagates along the x axis. Each vortex or wave packet
at (x, y) sees its images at (x + 27n, y), where n is any integer. Again we take Hy = 1.
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The governing equations are (2.49)—(2.51) with U,, and U, now calculated from the
stream functions

Y (X, x;) = ﬁ Z In[(x — x; + 27n) + (y — y1)*] (6.1)
and
(x —xp +271(n, 0)) x kp
‘/fd(x xP, p) 2]1 Xn: | p X+ 23‘[(]’1’ 0)|2 . (62)

6.1. Limit of weak point vortices
We begin by considering the wave-packet-induced motion of the vortices when | I} < 1.
As in § 4 — see particularly § 4.1 — this motion takes a non-trivial form.

We consider a wave packet travelling along the x axis so that / =y, = 0. To O(1),
(2.49)—(2.51) reduce to

1 [g k

i, =- |5 S (6.3)
P2y |kl Kyl

k, =0, (6.4)

Xi = Ud(xiaxpv kp)v (65)

where Uy is computed from (6.2). As we are considering one (weak) vortex per period,
i = 1 and we take y; = y.
It is convenient to define

X = X| — Xp. (6.6)

The governing equations become

o O —2mm)’ —y?
X=—cot+m ) TR 6.7)

L o (x —2mn)y
=% D G a4 A ©8

where we have set . = koA, /21 and cg0 = 1/24/g/ko.
Defining z = x + iy, we have

(z—23‘m) 1
TG0t M Z G2l — 22 O TH Z g e SRR

n=—0oo n=—0oo

Define the complex-valued velocity potential w = ¢ 4 iy, where (w;)* = z. This implies
(Lamb 1932, § 64)

1

- — t , 6.10
so that
sin x
¢ = —CoX + p————— (6.11)
cos x —coshy
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and
sinhy
V=—Co0y — M — ——. (6.12)
cos y —coshy
From the relation (w,)* = z, we find
. i 1 —cos x coshy
= —co0+ = , 6.13
X 0T (cos x — coshy)? ©.13)
WU siny sinhy 6.14)

) (cos x — coshy)?’

The stream function is a material contour. As in § 4.1, this provides an additional conserved
quantity. When (x;, y;) are small — vortex i very close to the wave packet — our equations
reduce to the equations of Maxwell discussed in § 4.1.

Although we have been unable to find closed-form solutions, asymptotic analysis reveals
interesting properties of this system. We rewrite the transcendental pieces of (6.13) and
(6.14) as

sinhysin x >
= ZZne " sinny (6.15)
_ 2
(coshy — cos x) o
and
1 — coshycos x s oy

(coshy — cos x)?2 =2 Z ne wcosny. (6.16)

n=1

This expansion assumes y > 0; a similar formula holds for y < 0. The equations of motion
may then be written as

o
X = —Co0— 1 Zne_”y cosny, (6.17)
n=1
o
y=puy ne™sinny, (6.18)
n=1
or, more compactly, as
o0
f=—cp—p Yy ne (6.19)
n=1

Let b > 0 be the initial vertical coordinate of the particle and (for reasons that become
clear in § 7) let /2 be its horizontal coordinate. Let the initial location of the wave packet
be (m, 0).

As the wave packets and vortex are sufficiently far apart, a natural small parameter
arises, namely

e=e <« (6.20)
We expand z as
Z=Z()+EZ[+€2Z2+"'. (6.21)
To O(€2), we find
=20+ €21 + €25 = —cgo — e e N0 4 €2(2eHN0 — jzF e7I00Y), (6.22)
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Figure 7. A comparison of the numerical integration of the full equations of motion (black lines) and the
second-order asymptotic solutions (dashed red lines). (a,c,e) Results when € = 1/10. (b,d, f) Results for € =
1/3. (a—d) Plots of y; and xp, the vertical and horizontal motion of the vortex, as a function of time. (e,f) The
behaviour of the wave packet. We see that the asymptotic theory describes the numerical results well for the
case of € = 1/10 but begins to break down at longer times when € = 1/3.

We solve this system iteratively. To lowest order,
20 = 20 — ceot, (6.23)

where z8 = —m/2 + ib. This implies

2= — e — ) = — @l ), (6.24)
C0 Cg0
where o = —1/2 — cgot and we define
0 = ceot. (6.25)

Thus z; takes the form of a simple harmonic oscillator. The constant is taken to ensure that
z1=0atr=0.
At second order we find

2 = ue?? — 7 e?), (6.26)
so that upon substitution of the result for z;, we find
w? TR u?
n=—t—i—E" - +i0(’ - 1). (6.27)
Cg0 Cg0 CgO

At this order there is a mean drift in the direction of wave propagation. This drift has
important implications for the stability of vortex streets, as discussed in § 7.

Figure 7 compares our approximate analytical solutions with numerical integrations of
the full equations for € = 1/10 (figure 7a,c,e) and € = 1/3 (figure 7b.d, f), where we have
taken A, = ko = 1. We see that the asymptotic theory works relatively well for small
values of €.

7. The stability of a symmetric vortex street in the presence of a wave packet

Numerical solutions (not here described in detail) suggest that there are cases in which
the wave packets organize the vortices into patterns. As a first step in understanding
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Figure 8. The vortex street configuration considered in this section. The vortices in the top row have strength
I" while those in the bottom row have strength —/". The domain is periodic in the x direction, and there is a
wave packet travelling along the x axis. We study the stability of this vortex street in the presence of the wave
packet.

this phenomenon we study the stability of a vortex street in the presence of a single
wave packet (per period) in the semi-periodic domain. This system conserves energy
and momentum, but angular momentum is not conserved because the periodicity breaks
rotational symmetry.

Within the (periodic) domain, we have four vortices, arranged symmetrically about y =
0, with y = %5, and spaced 7 apart in the x direction. Refer to figure 8. This is the minimal
system to illustrate the instability of a periodic vortex street (Domm 1956). The stability of
vortex streets was first considered by von Karmén (1911), and discussed in detail by Lamb
(1932, § 156). Domm (1956) examined the nonlinear stability, reducing the system of four
vortices to two dependent variables. The symmetric vortex street proved to be linearly
unstable in all of parameter space, whereas the asymmetric vortex street is linearly stable
at a single value of the ratio of vertical to horizontal spacing of the vortices. However, even
the linearly stable asymmetric vortex street is nonlinearly unstable (Domm 1956).

The equations of motion are (2.49)—(2.51) with the stream functions given by (6.1) and
(6.2). We take I'; = 62)/ sothat I} = 1> = 62)/ and [3 =Ty = —62)/. We seek equations
of motion valid to O(e?). We begin by expanding the variables describing the wave packet
as

Xp = Xp0 + Co0f + 62xp2, yp =0, (7.1a,b)
k, = kpo, 1, =0. (7.2a,b)
If there are no second-order corrections to the wavenumbers initially, and if the momentum

is conserved, then the second-order wavenumbers must remain zero for all time.
The governing second-order equation for the horizontal motion of the wave packet is

. 1 sinh y;o
= —— i . 7.3
2 47 Z Vi cos xio — cosh yi (73)

i
Expanding hyperbolic functions, we find that
i = L+ 0(e). (7.4)
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where y = y;. Equation (7.4) implies a correction to the wave packet speed, due to the
velocity induced by the vortex street, which has the magnitude of the mean velocity in the
plane of symmetry of the vortex street (Lamb 1932, § 156). Expanding

1 sin x;o

Vpo = — =04 O(e), 7.5
2 47 - cos xio — coshyip © (75)

we find that there is no correction to the vertical speed of the wave packet.

We now solve for the motion of the point vortices. It will be a combination of the motion
induced by the wave packet (as calculated in § 6) and the uniform self-advection of the
vortex street. Lamb (1932, § 156) found that the self-advection of the vortex street leads to
a uniform translation of the vortices with speed

2 cothb = 22X + 0. (7.6)
27 27

Then, from (6.27), we obtain the second-order behaviour of the vortices as

2 ) 2
i = (21 + “—) t— e 1y 4 B emino 1, 7.7)
T Cg0 Cg0 €0
where, from our initial conditions, 10 = x30 = —7/2 — cgot and x20 = x40 = W/2 —

cgot. Note the presence of two mean flows. One is induced by the wave packet; the other
represents the self-advection of the vortex street. These two competing mean flows are now
shown to have implications for the stability of the vortex street.

7.1. Linear stability analysis

Now we perturb our system to examine its linear stability. We expand the vortex locations
as

zi = zjo + €zi1 + €220 + 82, (7.8)
Xp = Xp0 + €20 + 8xp5,  Vp = 8yps,  kp = kpo + €28kps, 1, = €*8lys,  (7.9a—d)

where § is the amplitude of the perturbations. The goal is to expand the equations of
motion to O(e28). Starting with the motion of the wave packet, and using the results found
in the previous subsection, we find that at O(§)

).szS = Cgxs» (7.10)
ypé = Cgys, (7.11)

where (cgrs, Cgys) are the O(8) expansions of the group velocity. The wavenumbers evolve
according to

kps = s = 0. (7.12)

If our initial conditions are such that these perturbation wavenumbers vanish, they will
vanish for all time. This implies that (x,s, yps) are constants which we take to be zero.
The non-trivial part of the analysis comes from the evolution of the vortices. We must

solve for U,, and U, to O(e28). At this order, the vortex-induced flow is the same as it
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would be in the absence of the wave packet; hence, from Lamb (1932), we have the O0(€25)
result:

Un(z1) = —il(—zal + 252), (7.13)
81
Un(z2) = i%(—m + z52). (7.14)

Also, at this order U,,(z1) and U,,(z2) only depend on vortices 1 and 2; hence we omit
U,,(z3) and U, (z4) for clarity of presentation. That is, we only need to consider the
evolution of vortices 1 and 2, or equivalently vortices 3 and 4.

The O(6) contributions to Uy(z12) are found by substituting the expansion given by
(7.8) into (6.19) so that

Uy(zi) = jued e 205 (1elXi0 e (4i 4 eXi07%)). (7.15)
To solve this system of equations, we must also expand the perturbations in €, so that

Zsi = Zsi0 + €251 + €225 (7.16)

We assume the time dependence of the order-zero terms goes like e, where A = €21
(which may be inferred from the classical stability analysis, which implies that the growth
rates are proportional to the strength of the vortices; see Lamb (1932)). Additionally, we
assume that the first-order terms have fast oscillations, so that their time derivatives have
the same order as the original term. We need not solve explicitly for the second-order terms
to conduct the stability analysis.

The restrictions on the first-order terms are found to imply

.M i0
11 = l—zcgozgkm(el -1 (7.17)
and
I no i0
7521 = —i—2550(" — 1). (7.18)
2cq0

We now have sufficient information to solve for the stability of the vortex street
configuration, which will be dictated by the evolution of {zs19, zs20}. Substituting the
lower-order expansions into U, and U,,, we find that the dynamics of {z510, zs20} 1S given
by the phase-averaged equations of motion.

The evolution equations are given by

. 2 1v * * io *
510 = € _5(1510 - 1520) + 7(1810 - 1510) ) (7.19)
. S (v " io N
7520 = € E(ZMO - 2520) + ?(1820 - 252()) s (7.20)
where
1 Y
oco=—; V=—. (7.21a,b)
2cg0 47
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Figure 9. (a) Stability of periodic (in the x direction) vortex street, with initial conditions depicted in figure 8.
The wave packet motion is shown in blue, while the vortices are shown in black (/7 < 0) and red (/5 > 0).
The vortex street remains bound to a relatively small neighbourhood over this long-time integration. (b) The
same initial configuration of the vortices with no wave packet, and we see the system is unstable, with vortices
propagating far away from their initial locations.

Define zs10 = aeez/”, 2500 = ,Beez/”. Then, (7.19)—(7.20), together with their complex
conjugates, imply the following eigenvalue problem:

o —2id 0 —Vv—o0 v o
0 o —2id % -V -0 Bl _
v+o —v —o — 2id 0 a* | 0. (7.22)
—v V4o 0 —o —2i1) \p*

The eigenvalues A are found to be
2 =v(+o). (7.23)

In the limit that o = 0, we recover the result of Lamb (1932, § 156) that the symmetric
vortex street is linearly unstable. It follows from (7.23) that the system is stable when

v(v+0) <0. (7.24)

We note that v can be positive or negative depending on the sign of y, so that the inequality
may hold only if the sign of v and o are different. Physically, the stability depends on the
sign of the induced motion of the vortices. If the drift induced by the wave packets is larger
than the self-advection of the vortices, and v < 0, the system remains linearly stable.

7.2. Long-time behaviour

In the previous subsection, we analysed the linear stability of the vortex street to
perturbations. However, as was shown by Domm (1956), even a linearly stable vortex
street might be nonlinearly unstable. This may be examined analytically, but the algebra
becomes considerably involved, so we instead perform a numerical investigation. We
integrate our equations of motion using a fourth-order Runge—Kutta scheme, ensuring
that the Hamiltonian and momentum are conserved. We also increase the number of
adjacent periodic extensions until convergence is found (here we take our total domain
to be of length 5001 x 27). We take e = 1/3, ko =1, 4, =1, T = €2, and we integrate
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the system for 3 x 10* s. This is shown in figure 9(a), where it is seen that the vortex street
remains bound to a small neighbourhood over a long integration time. In the absence of
the wave packet (A, = 0), shown in figure 9(b), the system is unstable, and the vortex
street eventually dissolves, analogous to the behaviour found for two vortex pairs (Love
1893; Tophgj & Aref 2013).

8. Conclusion

It has long been recognized in the oceanographic community that surface waves may freely
exchange momentum and energy with underlying currents. The dynamics is governed by
wave action conservation (Longuet-Higgins & Stewart 1962; Whitham 1965), while the
evolution of the phase obeys the equations of geometrical optics. These equations are valid
for small-amplitude inviscid waves that are slowly varying. Despite the maturity of this
theory (Phillips 1966), there are still many fundamental questions regarding wave—current
interaction, including a need to better understand their two-way coupling (McWilliams,
Restrepo & Lane 2004). This is thrown into particularly stark relief by numerical models of
climate, which are beginning to resolve the submesoscale (of the order of 1-10 km), where
these interactions may be especially pronounced (McWilliams 2016; Romero, Lenain &
Melville 2017). At even smaller scales, wave breaking in deep water occurs for waves
with finite crest length, which implies that at the free surface the breaking-induced flow
is characterized by a dipole structure (Peregrine 1999; Pizzo & Melville 2013). The
interaction of this flow with the wave field is thought to be significant for establishing
Langmuir circulations (Leibovich 1983), a crucial process for mixing the upper ocean.
However, these classical theories do not take into account finite bandwidth effects, nor do
they account for the two-way coupling between the wave and current fields.

Recently, there have been efforts to better describe two-way coupling effects (e.g.
Phillips 2002; McWilliams et al. 2004; Suzuki 2019). Although these theories provide
crucial insight, they are complicated and often obscure simple underlying physical
constraints. Here, we have provided a simplified framework to examine wave—current
interaction by assuming that the wave packets are compact, and that the currents are a
collection of point vortices. Since this simplified system is derived from a variational
principle, conservation laws arise naturally from the symmetries of the Lagrangian.

A central assumption made in this study is that the Doppler-shifted dispersion
relationship serves as a faithful starting point to model wave—current interaction. That
is, no additional terms are needed in the dispersion relationship to account for the vortical
nature of the currents (see, for example, Stewart & Joy (1974) for how vertical shear may
modulate the dispersion relationship). Additionally, we assume that the currents (in the
form of point vortices) and the wave packets are compact and widely spaced. A further
simplifying but unnecessary assumption is that the wave packets do not interact with each
other.

We have examined several solutions for the case of one wave packet and one vortex.
These include stable bound orbits and unstable configurations. The wave packet and vortex
may capture one another. We have also examined situations in which the wave packet and
vortex collapse, occupying the same location at the same time. When collapse occurs,
our theory breaks down. We also considered blow-up solutions, in which the modulus of
the wavenumber grows without bound. In reality this growth would be arrested by wave
breaking.

After examining a solution with two point vortices and one wave packet, we considered
the motion induced by a wave packet on a weak point vortex in a horizontally
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periodic domain. It was shown that a net drift is induced by the wave packet, which may
have implications for the advection of jetsam, flotsam and pollution at the ocean surface.
This drift can also change the stability of a vortex street. Numerical calculations confirm
that this system can be stable for long times, suggesting that this phenomenon might occur
in nature.

This work motivates several future studies. In particular, the addition of the generation
of waves by wind, wave packet—wave packet interaction and wave breaking, which creates
a pair of oppositely signed vortices, would make this a more realistic description of the
upper ocean.
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Appendix A. Justification of Whitam’s Lagrangian

This appendix offers a derivation of (2.1) following Whitham’s averaged-Lagrangian
method. Our starting point is the linear approximation to the Lagrangian of Miles (1977) —
see also Luke (1967) and Zakharov (1968) — namely

Lig.n] = / ar f dx(én — Hp, 1), (Al)
where
0
Hig.n] = Len® + / dzL (g2 + 8. (A2)

Here ¢ is the velocity potential and 7 is the surface elevation. The integral in (A1) is over
the sea surface z = 0, and, for simplicity of notation, we ignore the y direction. Variations
8¢, 87 yield the familiar linear equations and boundary conditions. A solution is

A
n(x, 1) = Acos(kx — wt), ¢(x,z,1) = Tw ek sin(kx — wt), (A3a,b)

where A and k are constants and w” = gk. Following Whitham, we substitute

A, D0 4. .
n(x, 1) = A, t)cos(@(x, 1), ¢(x,z,1) = . e sin(0 (x, 1)) (Ada,b)

X

back into (A1) and (A2), obtaining

w?A? .2
L[A, 0] =// drdx sin 9—/dtH[A,9]
1

k

w3A?
= 5//dtdx - —/dtH[A,Q] (AS)
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and

2 4 k 4 k

2
_ %/dxAz <g+ %) (A6)

where now w = —6; and k = 6. In the final step of (A5) and (A6), we average over the
fast dependence of 6 (x, r). Combining results, we have

2
LIA, 0] = %/fdtdx(%—g)A2=%//dtdx(a)—g(> A, (A7)
w

where, by (A6),

1 1 w? 1 w?
HIA, 0] = /dxA2 (—g cos26 + -2 cos? 0 + -2 sin20)

1 1 w?
E=_gA?=-2 42

2 2 k (A8)

is the wave energy per unit area and A = E/w is the action. Independent variations of A
and 6 are equivalent to independent variations of A and 6, and either choice of variation
yields the dispersion relation and the action conservation equation for surface waves. The
Lagrangian

LIA, 0] = / / drdx(w — /gh) A (A9)

yields the same two equations and is equivalent to (2.1).

Appendix B. Stream function generated by a single wave packet
Let the wave packet be located at x = 0. For r = |x| > |X/|,

/
.

(B1)

Injx — x|~ Inr — —5
;

and (2.35) becomes

Nlnr , 1 x ;.
V)~ o /f ax p) = 55 - // dx’ X p (). (B2)

The first term in (B2) vanishes, because .4 = 0 at the boundary of the wave packet. In the
second term,

// dxxp(x) = // dxx(Al, — Ayky) = Ay(—1y, kp) (B3)

after integrations by parts, where

A, = / / dxA. (B4)
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Appendix C. Elimination of ¥ from the Lagrangian

In this appendix we justify the step of using the equations obtained by varying a particular
field ¥ (x, #) to eliminate that same field from a Lagrangian that depends on several fields.
We show that variations of the modified Lagrangian yield the correct equations for the
remaining fields.

First we consider the related problem of finding the stationary points — maxima, minima
or inflection points — of an ordinary function of two variables. Let the function be f(¢, 1).
The stationary points are found by solving the set

0
@f(d), Y) =fi(d,¥) =0 (C1)
and
0
wf(qﬁ, Y) =f(éd,¥) =0, (C2)

where f] denotes the derivative of f with respect to its first argument and f> denotes the
derivative of f with respect to its second argument. Suppose that (C2) can be solved
explicitly for ¥ in the form

v =g(9). (C3)
Then, substituting (C3) into (C1) we obtain a single equation for ¢, namely

J1(#, g(¢)) = 0. (C4)

Our contention is that (C4) is equivalent to

0
%f(d), g(#)) =0. (C5)
Clearly (C5) is equivalent to
[1(@,8@) + (0, g(9))g'(9) =0, (Co)

and the fact that (C3) solves (C2) means that f>(¢, g(¢)) = 0. Thus (C5) is indeed
equivalent to (C1).

To see that this proves our contention about the Lagrangian, we replace the integral
over space and time by a sum over gridded values, and replace the derivatives of the
field variables by finite differences. Then the Lagrangian becomes an ordinary function
of many variables, namely the gridded values of the fields. We again regard this function
as f (¢, ) where now ¥ stands for a vector whose components are all the gridded values
of ¥, and ¢ stands for a vector whose components are all the gridded values of ¢. If
there are N space—time grid points, then (C1) and (C2) each represent N equations, but
the essence of the proof is the same as that given above. It is easy to invent examples
that show that the use of (C3) to eliminate some but not all of the ¥ terms in f(¢, V)
leads to erroneous results. The results given here border on the trivial, but the strategy of
completely eliminating a field using the equations that result from the variations of that
same field is important, because it seems to be one of the few legitimate methods of using
the results of a variational principle to simplify the variational principle itself.
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