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Abstract

In this paper we study the integral of the supremum process of standard Brownian motion.
We present an explicit formula for the moments of the integral (or area) A(T ) covered
by the process in the time interval [0, T ]. The Laplace transform of A(T ) follows as a
consequence. The main proof involves a double Laplace transform of A(T ) and is based
on excursion theory and local time for Brownian motion.
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1. Introduction

Let B(t), t ≥ 0, be a standard Brownian motion. Consider the following associated
processes: the supremum process S(t) = max0≤s≤t B(s) and the local time L(t), which can be
regarded as a measure of the time B(t) spends at 0 in the interval [0, t]; see [10, Chapter VI]
for details. It is well known that these two processes, although pathwise quite different, have
the same distribution [10, Chapter VI.2],

{S(t)}t≥0
d= {L(t)}t≥0,

where ‘
d=’ denotes equality in distribution.

The purpose of this paper is to study the distribution of the area under S(t) or, equivalently,
L(t) over a given time interval [0, T ]. That is, the integral

A(T ) :=
∫ T

0
S(t) dt

d=
∫ T

0
L(t) dt. (1.1)

For ease of notation, let A := A(1).
The area (1.1) appeared as a random parameter when analysing displacements for linear

probing hashing. The Laplace transform of A, which is presented in Corollary 2.1, provided
the means to prove one of the main theorems in [9].

Note that the usual Brownian scaling

{B(T t)}t≥0
d= {T 1/2B(t)}t≥0 for any T > 0,

implies the corresponding scaling for the supremum process,

{S(T t)}t≥0
d= {T 1/2S(t)}t≥0.
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Thus, for T > 0,

A(T ) = T

∫ 1

0
S(T t) dt

d= T 3/2A, (1.2)

and it is enough to study A.

2. Results

Let ψ(s) := E(e−sA) denote the Laplace transform of A. An essential part of this paper is
devoted to proving the following formula for the Laplace transform of a variation of ψ , or in
other words, a double Laplace transform of A. Such formulae have already been derived for
the integral of |B(t)| and other similar integrals of processes related to Brownian motion; see
[8] and the survey [3].

Theorem 2.1. Let ψ be the Laplace transform of A. For all α, λ > 0,∫ ∞

0
ψ(αs3/2)e−λs ds =

∫ ∞

0

(
1 + 3αs

2
√

2λ

)−2/3

e−λs ds.

Remark 2.1. One of the parameters α and λ in Theorem 2.1 can be eliminated (by setting
it equal to 1, for instance) without loss of generality. In fact, for any β > 0, the formula is
preserved by the substitutions λ �→ βλ, α �→ β3/2α, and s �→ β−1s.

The proof is given in Section 5. It is based on the excursion theory for Brownian motion
and is inspired by similar arguments for other Brownian areas; see [8].

Theorem 2.2. The nth moment of A is

E(An) = n!�(n+ 2/3)

�(2/3)�(3n/2 + 1)

(
3
√

2

4

)n
, n ∈ N.

Proof. Set λ = 1 in Theorem 2.1 and denote the left- and right-hand sides by

I (α) :=
∫ ∞

0
ψ(αs3/2)e−s ds

and

J (α) :=
∫ ∞

0

(
1 + 3αs

2
√

2

)−2/3

e−s ds.

The integrand of I (α) and all its derivatives with respect to α are dominated by functions of
the form sKe−s , uniformly in α > 0. Differentiation of I (α) is therefore allowed indefinitely
due to dominated convergence. The same argument applies to J (α).

Also, the dominated convergence theorem shows that integration (with respect to s) can be
interchanged with taking the limit α → 0+. Thus,

lim
α→0+

dnI (α)

dαn
= lim
α→0+

∫ ∞

0

dn

dαn
ψ(αs3/2)e−s ds

=
∫ ∞

0
lim
α→0+(−s

3/2)n E(An exp {−αs3/2A})e−s ds

= (−1)n E(An)

∫ ∞

0
s3n/2e−s ds

= (−1)n�

(
3n

2
+ 1

)
E(An)
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Table 1: The first four moments of A.

n E(An)

1 4/3
√

2π

2 5
12

3 64/63
√

2π

4 11
24

and

lim
α→0+

dnJ (α)

dαn
= lim
α→0+

∫ ∞

0

dn

dαn

(
1 + 3αs

2
√

2

)−2/3

e−s ds

=
∫ ∞

0
lim
α→0+

�(n+ 2/3)

�(2/3)

( −3s

2
√

2

)n(
1 + 3αs

2
√

2

)−n−2/3

e−s ds

= �(n+ 2/3)

�(2/3)

( −3

2
√

2

)n ∫ ∞

0
sne−s ds

= �(n+ 2/3)

�(2/3)

(−3
√

2

4

)n
n!.

The fact that I (α) = J (α) completes the proof.

The first four moments of A are listed in Table 1. Furthermore, Stirling’s formula provides
the asymptotic relation

E(An) ∼ 2
√

3π

3�(2/3)
n1/6

(
n

3e

)n/2
, n → ∞. (2.1)

Corollary 2.1. The Laplace transform of A is

ψ(s) = 1

�(2/3)

∞∑
n=0

�(n+ 2/3)

�(3n/2 + 1)

(−3
√

2s

4

)n
.

Proof. The corollary follows from the identity

ψ(s) =
∞∑
n=0

(−s)n
n! E(An).

Note that the sum converges absolutely for every complex s.

The graph of ψ(s) is shown in Figure 1.

Remark 2.2. The Laplace transform of A can also be expressed in terms of generalised
hypergeometric functions:

ψ(s) = 1F1

(
5

6
; 4

6
; s

2

6

)
− 4s

3
√

2π
2F2

(
6

6
,

8

6
; 7

6
,

9

6
; s

2

6

)
.
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Figure 1: The Laplace transform of A.

3. Tail asymptotics

Tauberian theorems by Davies [1] and Kasahara [7] (see [4, Theorem 4.5] for a convenient
version) show that the moment asymptotics (2.1) imply the estimate ln P(A > x) ∼ −3x2/2
for the tail of the distribution function. Thus, the following corollary is obtained.

Corollary 3.1. A has the tail estimate

P(A > x) = exp

{
−3x2

2
+ o(x2)

}
, x → ∞.

(This result can also be proved by large deviation theory; cf. similar results in [2].)
It seems difficult to obtain more precise tail asymptotics from the moment asymptotics, but

it is natural to make a conjecture.

Conjecture 3.1. A has a density function fA(x) satisfying

fA(x) ∼ 2 · 31/6

�(2/3)
x1/3 exp

{
−3x2

2

}
, x → ∞.

In fact, if A has a density with fA(x) ∼ axb exp{−cxd} for some constants a, b, c, and d,
then it is the only possible choice that yields the moment asymptotics (2.1); cf. [5].

Conjecture 3.1 may be compared with similar results for several Brownian areas in [5]; see
also [3]. Note that in these results for Brownian areas, the exponent of x is always an integer
(0, 1, or 2). It is therefore of little surprise that here the exponent seems to be 1

3 , corresponding
to the power n1/6 in (2.1).

4. Preliminaries on point processes

Let S be a measurable space. (In this paper, S is either an interval of the real line or
the product of two such intervals.) Although a point process � will be regarded as a random
set {ξi} ⊂ S, it is technically convenient to formally define it as an integer-valued random
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measure
∑
i δξi . Hence, �(A) denotes the number of points ξi that belong to a (measurable)

subset A ⊆ S. Also, x ∈ � is equivalent to �({x}) > 0. For further details, see, e.g. [6].
A Poisson process with intensity dµ, where dµ is a measure on S, is a point process �

such that �(A) has a Poisson distribution with mean µ(A) for every measurable A ⊆ S and
�(A1), . . . , �(Ak) are independent for every family A1, . . . , Ak of disjoint measurable sets.
Lemma 4.1, below, is a standard formula for Laplace functionals; see, e.g. [6, Lemma 12.2(i)].

Lemma 4.1. If � is a Poisson process with intensity dµ on a set S and f : S → [0,∞) is a
measurable function, then

E

(
exp

{
−

∑
ξ∈�

f (ξ)

})
= exp

{
−

∫
S
(1 − e−f (x)) dµ(x)

}
.

Lemma 4.2, below, on the other hand, is more of a digression. The result follows from a
standard gamma integral by integration by parts. (The result can also be written as 2�( 1

2 )λ
1/2.)

Lemma 4.2. If λ > 0 then
∫ ∞

0
(1 − e−λx)x−3/2 dx = 2

√
πλ.

5. Proof of Theorem 2.1

The set {t : B(t) = 0} is almost surely (a.s.) closed and unbounded, so its complement
{t : B(t) �= 0} is an infinite union of finite open intervals, denoted by Iν = (gν, dν), ν =
1, 2, . . . , in some order. (The intervals cannot be ordered by appearance, since there is a.s. an
infinite number of them in, say, [0,1]. Fortunately, the order does not matter.) The restrictions
of B(t) to these intervals are called the excursions of B(t). Let êν be the excursion during Iν .

The local time L(t) is constant during each excursion. Let τν be the local time during êν
and let �ν := dν − gν be the length of êν . It is well known (see [10, Chapter XII]) that the
collection of pairs {(τν, �ν)}∞ν=1 forms a Poisson process in [0,∞)× (0,∞) with intensity

d = (2π�3)−1/2 dτ d�.

Note also that, a.s., if the excursion êν1 comes before êν2 then τν1 < τν2 .
Next, consider a Poisson process {Ti}∞i=1 on [0,∞) with intensity λ dt , independent

of {B(t)}. Assume that the points are ordered with 0 < T1 < T2 < · · · . Then T1, T2 − T1, …
are i.i.d. Exp(λ) random variables with density function λe−λt . Furthermore, T1 is independent
of {B(t)} and, thus, of {A(T )}. It follows from (1.2) that A(T1)

d= T
3/2

1 A and, consequently,

E(exp{−αA(T1)}) = E(exp{−αT 3/2
1 A}) = E(ψ(αT 3/2

1 )) = λ

∫ ∞

0
e−λsψ(αs3/2) ds. (5.1)

The times Ti are called marks, and an excursion is called marked if it contains at least one
of the marks Ti . The marks {Ti} are placed by first constructing {B(t)} and then adding marks
according to independent Poisson processes with intensities λ dt in each excursion. Thus, given
the excursions {êν}, each excursion êν is marked with probability 1−exp{−λ�ν}, independently
of the other excursions. The Poisson process � := {(τν, �ν)} defined by the excursions can be
written as the union �′ ∪�′′, where

�′ := {(τν, �ν) : êν is unmarked}, �′′ := {(τν, �ν) : êν is marked}.
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By the general independence properties of Poisson processes, �′ and �′′ are independent
Poisson processes with intensities

d′ := e−λ� d = (2π)−1/2�−3/2e−λ� dτ d� (5.2)

and
d′′ = (1 − e−λ�) d = (2π)−1/2�−3/2(1 − e−λ�) dτ d�,

respectively. In particular, if the lengths are ignored, the local times of the marked excursions
form a Poisson process �̃ on (0,∞) with intensity∫ ∞

�=0
(1 − e−λ�) d = λ̃ dτ,

where, using Lemma 4.2,

λ̃ =
∫ ∞

0
(2π)−1/2�−3/2(1 − e−λ�) d� = √

2λ. (5.3)

Owing to the fact that B(T1) �= 0 a.s., there exists a unique excursion êν∗ that contains the
first mark T1, i.e. T1 ∈ Iν∗ . Let ζ := L(T1) = τν∗ be the local time at T1 (and, thus, during êν∗ ).
Since êν∗ is the first marked excursion, its local time ζ is the first of the points in the Poisson
process �̃ and, hence,

ζ ∼ Exp(
√

2λ). (5.4)

The restriction of B(t) to the interval [0, T1] consists of all excursions êν with local time
τν < τν∗ = ζ and the part of êν∗ on (gν∗ , T1), plus the set

[0, T1] \
⋃
ν

Iν = {t ≤ T1 : B(t) = 0},

which, a.s., has measure 0 and, thus, may be ignored. Consequently, since L(t) = τν on Iν ,

A(T1) :=
∫ T1

0
L(t) dt

=
∑

ν : τν<τν∗

∫
Iν

L(t) dt +
∫ T1

gν∗
L(t) dt

=
∑

ν : τν<ζ
τν�ν + ζ(T1 − gν∗)

=: A′ + A′′.

The sum defined as A′ = ∑
ν : τν<ζ τν�ν only contains terms for unmarked excursions êν .

Thus,
A′ =

∑
(τν ,�ν)∈�′ : τν<ζ

τν�ν.

Recall that ζ is determined by �′′ (as the smallest τ with (τ, �) ∈ �′′ for some �) and that �′
and �′′ are independent. Hence, �′ and ζ are independent. It follows from Lemma 4.1, with
S = (0, ζ )× (0,∞) and f ((τ, �)) = ατ�, that

E(e−αA′ | ζ ) = exp

{
−

∫ ζ

τ=0

∫ ∞

�=0
(1 − e−ατ�) d′(τ, �)

}
.
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By (5.2) and Lemma 4.2,

∫ ζ

τ=0

∫ ∞

�=0
(1 − e−ατ�) d′(τ, �) =

∫ ζ

τ=0

∫ ∞

�=0
(1 − e−ατ�)(2π)−1/2�−3/2e−λ� d� dτ

= (2π)−1/2
∫ ζ

τ=0

∫ ∞

�=0
(e−λ� − e−(λ+ατ)�)�−3/2 d� dτ

=
∫ ζ

τ=0

√
2(

√
λ+ ατ − √

λ) dτ

= 2
√

2

3α
((λ+ αζ)3/2 − λ3/2)− √

2λζ,

and it follows that

E(e−αA′ | ζ ) = exp

{√
2λζ − 2

√
2

3α
((λ+ αζ)3/2 − λ3/2)

}
. (5.5)

Now consider A′′ = ζ(T1 − gν∗). Note that T1 − gν∗ is the location (relative to the left
endpoint of the excursion) of the first mark in the first marked excursion. Since � is a Poisson
process with intensity independent of τ , the location T1 −gν∗ is independent of the local time ζ
of the first marked excursion. Furthermore, the joint distribution of (�ν∗ , T1 − gν∗) has density

(λ̃)−1λe−λy(2π)−1/2�−3/2 d� dy, 0 < y < � < ∞,

where the normalisation constant λ̃ is given by (5.3). Consequently,

E(e−αA′′ | ζ ) = E(exp{−αζ(T1 − gν∗)} | ζ )
=

∫ ∞

y=0

∫ ∞

�=y
e−αζy(λ̃)−1λe−λy(2π)−1/2�−3/2 d� dy

= π−1/2λ1/2
∫ ∞

y=0
e−(λ+αζ)yy−1/2 dy

= λ1/2(λ+ αζ)−1/2. (5.6)

Again, since �′ and �′′ are independent, A′ and A′′ are conditionally independent given ζ .
Thus, (5.5) and (5.6) yield

E(exp{−αA(T1)} | ζ ) = E(e−αA′ | ζ )E(e−αA′′ | ζ )

=
(

λ

λ+ αζ

)1/2

exp

{√
2λζ − 2

√
2

3α
((λ+ αζ)3/2 − λ3/2)

}
.

By (5.4), ζ has the density
√

2λe−√
2λx , x > 0, and it follows that

E(exp{−αA(T1)}) = λ
√

2
∫ ∞

0
(λ+ αx)−1/2 exp

{
−2

√
2

3α
((λ+ αx)3/2 − λ3/2)

}
dx.

Finally, the substitution
2
√

2

3αλ
((λ+ αx)3/2 − λ3/2) �→ s
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provides the slightly simpler formula

E(exp{−αA(T1)}) = λ

∫ ∞

0

(
1 + 3αs

2
√

2λ

)−2/3

e−λs ds.

The result now follows by a comparison with (5.1).
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