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Abstract

Let D be a nonzero derivation of a noncommutative prime ring R , and let U be the subring
of R generated by all [D(x), x], x e R. A classical theorem of Posner asserts that U is not
contained in the center of R . Under the additional assumption that the characteristic of R is
not 2, we prove a more general result stating that U contains a nonzero left ideal of R as well
as a nonzero right ideal of R .
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Let D be a nonzero derivation of a noncommutative prime ring R. A well-
known theorem of Posner [11] states that the subset of R consisting of all
[D(x), x], x e R, is not contained in the center of R. Roughly speaking,
our intention is to show that this subset is rather large; the result we shall
prove is

THEOREM. Let R be a noncommutative prime ring of characteristic not 2,
and let D be a nonzero derivation of R. Then U, the subring of R generated
by all [D(x), x], x € R, contains a nonzero left ideal of R and a nonzero
right ideal of R.

It is easy to see that a noncommutative prime ring cannot contain a
nonzero central one-sided ideal. Thus, neglecting the fact that we have to
require that the characteristic of R is not 2, our result clearly generalizes
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Posner's theorem (we remark that a number of authors have already general-
ized Posner's theorem in several ways—see, for example, some recent papers
[1, 5, 12] where further references can be found).

On the other hand, our result is related to a theorem of Herstein [8] which
asserts that if D is a derivation of any ring R, such that Z>3 ^ 0, then the
subring generated by all D(x), x e R, contains a nonzero ideal of R (see
also an extension in [2]).

In order to prove the Theorem we will first prove

LEMMA 1. Let R be a prime ring of characteristic not 2. If there exist
nonzero derivations D and G of R such that G([D(x), x\) = 0 for all
x e R, then R is commutative.

This lemma, although it may appear somewhat special, is of some inde-
pendent interest. Take G to be an inner derivation, that is G(x) = [a, x]
for some a £ R; then we get

COROLLARY. Let R be a prime ring of characteristic not 2, and let D be
a nonzero derivation of R. If a e R is such that [[D(x), x]t a] = 0 for all
x e R then a lies in the center of R.

The assumption in Posner's theorem can be written in the form

l[D(x), x], y] = 0 for all x, y e R.

Thus the assumption in the Corollary is much weaker. The Corollary can be
compared with a result of the second named author [12] which states that a
nonzero derivation D of a noncommutative prime ring of characteristic not
2 cannot satisfy [[D(x), x], x] = 0 for all JC e R.

Clearly, a nonzero derivation of a prime ring cannot vanish on some
nonzero one-sided ideal. Therefore, Lemma 1 can be directly deduced from
the Theorem. In fact, the Theorem is much more general than Lemma 1—as
an illustration of this statement, note that using the Theorem it can be easily
shown that Lemma 1 remains true if G is a nonzero (a, /?)-derivation of R
where a and fi are automorphisms of R (see [9; p. 170] for the notion of
(a, /^-derivations).

The assumption that the characteristic of R is not 2 cannot be removed in
Lemma 1 (and, therefore, the same is true for the Theorem). Indeed, let R be
any prime ring of characteristic 2 containing an element a such that a = 0;
d e f i n e D b y D ( x ) = [ a , x ] , a n d n o t e t h a t D { [ D ( x ) , x ] ) = 0 , x e R .

Henceforth, R will represent a prime ring with center Z and extended
centroid C. We list a few more or less well-known lemmas which will be
needed in the sequel.
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LEMMA 2. Suppose that the elements ai, bt in the central closure of R
satisfy £tf,y£, = 0 for all y £ R. If bl, jt 0 for some i then the at 's are
C-dependent.

The explanation of the notions of the extended centroid and the central
closure of a prime ring, as well as the proof of Lemma 2, can be found in [7,
pp. 20-23] or [10].

A special case of Lemma 2, but very important one, is

LEMMA 3. The elements a, b in the central closure of R are C-dependent
if and only if ayb = by a holds for all y e R.

Using Lemma 2 (or even directly) one easily obtains

LEMMA 4. Suppose that the elements a, b, c in the central closure of R
satisfy ayb — cya for all y e R. If a ^ 0 then b = c.

PROOF OF LEMMA 1. For the proof we need several steps.

STEP 1. For all x , y e R,

(1) [D(x),x]G(x) + G(x)[D(x),x] = 0,

(D(x)x - 2xD(x))yG(x) + G(x)y(2D(x)x - xD(x))
( ' + D(x)yxG(x) - G(x)xyD(x) = 0.

PROOF. We define a mapping B: Rx R —» R by

L i n e a r i z i n g G([D(x), x]) = 0 w e s e e t h a t G ( B ( x , y ) ) = 0 , x , y e R .
Note that

B{xy, x) = B{x, x)y + xB{x, y) + D(x)[y, x].

Since G(B(xy, x)) = 0, G{B(x, x)) = 0, and G(B{x, y)) = 0, it follows
from this identity that

(3) B(x, x)G(y) + G(x)B(x, y) + (GD)(x)[y, x] + D(x)G([y, x]) = 0.

In particular, if y = x , we have B{x, x)G(x) + G{x)B(x, x) = 0. Since the
characteristic of R is not 2 this proves (1).

Replacing y by yx in (3), and noting that

B{x, yx) = B(x, y)x + yB{x ,x) + [y, x]D{x),
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one obtains

B(x, x)G{y)x + B(x, x)yG(x) + G(x)B(x, y)x + G{x)yB{x, x)

+ G(x)\y, x]D(x) + (GD)(x)[y, x]x + D(x)G([y, x])x

+ D(x)\y,x]G(x) = 0.

According to (3) this relation reduces to

B(x, x)yG(x) + G(x)yB(x, x) + G(x)[y, x]D(x) + D(x)[y, x]G(x) = 0.

Transposing and collecting terms, we obtain (2).

We set M = {x e R\D(x) and G(x) are C-dependent}.
STEP 2. (i) If char/? / 3 then R is the union of its subsets M and

N = {JC € R\D(x) and [D(x), x] are C-dependent}.
(ii) If char/? = 3 then /? is the union of its subsets M and {x e

R\[G(x),x] = 0}.
PROOF. Take x i M. We set

al=D(x)x-2xD(x), a4 = -G(x)x,

a2 = 2D{x)x - xD{x), b = G(x),

a3 = xG(x), c = D(x).

We have assumed that b and c are C-independent. By (2) we have

(4) axyb + bya2 + cya3 + a^yc = 0, y e /?.

Substituting ycz for y in (4) we get

axyczb + bycza2 + cycza3 + a4yczc = 0.

But on the other hand we see from (4) that

(a4yc)zc = -axybzc - bya2zc - cya3zc.

Comparing the last two relations, we arrive at

(5) a x y { c z b - b z c ) + b y ( c z a 2 - a 2 z c ) + c y ( c z a 3 - a^zc) = 0 , y , z e R .

By Lemma 2 there exists z e R such that czb-bzc / 0. Therefore it follows
from (5) and Lemma 2 that the elements a,, b and c are C-dependent.
Since b and c are C-independent we have

(6) a, = Xb + fie

for some A, ft e C . Applying (6) in (5) we get

by{cz(Xb + a2) - (Xb + a2)zc)

+ cy(cz(fib + ai)-(}ib + ai)zc) = 0, y, z e R.
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However, b and c are C-independent, therefore it follows by Lemma 2
that cz(Xb + a2) = {Xb + a2)zc for all z e R. Since c ^ 0 , we then have
Xb+a2 = vc for some v e C. Hence we see from (6) that a{ +a2 = (n + v)c;
that is, 3[D(x), x] = (fi + v)D(x). Thus, if char R ^ 3 this means that
xeN.

Now suppose that char/? = 3 . Note that in this case a2 = -ax . Therefore
(4) and (6) yield cy(fib + a3) = (fib - a4)yc, y e R. Hence a3 = - a 4 by
Lemma 4. That is, G{x)x = xG(x).

STEP 3. (i) If x e M then either G{x) = 0 or [D(x) ,x] = 0.
(ii) If x e M then either D{x) = 0 or [G{x), x] = 0 .
PROOF. Take ueM such that G(u) ^ 0 . We want to show that [D{u), u]

= 0. Of course we may assume that D(u) ^ 0 . Thus G(u) = aD(u) for
some a ^ 0 in C. Observe that (2) then implies

-2auD(u)yD(u) + 2aD(u)yD(u)u = 0, y eR.

Since a / 0 and the characteristic of R is not 2, it follows that D(u)yD(u)u
— uD(u)yD(u), y £ R. Consequently D(u)u = uD(u) by Lemma 4. Thus
(i) is proved. Analogously one proves (ii).

STEP 4. If char/? = 3 then R is commutative.
PROOF. From (ii) in Step 2 and (ii) in Step 3 we see that given x e R,

we have either D(x) = 0 or [G(x), x] = 0. We claim that [G(x), x] = 0
for all ;c € /? . Suppose this does not hold for some x e R. Then, of
course, D(x) — 0. Since D ^ 0 we have D(y) ^ 0 for some y £ R. Thus
[^(y). y] = 0 • Now, consider the elements x+y and x-y. We have D{x +
y)?0,D(x-y)?0,sothat [G(x + y), x + y] = 0, [G(x -y), x -y] = 0;
note that these two relations contradict the assumption that [G(x), x] ^ 0 .

Thus [G{x), x] = 0 holds for all x e R. By Posner's theorem, R is
commutative.

We assume henceforth that char/? ^ 3 .
STEP 5. If JC e iV then either [D(x) ,x] = 0 or D(x)G(x) + G(x)D(x) =

0.
PROOF. Take x e N. Since D(x) = 0 implies [D(x), x] = 0 we may

assume that D(x) / 0 and it follows that [D(x), x] = fiD(x) for some
P eC. By (1) we then see that f3(D(x)G(x) + G(x)D(x)) = 0. Thus either
fi = 0, i.e., [D(x), x] = 0, or £>(JC)G(X) + G(x)D(x) = 0.

STEP 6. /? is the union of its subsets P = {x e /?|[Z)(JC), x] = 0} and
(2 = {x e R\D{x)G(x) + G{x)D(x) = 0} .
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PROOF. Combine (i) in Step 2, (i) in Step 3, and Step 5.

STEP 7. Either P = R or Q = R.
PROOF. We define biadditive mappings Ax: RxR —> R and A2: RxR^>

R by

Ax(x,y) =
A2(x,y) = D(x)G(y) + G(x)D(y).

By Step 6 we see that for any x e R, either Ax(x, x) = 0 (that is, x e P)
or A2{x, x) = 0 (that is, JC e Q). Suppose that P ̂  R and Q # R. Thus
there exist x, y e R such that Ax (x, x) ^ 0 and ^ 2 (y , y) ̂  0. In this case
we have Ax{y, y) — 0 and A2(x, x) = 0 .

Suppose that x+y € P; that is, Ax(x+y, x+y) = 0. Since A{(y, y) = 0
this relation can be written in the form

(7) Al(x,x) + Al(x,y) + Ai(y,x) = 0.

If also x-y lies in P, then it follows that Al(x,x)-Al(x,y)-Al(y,x) =
0. But then (7) yields Ax(x, x) = 0, contrary to the assumption. Thus
x — y e Q. That is, A2(x — y, x — y) = 0, and therefore

(8) -A2(x, y) - A2(y, x) + A2(y, y) = 0

since A2(x, x) = 0 . Consider the element x + 2y. If this element lies
in P then we have Ax(x, JC) + 2A{(x, y) + 2Ax(y, x) - 0—but then it
follows from (7) that Ax{x, x) = 0 . Thus x + 2y e Q. Consequently
2A2(x, y) + 2A2(y, x) + 4A2(y, y) = 0 . According to (8) we then have
6^42(y, y) = 0, which leads to J42(>> , y) = 0 since we have assumed that the
characteristic of R is different from 2 and 3. But this also contradicts the
assumption.

Thus we have proved that x + y £ P, and so x + y e Q. In a similar
fashion as above one shows that this is impossible if x $ P and y $ Q.

STEP 8. R is commutative.
PROOF. Suppose that Q = R, that is, D{x)G{x) + G{x)D{x) = 0, xeR.

We claim that this relation contradicts the assumption that D and G are
nonzero (this assertion is also presented in our paper [4]; however, we include
the proof since it is rather short).

Note that any derivations D and G satisfy

(DG){x2) = (DG)(x)x + D(x)G(x) + G(x)D(x) + x(DG)(x).

If D(x)G(x) + G(x)D(x) = 0,x e R, we then have (DG)(x2) = (DG)(x)x +
x(DG)(x), x e R. That is, DG is a Jordan derivation. A theorem of Her-
stein then tells us that DG is a derivation (see [6; Theorem 3.3] or [3] where
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a brief proof is presented). But the composition of two nonzero derivations
of a prime ring of characteristic not 2 cannot be a derivation [11; Theorem
!]•

Thus Q^R. By Step 7 we then have P = R, that is, [D(x), x] = 0, x e

R. But then Posner's theorem tells us that R is commutative.

PROOF OF THE THEOREM. We assume that the Theorem is not true. By
left-right symmetry we may assume that U does not contain nonzero left
ideals.

STEP 1. For all ueU, [D(u), u] = 0.
PROOF. AS above, by B(x, y) we denote [D(x), y] + [D(y), x]. Since

B(x, y) = [D(x + y),x + y]- [D{x), x] - [D(y), y] we see that B(x, y) e
U, x, y e R. Expanding B(x2, x) we then get B(x, x)x + xB(x, x) e U .
Replacing x by x + u we arrive at

B{x, x)u + uB(x, x) + 2B(x, u)u + 2uB(x, u)
+ 2B(x, u)x + 2xB(x, u) + B(u, u)x + xB(u, u) e U.

If u e U then the first four summands lie in U, so it follows that

2B(x, u)x + 2xB(x, u) + B(u, u)x + xB{u, u) e U

for u e U, x e R. A substitution -JC for x clearly yields

(9) 2B(u, u)x + 2xB(u, u) e U, ueU, X G R .

Hence, given u,veU,xeR,we have that

x[v, 2B(u, u)] = {2B(u, u)xv + 2xvB(u, u)} - {2B(u, u)x + 2xB(u, u))v

lies in U. That is, U contains a left ideal R[v, 2B(u, u)] where u and v
are arbitrary elements in U. By assumption it follows that [v , 2B(u, u)] =
0, M, v e U. In particular, 2B(u, u) commutes with all elements of the
form [D(x),x],xeR. Therefore 2B(u, u) € Z by the Corollary. But
then (9) gives R(4B(u, u)) € U. By assumption, 4B(u, u) = 0 and so
B{u,u) = 0; t ha t is, 2[D{u),u] = 0.

S T E P 2. For all ueU ,xeR,[x, u]D{u) e U a n d D(u)[x ,u]<=U.
P R O O F . No t ing tha t B(ux, u) = B(u, u)x + uB(x, u) + D(u)[x, u] a n d

using Step 1 it follows that D{u)[x, u] e U. Expanding B(xu, u) one
obtains that [x, u]D(u) e U.

STEP 3. For every u e U there exists A(w) e C so that D(u)u = X(u)D{u).
PROOF. Take u e U. For simplicity we denote D{u) by a, and by 8 we

denote the inner derivation 8{x) = [x, u]. By Step 1 we have 8{a) = 0, and
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by Step 2 we have S(x)a e U, x e R. Taking xad{y) for x we then get
(S(x)a)(S(y)a) + xaS2(y)a e U. The first term is in U, so it follows that for
any y e R, U contains the left ideal RaS2(y)a. Consequently aS2(y)a = 0,
yzR. Therefore, observing that S2(yaz) = S2(y)az + 28(y)aS(z)+yad2(z)
and using a82{yaz)a — 0, ad2(y)a = 0 and aS2(z)a = 0, one obtains
that ad{y)ad(z)a = 0, y, z e R. Replacing y by zay and expanding the
relation so obtained, it follows at once that ad(z)ayaS(z)a = 0, y, z e R.
But then ad(z)a = 0 by the primeness of R. By definitions of a and
d, this means that D{u)uzD{u) = D(u)zuD(u) where u e U and z e R
are arbitrary. Since D(u) commutes with u (Step 1), this relation can be
rewritten as D(u)uzD(u) = D(u)zD{u)u; now apply Lemma 3.

STEP 4. (i) For u,v eU, either D{u)(v -k{v)) = 0 or D(v)(u -X{u)) =
0 .

(ii) For u,v eU, either (v - X(v))D{u) = 0 or (w - A(M))Z>(W) = 0 .

PROOF. A linearization of [D(u), u] = 0 , « e £/, gives [Z>(«),w] +

[D(v), u] = 0 , u, v e U. Replacing v by uv we get

0 = [D(u), uv] + [uD(v) + D(u)v, u]
= [D(u), u]v + u{[D(u), v] + [D(v), u]}

+ D(u)[v, u] + [D(u), u]v .
Note that in the last sum, every summand except possibly D{u)[v, w] is 0;
but then D(u)[v , u] = 0 as well. That is, D(u)v(u-A(u)) = 0, u, v e U. By
Steps 1, 2 and 3, U contains elements of the form (v -X(v))xD(v), v e U,
x e R. Therefore the last relation yields D(u)(v -X{v))xD(v)(u-X(u)) = 0
for all u, v e U, x e R. Since R is prime, this proves (i). In a similar
fashion (first showing that [v, u]D(u) = 0, and then applying Step 2) one
proves (ii).

STEP 5. Either D(U) = 0 or U CZ .
PROOF. Take v e U and assume that D(v) ^ 0. Suppose that D(u)(v -

X(v)) / 0 for some u e U. Then D(v)(u - X{u)) = 0 by Step 4. Now,
consider the pair of elements v and u + v . Since D(u + v)(v — X(v)) ^ 0
(namely, D{u){v - X{v)) # 0 and D(v)(v - X(v)) = 0), it follows that
D(v)(u+v -X{u+v)) = 0. We have D(v)u = X(u)D(v), D(v)v = X(v)D{v),
so it follows that D(v)(X(u)+X(v)-X(u+v)) = 0. By assumption, D(v)^0,
hence X(u + v) — X(u) + X(v). Consequently

0 = D(u + v)((u + v)~ X(u + v))

= (D(u) + D(v))((u - X(u)) + (v- X(v)).

Since D(u)(u - X{u)) = 0 , D{v)(u - X{u)) = 0 and D(v)(v - X{v)) = 0 ,
it follows that D(u)(v — X(v)) — 0, contrary to the assumption. Thus we
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have showed that if D(v) ^ 0 then D(u){v - k{v)) = 0 for all u e U.
Similarly one shows that in this case we also have (v — X(v))D{u) = 0,
u e U. Combining both statements we see that v commutes with all D(u),
u e U. This means that U is the union of its additive subgroups G = {v e
U\D(v) = 0} a n d H = {v e U\[D(u) ,v] = 0 for all u e U}. However , a
group cannot be the union of two proper subgroups, hence either G = U,
that is, D(U) = 0, or H = U, that is, D(U) C Z by the Corollary. In any
case D(U) C Z . But then D{u)(u-k(u)) = 0 implies D(u)R(u-X{u)) = 0,
and so for any u e U we have either D(u) = 0 or u e C r\R - Z . Again
using the fact that a group cannot be the union of two proper subgroups it
follows that D(U) = 0 or C/CZ.

None of the assertions in Step 5 can hold—by Lemma 1, D cannot vanish
on U, and by Posner's theorem, U cannot be contained in Z . The proof
of the Theorem is thereby completed.

We conclude with an open question: is it possible to generalize the Theo-
rem by proving that U contains a nonzero two-sided ideal?
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