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Abstract
We investigate norms of spectral projectors on thin spherical shells for the Laplacian on tori. This is closely related
to the boundedness of resolvents of the Laplacian and the boundedness of 𝐿𝑝 norms of eigenfunctions of the
Laplacian. We formulate a conjecture and partially prove it.
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1. Introduction

1.1. Boundedness of spectral projectors on Riemannian manifolds

1.1.1. A general problem
Given a Riemannian manifold M with Laplace-Beltrami operator Δ , and for 𝜆 ≥ 1, 0 < 𝛿 < 1, let

𝑃𝜆, 𝛿 = 𝑃
𝜒
𝜆, 𝛿 = 𝜒

(√
−Δ − 𝜆

𝛿

)
,

where 𝜒 is a non-negative cutoff function supported in [−1, 1], equal to 1 on [− 1
2 ,

1
2 ].

A general question is to estimate

‖𝑃𝜒𝜆, 𝛿 ‖𝐿2→𝐿𝑝 , where 𝑝 ∈ [2,∞] .

Using self-adjointness of 𝑃𝜒𝜆, 𝛿 and a 𝑇𝑇∗ argument, it follows that

‖𝑃𝜒
2

𝜆, 𝛿 ‖𝐿𝑝′→𝐿𝑝 = ‖𝑃𝜒𝜆, 𝛿 ‖
2
𝐿𝑝′→𝐿2 = ‖𝑃𝜒𝜆, 𝛿 ‖

2
𝐿2→𝐿𝑝 . (1.1)

Furthermore, given two cutoff functions 𝜒 and �̃�, the boundedness of 𝑃𝜒𝜆, 𝛿 on 𝐿2 implies the following:
if ‖𝑃𝜒𝜆, 𝛿 ‖𝐿2→𝐿𝑝 obeys, say, a polynomial bound of the type 𝜆𝛼𝛿𝛽 , so does ‖𝑃𝜒𝜆, 𝛿 ‖𝐿2→𝐿𝑝 , with a different
constant. Therefore, it will be equivalent to estimate either of the three quantities appearing in equation
(1.1), and the result is essentially independent of the cutoff function, which might even be taken to be a
sharp cutoff.

Up to possibly logarithmic factors, this question is essentially equivalent to that of estimating the
𝐿2 → 𝐿 𝑝 norm of the resolvent 𝑅((𝑥 + 𝑖𝑦)2) = (Δ + (𝑥 + 𝑖𝑦)2)−1; this is the point of view taken in
Dos Santos Ferreira-Kenig-Salo [12] and Bourgain-Shao-Sogge-Yao [8]. Essentially, one can think of
𝑅((𝑥 + 𝑖𝑦)2) as a variant of 1

𝑥𝑦𝑃𝑥,𝑦 .

1.1.2. The case of Euclidean space
We will denote the Stein-Tomas exponent

𝑝𝑆𝑇 =
2(𝑑 + 1)
𝑑 − 1

.

As will become clear, it often plays the role of a critical point when estimating the norm of 𝑃𝜆, 𝛿 .
On R𝑑 (with the Euclidean metric), there holds

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 �

{
𝜆𝜎 (𝑝)/2𝛿1/2 if 𝑝 ≥ 𝑝𝑆𝑇

𝜆
𝑑−1

2

(
1
2−

1
𝑝

)
𝛿

(𝑑+1)
2

(
1
2−

1
𝑝

)
if 2 ≤ 𝑝 ≤ 𝑝𝑆𝑇 ,

(1.2)

where

𝜎(𝑝) = 𝑑 − 1 − 2𝑑
𝑝

so that 𝜎(𝑝𝑆𝑇 ) =
𝑑 − 1
𝑑 + 1

;
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see the appendix for a proof of the above bounds. For more general second-order operators in the
resolvent formulation, we refer to Kenig-Ruiz-Sogge [18]. Finally, the case of the hyperbolic space was
recently treated by the first author and Léger [13].

1.1.3. The case of a compact manifold
On a compact manifold of dimension d, as was proved by Sogge [23],

‖𝑃𝜆,1‖𝐿2→𝐿𝑝 �

{
𝜆𝜎 (𝑝)/2 if 𝑝 ≥ 𝑝𝑆𝑇

𝜆
𝑑−1

2

(
1
2−

1
𝑝

)
if 2 ≤ 𝑝 ≤ 𝑝𝑆𝑇 ,

where 𝜎(𝑝) is as above. For any given compact manifold, this estimate is optimal for 𝛿 = 1. In the
case of the sphere S𝑑 (or more generally of a Zoll manifold), it does not improve if 𝛿 decreases, since
the eigenvalues of the sphere Laplacian are essentially distributed like squared integers. However, for
‘most’ manifolds, the estimates above are expected to improve as 𝛿 decreases. It is the aim of this article
to examine this question in the case of the torus.

If the manifold M is negatively curved, then logarithmic improvements are possible over the allowed
range of 𝛿, as in Bourgain-Shao-Sogge-Yao [8] and Blair-Sogge [1]. The work of Sogge-Toth-Zelditch
[24] shows that generic manifolds also allow improvements.

1.2. Spectral projectors on tori

1.2.1. Formulating the problem
From now on, we focus on the case of tori given by the quotient R𝑑/(Z𝑒1 + · · · +Z𝑒1), where 𝑒1, . . . , 𝑒𝑑
is a basis of R𝑑 , with the standard metric. This is equivalent to considering the operators

𝑃𝜆, 𝛿 = 𝜒

(√
−𝑄(∇) − 𝜆

𝛿

)
on T𝑑 = R𝑑/Z𝑑 ,

where ∇ is the standard gradient operator, and Q is a positive definite quadratic form on R𝑑 , with
coefficients 𝛽𝑖 𝑗 :

𝑄(𝑥) =
𝑑∑
𝑖=1

𝛽𝑖 𝑗𝑥
𝑖𝑥 𝑗 =⇒ 𝑄(∇) = −

𝑑∑
𝑖=1

𝛽𝑖 𝑗𝜕𝑖𝜕 𝑗 .

Dispensing with factors of 2𝜋, which can be absorbed in Q, the associated Fourier multiplier has the
symbol

𝜒

(√
𝑄(𝑘) − 𝜆

𝛿

)
.

1.2.2. Known results for 𝑝 = ∞: counting lattice points
Abusing notations by writing 𝑃𝜆, 𝛿 (𝑧) for the convolution kernel giving 𝑃𝜆, 𝛿 , we have the formula

𝑃𝜆, 𝛿 (𝑧) =
∑
𝑛

𝜒

(√
𝑄(𝑛) − 𝜆

𝛿

)
𝑒2𝜋𝑖𝑛 ·𝑧 .

It is easy to see that

‖𝑃𝜆, 𝛿 ‖𝐿1→𝐿∞ = ‖𝑃𝜆, 𝛿 (𝑧)‖𝐿∞
𝑧
=

∑
𝑛

𝜒

(√
𝑄(𝑛) − 𝜆

𝛿

)
.
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If 𝜒 = 1[−1,1] , this can be expressed as

‖𝑃𝜆, 𝛿 ‖𝐿1→𝐿∞ = 𝑁 (𝜆 + 𝛿) − 𝑁 (𝜆 − 𝛿),

where 𝑁 (𝜆) is the counting function associated to the quadratic form Q: namely, it denotes the number
of lattice points 𝑛 ∈ Z𝑑 such that 𝑄(𝑛) < 𝜆2. To leading order, 𝑁 (𝜆) equals Vol(𝐵1)𝜆𝑑 , where Vol(𝐵1)
is the volume of the ellipsoid {𝑄(𝑥) < 1}. We denote the error term by 𝑃(𝜆), thus:

𝑁 (𝜆) = Vol(𝐵1)𝜆𝑑 + 𝑃(𝜆).

For a general quadratic form Q, it was showed by Landau [20, Section 4] that 𝑃(𝜆) = 𝑂 (𝜆𝑑− 2𝑑
𝑑+1 ).

Consequently, we have

‖𝑃𝜆, 𝛿 ‖𝐿1→𝐿∞  𝛿𝜆𝑑−1 for 𝛿 > 𝜆−
𝑑−1
𝑑+1 . (1.3)

Landau’s result, and hence the range for 𝛿 in equation (1.3), has been improved for every dimension d.
Nonetheless, equation (1.3) is a useful point of comparison since our approach is, in a sense, a refinement
of a proof of Landau’s theorem (see the comments after Theorem 4.1). Regarding lower bounds for P,
when 𝑄(𝑥) = |𝑥 |22, one can show that 𝑃(𝜆𝑖) � 𝜆𝑑−2

𝑖 for some sequence 𝜆𝑖 → ∞. The present state of
the art is as follows:

◦ If 𝑑 = 2, then estimating 𝑃(𝜆) is a variation on the celebrated Gauss circle problem. One
conjectures 𝑃(𝜆) = 𝑂 𝜖 (𝜆

1
2+𝜖 ), and the best known result is 𝑂 (𝜆 131

208 log
18627
8320 𝜆); see Huxley [17].

◦ If 𝑑 = 3, then one conjectures 𝑃(𝜆) = 𝑂 𝜖 (𝜆1+𝜖 ); see Nowak [21, §§1.1-1.2]. We have𝑂 (𝜆 231
158 ) by Guo

[15]. If moreover Q has rational coefficients, then 𝑃(𝜆) = 𝑂 (𝜆 21
16 ) by Chamizo-Cristobál-Ubis [10].

◦ If 𝑑 = 4, then 𝑃(𝜆) = 𝑂 (𝜆2 log
2
3 𝜆) by Walfisz [28]. The case 𝑄(𝑥) = |𝑥 |22 shows that up the log

power this is best-possible.
◦ If 𝑑 > 4, then we have 𝑃(𝜆) = 𝑂 (𝜆𝑑−2), see Krätzel [19]. This is best-possible if Q is a multiple of a

form with rational coefficients, and if not then 𝑃(𝜆) = 𝑜(𝜆𝑑−2) by Götze [14].

1.2.3. Known results on standard tori: eigenfunctions of the Laplacian
It was conjectured by Bourgain [2] that an eigenfunction f of the Laplacian on the standard torus with
eigenvalue 𝜆2 satisfies

‖ 𝑓 ‖𝐿𝑝 �𝜖 𝜆
𝑑−2

2 − 𝑑
𝑝 +𝜖 ‖ 𝑓 ‖𝐿2 for 𝑝 ≥ 𝑝∗, where 𝑝∗ =

2𝑑
𝑑 − 2

,

which can be reformulated as

‖𝑃𝜆, 1
𝜆
‖𝐿2→𝐿𝑝 �𝜖 𝜆

𝑑−2
2 − 𝑑

𝑝 +𝜖 for 𝑝 ≥ 𝑝∗.

Progress toward this conjecture [3, 5, 6] culminated in the work of Bourgain and Demeter on ℓ2-
decoupling [7], where the above conjecture is proved for 𝑑 ≥ 4 and 𝑝 ≥ 2(𝑑−1)

𝑑−3 .

1.2.4. Known results on standard tori: uniform resolvent bounds
It was proved in Dos Santos Ferreira-Kenig-Salo [12] that, for general compact manifolds, each 𝑥, 𝑦 ∈ R,
and writing 𝑝∗ = 2𝑑

𝑑−2 , we have

‖(Δ + (𝑥 + 𝑖𝑦)2)−1‖𝐿 (𝑝∗ )′→𝐿𝑝∗ � 1 if |𝑦 | ≥ 1.

In terms of spectral projectors, this is equivalent (see Cuenin [11]) to the bound

‖𝑃𝜆, 𝛿 ‖𝐿 (𝑝∗ )′→𝐿𝑝∗ � 𝜆𝛿, if |𝛿 | > 1.
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It was also asked whether this bound could be extended to a broader range of y, or equivalently a
broader range of 𝛿. Bourgain-Shao-Sogge-Yao [8] showed that on the sphere, the range above is optimal.
In the case of the standard d-dimensional torus R𝑑/Z𝑑 , they could improve earlier results of Shen [22].
The results of Shen and Bourgain-Shao-Sogge-Yao were then sharpened by Hickman [16], who extended
the range for the standard d-dimensional torus further to |𝛿 | > 𝜆

− 1
3−

𝑑

3(21𝑑2−𝑑−24)
+𝜖 .

1.2.5. Known results in dimension 2
The classical estimate of Zygmund corresponds, in our language, to a sharp result for 𝑑 = 2, 𝑝 = 4,
𝛿 = 𝜆−1. It was showed by Bourgain-Burq-Zworski [4] that it can be extended to 𝛿 > 𝜆−1. A striking
feature of the estimates in [4] is that they entail no subpolynomial loss (𝜖 power in the exponent), which
has important consequences for control theory in particular, as explained in that paper.

1.3. Conjecture and results

Based on two specific examples, developed in Section 3, we conjecture that

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � (𝜆𝛿)
(𝑑−1)

2

(
1
2−

1
𝑝

)
+ 𝜆𝜎 (𝑝)/2𝛿1/2, (1.4)

where 𝛿 > 𝜆−1, and 𝜎(𝑝) = 𝑑 − 1 − 2𝑑
𝑝 , for any fixed torus. We show there that this bound would be

optimal and describe when each term in the conjecture dominates.
The methods developed in the present paper give improvements on the range of validity of this

conjecture. The precise statement is Theorem 6.1 below. As this is a rather cumbersome formula, we
choose to state some simpler results in fairly natural cases of interest, namely 𝑝 < 𝑝𝑆𝑇 , 𝛿 large and
𝑑 = 3. Here we have 𝑝𝑆𝑇 = 2(𝑑+1)

𝑑−1 ; in Sections 1.2.3 and 1.2.4, we saw that 𝑝∗ = 2𝑑
𝑑−2 has some special

significance, so we will also state a result in this case.

Theorem 1.1 (The case 𝑝 < 𝑝𝑆𝑇 ). For any positive definite quadratic form Q, the conjecture in equation
(1.4) is verified, up to subpolynomial losses, if 𝜆 > 1, 𝛿 ≥ 𝜆−1 and 1 < 𝑝 < 𝑝𝑆𝑇 .

Here, subpolynomial losses mean that the conjecture holds true with an additional 𝜆𝜖 factor on the
right-hand side, where the implicit constant depends on 𝜖 , but 𝜖 can be chosen arbitrarily small.

Theorem 1.2 (The case of large 𝛿). For any positive definite quadratic form Q, the conjecture in equation
(1.4) is verified, up to subpolynomial losses, if 𝜆 > 1, 𝑝 ≥ 𝑝𝑆𝑇 and

𝛿 > 𝜆
− (𝑑−1) 𝑝−𝑑𝑝𝑆𝑇 +2

(𝑑+1) 𝑝−𝑑𝑝𝑆𝑇 −2 .

By substituting 𝑝 = 2𝑑/(𝑑 − 2) and performing a brief computation, we obtain:

Corollary 1.3 (The case 𝑝 = 𝑝∗). Let 𝑝∗ = 2𝑑
𝑑−2 . For any positive definite quadratic form Q, the

conjecture in equation (1.4) is verified, up to subpolynomial losses, for 𝑝 = 𝑝∗, if 𝜆 > 1 and 𝛿 ≥ 𝜆−
1

2𝑑−1 .

In Theorems 1.2 and Corollary 1.3, we have aimed to provide simple statements, which are con-
sequently somewhat weaker than Theorem 6.1 below. For any particular d, these last results can be
improved by a short computation. We present the following as a representative example.

Theorem 1.4 (The case 𝑑 = 3). For any positive definite quadratic form Q, the conjecture in equation
(1.4) is verified, up to subpolynomial losses, if 𝑑 = 3, whenever 𝜆 > 1, 𝛿 ≥ min{𝜆−

3𝑝−8
5𝑝−8 , 𝜆−

8−𝑝
5𝑝−16 } and

also 𝛿 ≥ 𝜆−1/2.

In the proofs of the results above, the value 𝛿 = 𝜆−
𝑑−1
𝑑+1 will emerge as playing a special role. In

particular, to prove our conjecture in even a single case with 𝑝 > 𝑝𝑆𝑇 and 𝛿  𝜆−
𝑑−1
𝑑+1 needs a different

approach. This threshold also appears in the classical result in equation (1.3), and more generally when
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counting lattice points in a 𝛿-thick shell around a manifold with curvature ∼ 𝜆−1 using, for example,
Poisson summation. Substituting 𝑑 = 3 into the last theorem does, however, yield the full range
𝛿 > 𝜆−

𝑑−1
𝑑+1 , as well as the the full range 𝑝 > 2, in the following setting:

Corollary 1.5. If 𝑑 = 3, then for any positive definite quadratic form Q the conjecture holds for all
𝛿 ≥ 𝜆−

𝑑−1
𝑑+1 = 𝜆−1/2 if 𝑝 ≤ 𝑝𝑆𝑇 + 4

7 or 𝑝 ≥ 𝑝𝑆𝑇 + 4, and it holds for all 𝑝 > 2 if 𝛿 > 𝜆−2/5.

The proof of the above results will combine a number theoretical argument, which allows one to
count the number of caps in a spherical shell that contain many lattice points, with a harmonic analysis
approach, relying in particular on the ℓ2 decoupling theorem of Bourgain and Demeter.

In order to understand better the statement of these theorems, it is helpful to spell out what they imply
for each of the classical problems presented in Sections 1.2.2, 1.2.3 and 1.2.4.

◦ For the problem of counting points in thin spherical shells (Subsection 1.2.2), we recover the bound
in equation (1.3) of Landau [20]; see also the comments after Theorem 4.1.

◦ The problem of bounding 𝐿𝑝 norms of eigenfunctions was previously considered for rational tori:
that is, R𝑑/𝐴Z𝑑 , where 𝐴 ∈ GL𝑑 (Q). Our results do not improve the bounds of Bourgain-Demeter
[7] in this case. For generic tori, eigenfunction bounds are trivial; the natural analogue of bounding
the 𝐿 𝑝 norms of eigenfunctions is to bound the operator norm of 𝑃𝜆, 1

𝜆
, and this question does not

appear to have been considered before. For any torus, that is any R𝑑/𝐵Z𝑑 with 𝐵 ∈ GL𝑑 (R), we
obtain from Theorem 6.1 below the bound

‖𝑃𝜆, 1
𝜆
‖𝐿2→𝐿𝑝 �𝜖 𝜆𝜖 (𝜆

𝑑
𝑑+1 )

1
2 (1−

2
𝑝 )+

𝑑
2 (1− 𝑝𝑆𝑇

𝑝 )−
√
(1− 2

𝑝 ) (1−
𝑝𝑆𝑇
𝑝 ) (𝑝 ≥ 𝑝𝑆𝑇 ).

◦ For the problem of proving uniform resolvent bounds (Subsection 1.2.4), it proves the desired
estimate up to a subpolynomial loss

‖𝑃𝜆, 𝛿 ‖𝐿 (𝑝∗ )′→𝐿𝑝∗ �𝜖 𝜆1+𝜖 𝛿,

if 𝑑 = 3 and 𝛿 > 𝜆−5/11, improving over Hickman’s [16] result that 𝜆−
1
3−

𝑑

3(21𝑑2−𝑑−24) .

2. Notation

Throughout, 𝑝𝑆𝑇 = 2(𝑑+1)
𝑑−1 , and 𝜎(𝑝) = 𝑑 − 1 − 2𝑑

𝑝 will be as in Section 1.1.2, and 𝑝∗ = 2𝑑
𝑑−2 as in

Section 1.2.3. We adopt the following normalizations for the Fourier series on T𝑑 and Fourier transform
on R𝑑 , respectively:

𝑓 (𝑥) =
∑
𝑘∈Z𝑑

�̂�𝑘𝑒
2𝜋𝑖𝑘 ·𝑥 , �̂�𝑘 =

∫
T𝑑

𝑓 (𝑥)𝑒−2𝜋𝑖𝑘 ·𝑥 𝑑𝑥

𝑓 (𝑥) =
∫
R𝑑

�̂� (𝜉)𝑒2𝜋𝑖𝑥 ·𝜉 𝑑𝑥, �̂� (𝜉) =
∫
R𝑑

𝑓 (𝑥)𝑒−2𝜋𝑖𝑥 ·𝜉 𝑑𝑥.

The Poisson summation formula is then given by∑
𝑛∈Z𝑑

𝑓 (𝑛) =
∑
𝑘∈Z𝑑

�̂� (𝑘).

We write (�𝑣 (1) | · · · |�𝑣 (𝑘) ) for the matrix with columns �𝑣 (𝑖) .
Given two quantities A and B, we write 𝐴 � 𝐵 or equivalently 𝐴 = 𝑂 (𝐵) if there exists a constant C

such that 𝐴 ≤ 𝐶𝐵, and 𝐴 �𝑎,𝑏,𝑐 𝐵 if the constant C is allowed to depend on 𝑎, 𝑏, 𝑐. We always allow C
to depend on the dimension d. In the following, it will often be the case that the implicit constant will
depend on 𝛽 and an arbitrarily small power of 𝜆: 𝐴 �𝛽,𝜖 𝜆𝜖 𝐵. When this is clear from the context, we
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simply write 𝐴 � 𝜆𝜖 𝐵. When we are assuming that the implicit constant is sufficiently small, we will
write 𝐴  𝐵.

If both 𝐴 � 𝐵 and 𝐵 � 𝐴, then we write 𝐴 ∼ 𝐵.

3. Lower bounds and conjecture

3.1. The discrete Knapp example

Lemma 3.1. For any 𝑛 ∈ N, there exists 𝜆 ∼ |𝑛| such that if 𝛿 ∈ (0, 1),

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � (1 + 𝜆𝛿)
(𝑑−1)

2

(
1
2−

1
𝑝

)
.

Proof. Consider the ellipse {𝜉 ∈ R𝑑 , 𝑄(𝜉) = 1}. Its normal vector is colinear to 𝑒𝑑 = (0, . . . , 0, 1) at
the point 𝜉0. We now dilate this ellipse by a factor 𝜆 such that 𝜆𝜉𝑑0 = 𝑛 ∈ N, smear it to a thickness 𝛿,
and observe that, around the point 𝜆𝜉0, it contains many lattice points of Z𝑑 . More precisely, the cuboid
𝐶 ⊂ R𝑑 defined by

𝐶 = {|𝜉𝑖 − 𝜆𝜉𝑖0 | < 𝑐
√
𝜆𝛿 for 𝑖 = 1, . . . , 𝑑 − 1 and |𝜉𝑑 − 𝜆𝜉𝑑0 | < 𝑐𝛿}

(where the constant c is chosen to be sufficiently small) is such that

𝐶 ⊂
{
𝜉 ∈ R𝑑 , 𝜆 − 𝛿

2
<

√
𝑄(𝜉) < 𝜆 + 𝛿

2

}
.

Furthermore, for 𝜆 ∈ Z, C will contain ∼ (1+𝜆𝛿) 𝑑−1
2 points in Z𝑑 . Writing 𝜉 = (𝜉 ′, 𝜉𝑑) and 𝑥 = (𝑥 ′, 𝑥𝑑),

let

𝑓 (𝑥) = 𝑒2𝜋𝑖𝜆𝜉𝑑
0 𝑥

𝑑
∑

𝜉 ′ ∈Z𝑑−1

𝜙

(
𝜉 ′ − 𝜆𝜉 ′0√

𝜆𝛿

)
𝑒2𝜋𝑖 𝜉 ′ ·𝑥′ ,

where 𝜙 ∈ C∞0 (R𝑑−1) is such that 𝜙 ≥ 0 and Supp 𝜙 ⊂ 𝐶. By the Poisson summation formula, f can be
written

𝑓 (𝑥) = 𝑒2𝜋𝑖𝜆𝑥𝑑 𝜉𝑑
0 (𝜆𝛿)

𝑑−1
2

∑
𝑛∈Z𝑑−1

𝜙(
√
𝜆𝛿(𝑥 ′ − 𝑛))𝑒2𝜋𝑖𝜆𝜉 ′0 · (𝑥

′−𝑛) ,

which implies

‖ 𝑓 ‖𝐿𝑝 ∼ (1 + 𝜆𝛿)
𝑑−1

2

(
1− 1

𝑝

)
.

Since 𝑃𝜆, 𝛿 𝑓 = 𝑓 , we find that

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 ≥ ‖ 𝑓 ‖𝐿𝑝

‖ 𝑓 ‖𝐿2
∼ (1 + 𝜆𝛿)

(𝑑−1)
2

(
1
2−

1
𝑝

)
.

�

3.2. The radial example

Lemma 3.2. For any 𝑛 ∈ N and 𝛿 ∈ (0, 1), there exists 𝜆 such that |𝑛 − 𝜆 | � 1 and

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2√𝛿.
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Proof. For any 𝑛 ∈ N, there exists 𝜆 with |𝑛 − 𝜆 | � 1, and such that the corona

C = {𝜆 − 𝛿

2
< 𝑄(𝑥) < 𝜆 + 𝛿

2
}

contains 𝑁 � 𝜆𝑑−1𝛿 points in Z𝑑 . Define

𝑓 (𝑥) =
∑

𝜉 ∈C∩Z𝑑−1

𝑒2𝜋𝑖 𝜉 ·𝑥 .

It is clear that

‖ 𝑓 ‖𝐿∞ = 𝑁 while ‖ 𝑓 ‖𝐿2 =
√
𝑁.

By Bernstein’s inequality, for 𝑝 ≥ 2,

‖ 𝑓 ‖𝐿𝑝 � ‖ 𝑓 ‖𝐿∞𝜆−
𝑑
𝑝 ∼ 𝜆−

𝑑
𝑝 𝑁.

Therefore,

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 ≥ ‖ 𝑓 ‖𝐿𝑝

‖ 𝑓 ‖𝐿2
� 𝜆𝜎 (𝑝)/2√𝛿.

�

3.3. The conjecture

Based on Lemmas 3.1 and 3.2, it is reasonable to conjecture that

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � (𝜆𝛿)
(𝑑−1)

2

(
1
2−

1
𝑝

)
+ 𝜆𝜎 (𝑝)/2𝛿1/2.

The next question is: how small can 𝛿 be taken? In full generality, the limitation is

𝛿 ≥ 1
𝜆
,

as this is best-possible for rational tori; this will be the range we consider here.
We now describe the different regimes involved in the above conjecture.

If 𝑑 = 2, the conjecture can be formulated as

◦ ‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � (𝜆𝛿)
1
4−

1
2𝑝 if

{
2 ≤ 𝑝 ≤ 6 and 𝛿 > 𝜆−1

or 𝑝 ≥ 6 and 𝜆−1 < 𝛿 < 𝜆
6−𝑝
2+𝑝

.

◦ ‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆
1
2−

2
𝑝 𝛿 if 𝑝 ≥ 6 and 𝛿 > 𝜆

6−𝑝
2+𝑝 .

If 𝑑 ≥ 3, let

𝑝𝑆𝑇 =
2(𝑑 + 1)
𝑑 − 1

, 𝑝∗ =
2𝑑

𝑑 − 2
, 𝑝 =

2(𝑑 − 1)
𝑑 − 3

and define

𝑒(𝑝) = 𝑑 + 1
𝑑 − 1

·
1
𝑝 − 1

𝑝𝑆𝑇

1
𝑝 − 1

𝑝

.
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We have

𝑝𝑆𝑇 < 𝑝∗ < 𝑝.

Keeping in mind that 𝛿 > 𝜆−1, the above conjecture becomes

◦ ‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � (𝜆𝛿)
(𝑑−1)

2

(
1
2−

1
𝑝

)
if

{
2 ≤ 𝑝 ≤ 𝑝𝑆𝑇
or 𝑝𝑆𝑇 ≤ 𝑝 ≤ 𝑝∗ and 𝛿 < 𝜆𝑒 (𝑝)

;

◦ ‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2 if
{
𝑝𝑆𝑇 ≤ 𝑝 ≤ 𝑝∗ and 𝛿 > 𝜆𝑒 (𝑝)

or 𝑝 ≥ 𝑝∗
.

4. Caps containing many points

We split the spherical shell

𝑆𝜆, 𝛿 = {𝑥 ∈ R𝑑 ,
���√𝑄(𝑥) − 𝜆

��� < 𝛿}

into a collection C of almost disjoint caps 𝜃:

𝑆𝜆, 𝛿 =
⋃
𝜃 ∈C

𝜃,

where each cap is of the form

𝜃 = {𝑥 ∈ R𝑑 , |𝑥 − 𝑥𝜃 | <
√
𝜆𝛿} ∩ 𝑆𝜆, 𝛿 for some 𝑥𝜃 ∈ 𝑆𝜆, 𝛿 .

Each cap fits into a rectangular box with dimensions∼ 𝛿×
√
𝜆𝛿×· · ·×

√
𝜆𝛿. We call �𝑛𝜃 = 𝑥𝜃

| �𝑥𝜃 |2 the normal
vector to 𝜃; observe that as 𝜃 varies over caps, the normal vector �𝑛𝜃 varies over a

√
𝛿/𝜆-spaced set.

Denote 𝑁𝜃 for the number of points in Z𝑑 ∩ 𝜃. On the one hand, it is clear that 𝑁𝜃 � (
√
𝜆𝛿)𝑑−1.

On the other hand, one expects that the average cap will contain a number of points comparable to its
volume, in other words 𝑁𝜃 ∼ (

√
𝜆𝛿)𝑑−1𝛿 (provided this quantity is > 1, which occurs if 𝛿 > 𝜆−

𝑑−1
𝑑+1 ).

This leads naturally to defining the following sets, which gather caps containing comparable numbers
of points

C0 = {𝜃 ∈ C, 𝑁𝜃 < (
√
𝜆𝛿)𝑑−1𝛿}

C 𝑗 = {𝜃 ∈ C, (
√
𝜆𝛿)𝑑−1𝛿2 𝑗−1 < 𝑁𝜃 ≤ (

√
𝜆𝛿)𝑑−1𝛿2 𝑗 }, for 1 ≤ 2 𝑗 � 𝛿−1 .

Theorem 4.1. There is a constant 𝐾 > 0, depending only on d, as follows. Let 𝑘 ∈ {1, . . . , 𝑑 − 1}. If
2 𝑗 > 𝐾 and (

√
𝛿𝜆)𝑘𝛿2 𝑗 > 𝐾 , then

#C 𝑗 � (2 𝑗/𝑘𝛿)−𝑑 .

Remark 4.2. There is an integer 𝑘 ∈ {1, . . . , 𝑑 − 1} satisfying (
√
𝛿𝜆)𝑘𝛿2 𝑗 > 𝐾 whenever 𝛿 > 𝜆−

𝑑−1
𝑑+1 ,

which in practise we will assume whenever we apply the theorem above.

By summing over the caps in each C 𝑗 , we find that #(𝑆𝜆, 𝛿∩Z𝑑)  𝛿𝜆𝑑−1+
√
𝜆/𝛿

𝑑−1
, and in particular

#(𝑆𝜆, 𝛿 ∩ Z𝑑)  𝛿𝜆𝑑−1 for 𝛿 > 𝜆−
𝑑−1
𝑑+1 . This recovers the classical result in equation (1.3). As explained

in Section 1.2.2, the range 𝛿 > 𝜆−
𝑑−1
𝑑+1 has now been improved in every dimension. Thus Theorem 4.1 is

certainly suboptimal if 𝛿  𝜆−
𝑑−1
𝑑+1 .
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To further gauge the strength of this theorem, we can compare it to the trivial bounds

#C0 � (𝜆𝛿−1)
𝑑−1

2 , (4.1)

#C 𝑗 = 0 (2 𝑗 � 𝛿−1). (4.2)

If 𝛿 = 𝜆−
𝑑−1
𝑑+1 , then the theorem interpolates between these bounds. For it reduces, on the one hand, to

#C 𝑗 � (𝜆𝛿−1) 𝑑−1
2 for 2 𝑗 ∼ 1, and on the other, to #C 𝑗 � (𝛿2 𝑗 )−𝑑 for 𝛿2 𝑗 � (

√
𝜆𝛿)−1.

If 𝛿 > 𝜆−
𝑑−1
𝑑+1 , then the theorem shows that for some constant 𝐶𝑑 > 0, all but 𝐶𝑑

𝛿 (
√
𝜆𝛿)𝑑−1 % of the

caps 𝜃 satisfy 𝑁𝜃 � 𝛿(
√
𝜆𝛿)𝑑−1, and interpolates between this bound and in equation (4.2). Inspecting

the proof, we could strengthen the former bound: if 𝛿 > 𝜆−
𝑑−1
𝑑+1 , then all but 𝐶𝑑

𝛿 (
√
𝜆𝛿)𝑑−1 % of the caps 𝜃

contain a fundamental region for Z𝑑 .
If 𝛿 < 𝜆−

𝑑−1
𝑑+1 then the theorem shows that all but (𝐶 ′

𝑑

√
𝜆(
√
𝛿) 𝑑+1

𝑑−1 )% of the caps 𝜃 satisfy 𝑁𝜃 � 1,
and interpolates between this bound and in equation (4.1). Again, by inspecting the proof, we could
strengthen first part: if 𝛿 > 𝜆−

𝑑−1
𝑑+1 , then all but (𝐶 ′

𝑑

√
𝜆(
√
𝛿) 𝑑+1

𝑑−1 )% of the caps 𝜃 satisfy 𝑁𝜃 ≤ 1. In this
regime, most caps should have 𝑁𝜃 = 0.

Proof of Theorem 4.1. Let 𝜃 be any cap. Let 𝑅𝜃 be a rectangular box, centred at the origin, containing
𝜃 − 𝜃 and having dimensions ∼ 𝛿 ×

√
𝜆𝛿 × · · · ×

√
𝜆𝛿.

Define a norm | · |𝜃 on R𝑑 by

| �𝑥 |𝜃 = inf{𝑟 > 0 : �𝑥 ∈ 𝑟𝑅𝜃 },

so that 𝑅𝜃 is the unit ball in this norm, with

| · |2 �
√
𝜆𝛿 | · |𝜃 . (4.3)

Because 𝑅𝜃 is contained in a slab of the form {�𝑥 ∈ R𝑑 : �𝑛𝜃 · �𝑥 � 𝛿}, we also have

�𝑛𝜃 · �𝑥 � 𝛿 | �𝑥 |𝜃 . (4.4)

Morally, the idea of the proof is to fix the lattice generated by 𝑅𝜃 ∩Z𝑑 and count the number of caps
with a given lattice. Carrying out this programme in a literal fashion seems possible but technically
complex. We take advantage of a trick: we will construct a small integer vector �𝑣 that is orthogonal to all
the integer vectors in 𝑅𝜃 ∩ Z𝑑 and approximately perpendicular to �𝑛𝜃 , and it is this vector, rather than
the lattice itself, that we will fix. The outline of the proof is as follows: after some further definitions,
we set out some basic results from the geometry of numbers in Step 1 below; we then construct �𝑣 in
Step 2 and complete the proof in Step 3.

Define 𝑟𝜃 to be the dimension of the span (over R, say) of the vectors in 𝑅𝜃 ∩ Z𝑑 . The hypotheses of
the theorem imply that we cannot have 𝑟𝜃 = 𝑑, since then 𝑁𝜃 � 𝛿(

√
𝜆/𝛿)𝑑−1.

Step 1: We show that there is a basis �𝑥 (1) , . . . , �𝑥 (𝑑) of Z𝑑 with

𝛿(
√
𝛿𝜆)𝑑−1 ∼

𝑑∏
𝑖=1

| �𝑥 (𝑖) |−1
𝜃 , #(Z𝑑 ∩ 𝑅𝜃 ) ∼

𝑟𝜃∏
𝑖=1

| �𝑥 (𝑖) |−1
𝜃 . (4.5)

This is more or less a standard result from the geometry of numbers.
In this step only, let A be the matrix with 𝐴𝑅𝜃 = [−1, 1]𝑑 , and for 1 ≤ 𝑖 ≤ 𝑑, let 𝑀𝑖 be minimal such

that there are i linearly independent vectors �𝑥 ∈ Z𝑑 with | �𝑥 |𝜃 ≤ 𝑀𝑖 , or equivalently there are i linearly
independent vectors �𝑦 ∈ 𝐴Z𝑑 with |𝐴�𝑦 |∞ ≤ 𝑀𝑖 . In particular,

𝑀𝑟𝜃 ≤ 1 < 𝑀𝑟𝜃+1.
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By Theorem V in Section VIII.4.3 of Cassels [9], we have

𝑑∏
𝑖=1

𝑀𝑖 ∼ det 𝐴 ∼ 1
𝛿(
√
𝛿𝜆)𝑑−1

. (4.6)

Also, by Lemma 2 in Section VIII.1.2 of Cassels, there is a basis �𝑦 (1) , . . . , �𝑦 (𝑑) of 𝐴Z𝑑 such that

𝑀𝑖 ≤ |�𝑦 |∞ < 𝑀𝑖+1, �𝑦 ∈ 𝐴Z𝑑 =⇒ �𝑦 ∈ Z�𝑦 (1) + · · · + Z�𝑦 (𝑖) . (4.7)

Let �𝑧 (𝑖) be the dual basis, so that

�𝑦 = (�𝑦 · �𝑧 (1) ) �𝑦 (1) + · · · + (�𝑦 · �𝑧 (𝑑) ) �𝑦 (𝑑)

for all �𝑦 ∈ 𝐴Z𝑑 . Note that we must have 𝑀𝑖 ≤ |�𝑦 (𝑖) |∞ from the definition of 𝑀𝑖 . By the Corollary to
Theorem VIII in Section VIII.5.2 of Cassels, we may choose the �𝑦 (𝑖) such that

𝑀𝑖 ≤ |�𝑦 (𝑖) |∞ ≤ max{1, 𝑖/2}𝑀𝑖 , |�𝑧 (𝑖) | ≤ ( 1
2 )
𝑛−1(𝑛!)2/|�𝑦 (𝑖) |∞. (4.8)

We now let �𝑥 (𝑖) = 𝐴−1�𝑦 (𝑖) be our basis of Z𝑑 . We then have

| �𝑥 (𝑖) |𝜃 = | �𝑦 (𝑖) |∞ ∼ 𝑀−1
𝑖 , (4.9)

by equation (4.8). Now equations (4.9) and (4.6) together imply the first part of equation (4.5). It also
follows from equation (4.8) that for some 𝑐 > 0 depending only on d, we have

|𝑐𝑖 | ≤ 𝑐𝑀−1
𝑖 (1 ≤ 𝑖 ≤ 𝑟𝜃 ) =⇒ |𝑐1�𝑥 (1) + · · · + 𝑐𝑟𝜃 �𝑥 (𝑟𝜃 ) | ≤ 1,

and combining equation (4.7) with equation (4.8) shows that there is a constant 𝐶 > 0 depending only
on d such that

|𝑐1�𝑥 (1) + · · · + 𝑐𝑑 �𝑥 (𝑑) | ≤ 1 =⇒ |𝑐𝑖 | ≤ 𝐶𝑀−1
𝑖 (1 ≤ 𝑖 ≤ 𝑟𝜃 ), 𝑐𝑖 = 0 (𝑖 > 𝑟𝜃 ).

The last two displays yield

#(Z𝑑 ∩ 𝑅𝜃 ) = #([−1, 1]𝑑 ∩ 𝐴Z𝑑) ∼ 1∏𝑟𝜃
𝑖=1 𝑀𝑖

∼ 1∏𝑟𝜃
𝑖=1 | �𝑦 (𝑖) |∞

,

and the last part of equation (4.5) follows by equation (4.9).
Step 2: We claim that if 1 ≤ 𝑟𝜃 < 𝑑 and �𝑛𝜃 is the normal vector to 𝜃, then there is �𝑣 ∈ Z𝑑 \ {�0} such

that

|�𝑣 |2 � 𝛿−1

(
𝛿(
√
𝜆𝛿)𝑑−1

#(Z𝑑 ∩ 𝑅𝜃 )

) 1
𝑑−𝑟𝜃

,

| �𝑛𝜃 − �𝑣/|�𝑣 |2 | � (
√
𝜆𝛿)−1 |�𝑣 |2−1

(
𝛿(
√
𝜆𝛿)𝑑−1

#(Z𝑑 ∩ 𝑅𝜃 )

) 1
𝑑−𝑟𝜃

.

For the proof, let �𝑥 (𝑖) be as in Step 1. Recall the notation (�𝑣 (1) | · · · |�𝑣 (𝑘) ) for the matrix with columns
�𝑣 (𝑖) . We let

�𝑣 = �𝑥 (1) ∧ · · · ∧ �𝑥 (𝑑−1) .

By equation (4.4), we have �����𝑛𝑇𝜃 ( �𝑥 (1)

|�𝑥 (1) |𝜃

���� · · · ���� �𝑥 (𝑑−1)

|�𝑥 (𝑑−1) |𝜃

)����
∞
� 𝛿. (4.10)
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Now every �𝑥 (𝑖) satisfies | �𝑥 (1) |∞
| �𝑥 (1) |𝜃

�
√
𝜆𝛿 by equation (4.3). Therefore(

�𝑥 (1)

|�𝑥 (1) |𝜃

���� · · · ���� �𝑥 (𝑑−1)

|�𝑥 (𝑑−1) |𝜃

)
= 𝑈

(
diag(𝑑1, . . . , 𝑑𝑑−1)

𝑂1×(𝑑−1)

)
𝑉, (4.11)

where O is a matrix of zeroes, 𝑈,𝑉 are orthogonal, and 𝑑𝑖 �
√
𝜆𝛿. It follows that

|�𝑣 |2 ∼
𝑑−1∏
𝑖=1

𝑑𝑖 | �𝑥 (𝑖) |𝜃 � 𝛿−1 | �𝑥 (𝑑) |−1
𝜃 . (4.12)

Now equations (4.10) and (4.11) together yield�����𝑛𝑇𝜃𝑈���
1
. . .

1
0

���
����
∞
� 𝛿(min

𝑖
|𝑑𝑖 |)−1.

For any vector with | �𝑚 |2 = 1, we have

|𝑚𝑑 | − 1 �
���� �𝑚𝑇 ���

1
. . .

1
0

���
����2
2
,

and so

min{| �𝑚 − �𝑒 (𝑑) |2, | �𝑚 + �𝑒 (𝑑) |2} �
���� �𝑚𝑇 ���

1
. . .

1
0

���
����
∞
.

It follows that for some choice of sign,

| �𝑛𝜃 ±𝑈 �𝑒 (𝑑) |2 = |𝑈𝑇 �𝑛𝜃 ± �𝑒 (𝑑) |2 � 𝛿(min
𝑖

|𝑑𝑖 |)−1.

By our definition �𝑣 = �𝑥 (1) ∧ · · · ∧ �𝑥 (𝑑−1) , we have

�𝑣𝑇
(

�𝑥 (1)

|�𝑥 (1) |𝜃

���� · · · ���� �𝑥 (𝑑−1)

|�𝑥 (𝑑−1) |𝜃

)
= (0, . . . , 0),

so that 𝑈 �𝑒 (𝑑) = �𝑣/|�𝑣 |2. It follows that, possibly after replacing �𝑣 with −�𝑣 if necessary, we have

| �𝑛𝜃 − �𝑣/|�𝑣 |2 | �
𝛿(
√
𝜆𝛿)𝑑−2 ∏𝑑−1

𝑖=1 | �𝑥 (𝑖) |𝜃
|�𝑣 |2

∼ 1
√
𝜆𝛿 | �𝑥 (𝑑) |𝜃 |�𝑣 |2

, (4.13)

where the last part follows by Step 1. It remains to observe that, again by Step 1, we have

| �𝑥 (𝑑) |𝑑−𝑟𝜃𝜃 ≥
𝑑∏

𝑖=𝑟𝜃+1
| �𝑥 (𝑖) |𝜃 ∼

#(Z𝑑 ∩ 𝑅𝜃 )
𝛿(
√
𝛿𝜆)𝑑−1

,

and the result follows from this bound together with equations (4.12) and (4.13).
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Step 3: By Step 2, the number of 𝜃 ∈ C with 𝑟𝜃 = 𝑟 and #(Z𝑑 ∩ 𝑅𝜃 ) ∼ 2𝐽 𝛿(
√
𝛿𝜆)𝑑−1 is

�
∑

�𝑣∈Z𝑑\{�0}
| �𝑣 |2≤𝛿−12−𝐽/(𝑑−𝑟 )

(
1 + 𝛿−1 |�𝑣 |2−12−𝐽/(𝑑−𝑟 )

)𝑑−1
�

(
𝛿2𝐽/(𝑑−𝑟 )

)−𝑑
.

Let 2 𝑗 be as in the theorem, and suppose 𝜃 ∈ C 𝑗 . Then

#(Z𝑑 ∩ 𝑅𝜃 ) ≥ 𝑁𝜃 > 2 𝑗−1𝛿(
√
𝜆𝛿)𝑑−1,

and it follows that #(Z𝑑 ∩ 𝑅𝜃 ) > 1
2𝐾 (

√
𝛿𝜆)𝑑−𝑘−1.

Recall that 𝑅𝜃 ∩ Z𝑑 is contained in a box of size ∼ 𝛿 ×
√
𝜆𝛿 × · · · ×

√
𝜆𝛿, intersected with a linear

space of dimension 𝑟𝜃 < 𝑑, and so

#(Z𝑑 ∩ 𝑅𝜃 ) 
√
𝛿𝜆
𝑟𝜃
.

Hence 𝑟𝜃 ≥ 𝑑−𝑘 since K may be taken arbitrarily large. So the number of possible 𝜃 is � (𝛿2 𝑗/𝑘 )−𝑑 . �

5. Application of the ℓ2 decoupling theorem

We decompose 𝑃𝜆, 𝛿 into projectors 𝑃
𝑗
𝜆, 𝛿 , which are supported on the union of caps in C 𝑗 . To be more

specific, we choose a partition of unity (𝜒𝜃 ) adapted to the caps defined in the previous section:

Supp 𝜒𝜃 ⊂ 𝜃 and
∑
𝜃

𝜒𝜃 = 1 on 𝑆𝜆, 𝛿 ,

and let

𝜒 𝑗 =
∑
𝜃 ∈C 𝑗

𝜒𝜃

𝑃
𝑗
𝜆, 𝛿 = 𝑃𝜆, 𝛿 𝜒 𝑗 (𝐷)

(where 𝜒 𝑗 (𝐷) is the Fourier multiplier with symbol 𝜒 𝑗 (𝑘)). Using the ℓ2 decoupling theorem of
Bourgain and Demeter [7], we can estimate the operator norm of 𝑃 𝑗𝜆, 𝛿 from 𝐿2 to 𝐿 𝑝:

Proposition 5.1. For any Q, for any 𝜖 > 0, for 𝑝 ≥ 𝑝𝑆𝑇 , and for 𝛿 > 𝜆−1,

‖𝑃 𝑗𝜆, 𝛿 ‖𝐿2→𝐿𝑝 �𝜖 𝜆
𝜎 (𝑝)

2 +𝜖 𝛿1/22 𝑗
(

1
2−

1
𝑝

)
.

Proof. For simplicity in the notation, we only consider the case 𝑄 = Id. Let 𝑎𝑘 be an arbitrary sequence
in ℓ2(Z𝑑) or, in other words, the Fourier series associated to an arbitrary function in 𝐿2 (T𝑑). Changing
variables to 𝑋 = 𝜆𝑥 and 𝐾 = 𝑘/𝜆, and taking advantage of the periodicity of Fourier series, we get����� ∑

𝑘∈Z𝑑
𝜒 𝑗 (𝑘)𝜒

(
|𝑘 | − 𝜆

𝛿

)
𝑎𝑘𝑒

2𝜋𝑖𝑘 ·𝑥

�����
𝐿𝑝 (T𝑑)

�
(
𝛿

𝜆

)𝑑/𝑝������𝜙
(
𝛿𝑋

𝜆

) ∑
𝐾 ∈Z𝑑/𝜆

𝜒 𝑗 (𝜆𝐾)𝜒
(
|𝐾 | − 1
(𝛿/𝜆)

)
𝑎𝜆𝐾 𝑒2𝜋𝑖𝐾 ·𝑋

������
𝐿𝑝 (R𝑑)

,

where the cutoff function 𝜙 can be chosen to have compactly supported Fourier transform. As a result,
the Fourier transform of the function on the right-hand side is supported on a 𝛿/𝜆-neighborhood of
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S𝑑−1. Using the ℓ2 decoupling theorem of Bourgain and Demeter 1, this is

· · · �𝜖
(
𝛿

𝜆

) 𝑑
𝑝−

𝑑−1
4 + 𝑑+1

2𝑝 −𝜖 ����
∑
𝜃 ∈C 𝑗

������𝜙
(
𝛿𝑋

𝜆

) ∑
𝐾 ∈Z𝑑/𝜆

𝜒𝜃 (𝜆𝐾)𝜒
(
|𝐾 | − 1
(𝛿/𝜆)

)
𝑎𝜆𝐾 𝑒2𝜋𝑖𝐾 ·𝑋

������
2

𝐿𝑝 (R𝑑)

����
1/2

(notice that 𝜃/𝜆 has dimensions ∼ 𝛿
𝜆 × 𝛿1/2

𝜆1/2 · · · × 𝛿1/2

𝜆1/2 ). At this point, we use the inequality

if 𝑝 ≥ 2, ‖ 𝑓 ‖𝐿𝑝 (R𝑑) � ‖ 𝑓 ‖𝐿2 | Supp �̂� |
1
2−

1
𝑝 ,

which follows by applying successively the Hausdorff-Young and Hölder inequalities, and finally the
Plancherel equality. We use this inequality for 𝑓 = 𝜙

(
𝛿𝑋
𝜆

) ∑
𝐾 𝜒

(
|𝐾 |−1
(𝛿/𝜆)

)
𝜒𝜃 (𝜆𝐾)𝑎𝜆𝐾 𝑒2𝜋𝑖𝐾 ·𝑋 . Since

𝜃 ∈ C 𝑗 , its Fourier transform is supported on the union of at most 𝑂 ((𝛿𝜆) 𝑑−1
2 𝛿2 𝑗 ) balls of radius

𝑂 (𝛿/𝜆), giving | Supp �̂� | � 𝛿
3𝑑+1

2 𝜆−
𝑑+1

2 2 𝑗 . Coming back to the quantity we want to bound, it is

�
(
𝛿

𝜆

) 𝑑
𝑝−

𝑑−1
4 + 𝑑+1

2𝑝 −𝜖 (
𝛿

3𝑑+1
2 𝜆−

𝑑+1
2 2 𝑗

) 1
2−

1
𝑝

����
∑
𝜃 ∈C 𝑗

������𝜙
(
𝛿𝑋

𝜆

) ∑
𝐾 ∈Z𝑑/𝜆

𝜒𝜃 (𝜆𝐾)𝜒
(
|𝐾 | − 1
(𝛿/𝜆)

)
𝑎𝜆𝐾 𝑒2𝜋𝑖𝐾 ·𝑋

������
2

𝐿2 (R𝑑)

����
1/2

�
(
𝛿

𝜆

) 𝑑
𝑝−

𝑑−1
4 + 𝑑+1

2𝑝 −𝜖 (
𝛿

3𝑑+1
2 𝜆−

𝑑+1
2 2 𝑗

) 1
2−

1
𝑝

������𝜙
(
𝛿𝑋

𝜆

) ∑
𝐾 ∈Z𝑑/𝜆

𝜒 𝑗 (𝜆𝐾)𝜒
(
|𝐾 | − 1
(𝛿/𝜆)

)
𝑎𝜆𝐾 𝑒2𝜋𝑖𝐾 ·𝑋

������
𝐿2 (R𝑑)

,

where the last inequality is a consequence of almost orthogonality. Finally, undoing the change of
variables, this is

�
(
𝛿

𝜆

) 𝑑
𝑝 −

𝑑
2 −

𝑑−1
4 + 𝑑+1

2𝑝 −𝜖 (
𝛿

3𝑑+1
2 𝜆−

𝑑+1
2 2 𝑗

) 1
2−

1
𝑝

����� ∑
𝑘∈Z𝑑

𝜒 𝑗 (𝑘)𝜒
(
|𝑘 | − 𝜆

𝛿

)
𝑎𝑘𝑒

2𝜋𝑖𝑘 ·𝑥

�����
𝐿2 (T𝑑)

≤
(
𝛿

𝜆

)−𝜖
𝜆𝜎 (𝑝)/2𝛿1/22 𝑗

(
1
2−

1
𝑝

) ����� ∑
𝑘∈Z𝑑

𝑎𝑘𝑒
2𝜋𝑖𝑘 ·𝑥

�����
𝐿2 (T𝑑)

.

�

6. Proof of the main theorems

6.1. The case 𝑝 < 𝑝𝑆𝑇 : proof of Theorem 1.1

Proposition 5.1 gives the bounds

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝𝑆𝑇 ≤
∞∑
𝑗=0

‖𝑃 𝑗𝜆, 𝛿 ‖𝐿2→𝐿𝑝𝑆𝑇 � 𝜆𝜖 (𝛿𝜆)
𝑑−1

2(𝑑+1) .

Interpolating with the trivial 𝐿2 → 𝐿2 bound, this gives the conjecture for 2 ≤ 𝑝 ≤ 𝑝𝑆𝑇 .

1The theorem, as stated in that paper, does not immediately apply to our setup. The following procedure can be applied: first,
restrict to a coordinate patch on the sphere. Second, split our caps 𝜃 into a finite number of subcollections S 𝑗 , with the following
property: for each j, there exists a covering P 𝑗 as in Bourgain-Demeter such that any 𝜃 ∈ S 𝑗 is contained in one element in P 𝑗 .
Third, sum over j to obtain the result. Alternatively, one can resort to the version in Tao [26], Exercise 26.
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6.2. An exact but involved statement

The theorems in the introduction are deduced from the following result. The first bound, equation (6.2),
in this next theorem is precisely the result of interpolating between the bounds obtained above. The last
part of the theorem allows for the concise result in Theorem 1.2 but, as we will see in the proof, it is
slightly weaker.

Theorem 6.1. Assume 𝑝𝑆𝑇 ≤ 𝑝 ≤ ∞, and write

𝛼(𝑝) = 1 − 2
𝑝
, 𝛽(𝑝) = 1 − 𝑝𝑆𝑇

𝑝
. (6.1)

Assume further that 𝛿 > 𝜆−
𝑑−1
𝑑+1 . Then

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2 + 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)

𝑑
4 𝛽 (𝑝)

∑
1≤𝑘≤𝑑−1

(𝛿𝜆) (𝑘−1)/2 𝛿<1

(𝛿𝜆)−
𝑘
4 𝛼(𝑝) (𝜆/𝛿)

−1
2𝑘

𝑑
2 𝛽 (𝑝)

+ 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)𝛿−

𝑑
2 𝛽 (𝑝) ,

(6.2)

and it follows that

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2 + 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)𝛿−

𝑑
2 𝛽 (𝑝)

+ 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)

𝑑
4 𝛽 (𝑝)𝑒−

1
2

√
𝑑𝛼(𝑝)𝛽 (𝑝) log(𝛿𝜆) log(𝜆/𝛿) ,

where the final term may be omitted if 𝛿 > 𝜆
𝛼(𝑝)−𝑑𝛽 (𝑝)
𝛼(𝑝)+𝑑𝛽 (𝑝) .

In order to prove the theorem, we need a brief lemma.

Lemma 6.2. We introduce the notation 𝑘0 for the optimal index in Theorem 4.1 given 𝛿, 𝜆, 2 𝑗 . Namely,
assume that 𝛿 > 𝜆−

𝑑−1
𝑑+1 . Then let 𝑘0 = 𝑘0 (𝛿, 𝜆, 2 𝑗 ) be the smallest 𝑘 ∈ Z such that

(𝛿𝜆)𝑘/2𝛿2 𝑗 > 𝐾.

If 1 < 2 𝑗 < 𝐾𝛿−1, then 𝑘0 (𝛿, 𝜆, 2 𝑗 ) ∈ {1, . . . , 𝑑 − 1}.

Proof. Let 1 < 2 𝑗 < 𝐾𝛿−1, then

𝐾 (𝛿𝜆)−𝑘/2𝛿−1 < 2 𝑗 ≤ 𝐾 (𝛿𝜆) (1−𝑘)/2𝛿−1 ⇐⇒ 𝑘0 = 𝑘,

and so it suffices to observe that as 𝛿 > 𝜆−
𝑑−1
𝑑+1 , we have (𝛿𝜆)−(𝑑−1)/2𝛿−1 < 1. �

Proof of Theorem 6.1. Throughout the proof, 𝑘0 will be as in Lemma 6.2. We begin by bounding 𝑃0
𝜆, 𝛿 ,

by interpolating between

‖𝑃0
𝜆, 𝛿 ‖𝐿2→𝐿𝑝𝑆𝑇 � 𝜆

𝑑−1
2(𝑑+1) 𝛿1/2,

which is a consequence of Proposition 5.1, and

‖𝑃0
𝜆, 𝛿 ‖𝐿2→𝐿∞ �

���� ⋃
𝜃 ∈C0

Z𝑑 ∩ 𝜃

����1/2
≤

√
|C| (

√
𝜆𝛿)𝑑−1𝛿 � (𝜆𝑑−1𝛿)1/2.

Interpolating between these two estimates gives

‖𝑃0
𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2.
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If 2 𝑗 ≥ 𝐾𝛿−1, then we can assume C 𝑗 = ∅ by equation (4.2), by increasing the size of the constant K
if necessary. It follows that 𝑃 𝑗𝜆, 𝛿 = 0 for such j.

Next let 1 < 2 𝑗 < 𝐾𝛿−1. Now, on the one hand, Proposition 5.1 gives

‖𝑃 𝑗𝜆, 𝛿 ‖𝐿2→𝐿𝑝𝑆𝑇 � 𝜆
1

𝑝𝑆𝑇 𝛿1/22
𝑗

𝑑+1 .

On the other hand, bounding the number of points in ∪C 𝑗 𝜃 through Lemma 6.2 and Theorem 4.1 gives

‖𝑃 𝑗𝜆, 𝛿 ‖𝐿2→𝐿∞ �
(
#C 𝑗 (𝜆𝛿)

𝑑−1
2 𝛿2 𝑗

)1/2
�

(
(2 𝑗/𝑘0𝛿)−𝑑 (𝜆𝛿)

𝑑−1
2 𝛿2 𝑗

)1/2
.

Interpolating between the last two bounds gives

‖𝑃 𝑗𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆
𝑑−1

4 − 𝑑−1
2𝑝 𝛿

𝑑+1
4 − 𝑑+1

2𝑝 2
𝑗
2 −

𝑗
𝑝 (2 𝑗/𝑘0𝛿)−

𝑑
2 +

𝑑 (𝑑+1)
𝑑−1

1
𝑝

= (𝜆𝛿)
𝑑
4 (1− 2

𝑝 ) (𝜆/𝛿)−
1
4 (1−

2
𝑝 )2

𝑗
2 (1−

2
𝑝 ) (2 𝑗/𝑘0𝛿)−

𝑑
2 (1− 𝑝𝑆𝑇

𝑝 ) .

From this point on it will simplify matters to write 𝛼(𝑝) = 1 − 2
𝑝 , 𝛽(𝑝) = 1 − 𝑝𝑆𝑇

𝑝 as in equation (6.1).
On summing over j, we obtain

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2 + (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)

∑
1<2 𝑗<𝐾 𝛿−1

2
𝑗
2 𝛼(𝑝) (2 𝑗/𝑘0𝛿)−

𝑑
2 𝛽 (𝑝) . (6.3)

Recall that 𝑘0 is minimal such that (𝛿𝜆)−𝑘/2𝛿−1 < 2 𝑗 , and that 1 ≤ 𝑘0 ≤ 𝑑 − 1 by Lemma 6.2. Hence

∑
1<2 𝑗<𝐾 𝛿−1

2
𝑗
2 𝛼(𝑝) (2 𝑗/𝑘0𝛿)−

𝑑
2 𝛽 (𝑝) ≤

∑
1≤𝑘≤𝑑−1

∑
𝑗∈N

(𝛿𝜆)−𝑘/2 𝛿−1<2 𝑗

(𝛿𝜆) (1−𝑘)/2 𝛿−1≥2 𝑗

1<2 𝑗<𝐾 𝛿−1

2
𝑗
2 𝛼(𝑝) (2 𝑗/𝑘𝛿)−

𝑑
2 𝛽 (𝑝)

�𝜖
∑

1≤𝑘≤𝑑−1
𝜆𝜖

∑
𝑗∈R

2 𝑗=max{1, (𝛿𝜆)−ℓ/2 𝛿−1 }
ℓ∈{𝑘−1,𝑘 }

2
𝑗
2 𝛼(𝑝) (2 𝑗/𝑘𝛿)−

𝑑
2 𝛽 (𝑝) ,

and exchanging order of summation, this is

= 𝜆𝜖
∑
𝑗∈R

2 𝑗=max{1, (𝛿𝜆)−ℓ/2 𝛿−1 }
0≤ℓ≤𝑑−1

∑
𝑘∈{ℓ,ℓ+1}
1≤𝑘≤𝑑−1

2
𝑗
2 𝛼(𝑝) (2 𝑗/𝑘𝛿)−

𝑑
2 𝛽 (𝑝) .
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On recalling that 𝑝 ≥ 𝑝𝑆𝑇 and so 𝛽(𝑝) ≥ 0, we see that when ℓ ≤ 𝑑 − 2, we can obtain an upper bound
for the inner sum in the last line above by substituting 𝑘 = ℓ + 1. Thus∑

1<2 𝑗<𝐾 𝛿−1

2
𝑗
2 𝛼(𝑝) (2 𝑗/𝑘0𝛿)−

𝑑
2 𝛽 (𝑝) �𝜖 𝜆𝜖

∑
𝑗∈R

2 𝑗=max{1, (𝛿𝜆)−ℓ/2 𝛿−1 }
0≤ℓ≤𝑑−2

2
𝑗
2 𝛼(𝑝) (2

𝑗
ℓ+1 𝛿)−

𝑑
2 𝛽 (𝑝)

+ 𝜆𝜖 max
{
1, (𝛿𝜆)−(𝑑−1)/2𝛿−1

} 1
2 𝛼(𝑝)−

𝑑
2(𝑑−1) 𝛽 (𝑝)

𝛿−
𝑑
2 𝛽 (𝑝)

= 𝜆𝜖
∑

1≤𝑘≤𝑑−1
(𝛿𝜆) (𝑘−1)/2 𝛿<1

(
(𝛿𝜆)−(𝑘−1)/2𝛿−1

) 1
2 𝛼(𝑝)−

𝑑
2𝑘 𝛽 (𝑝)

𝛿−
𝑑
2 𝛽 (𝑝)

+ 𝜆𝜖 𝛿−
𝑑
2 𝛽 (𝑝) ,

where to deal with the maximum we use the assumption 𝛿 > 𝜆−
𝑑−1
𝑑+1 from the theorem. Upon writing

(𝛿𝜆)−(𝑘−1)/2𝛿−1 = (𝛿𝜆)−𝑘/2(𝜆/𝛿)1/2, it now follows by equation (6.3) that

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2+

𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)

∑
1≤𝑘≤𝑑−1

(𝛿𝜆) (𝑘−1)/2 𝛿<1

(𝛿𝜆)−
𝑘
2

(
1
2 𝛼(𝑝)−

𝑑
2𝑘 𝛽 (𝑝)

)
− 𝑑

4 𝛽 (𝑝) (𝜆/𝛿)
1
2

(
1
2 𝛼(𝑝)−

𝑑
2𝑘 𝛽 (𝑝)

)
+ 𝑑

4 𝛽 (𝑝)

+ 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)𝛿−

𝑑
2 𝛽 (𝑝) .

This proves equation (6.2), and we now proceed to deduce the last part of the theorem. If 𝐴, 𝐵 > 0, then

exp(−𝑘𝐴 − 𝐵/𝑘) ≤ exp(−2
√
𝐴𝐵),

and moreover ∑
1≤𝑘≤𝑑−1
𝑘<𝑘1

exp(−𝑘𝐴 − 𝐵/𝑘) � exp(−𝑘1𝐴 − 𝐵/𝑘1) if 𝑘1 ≤
√
𝐵/𝐴.

We apply this with

4𝐴 = 𝛼(𝑝) log(𝛿𝜆), 4𝐵 = 𝑑𝛽(𝑝) log(𝜆/𝛿) 𝑘1 = log(𝜆/𝛿)/log(𝜆𝛿),

so that (𝛿𝜆) (𝑘1−1)/2𝛿 = 1. Noting that

exp(−𝑘1𝐴 − 𝐵/𝑘1) = exp
(
− 1

4𝛼(𝑝) log(𝜆/𝛿) − 𝑑
4 𝛽(𝑝) log(𝛿𝜆)

)
= 𝛿−

𝑑
2 𝛽 (𝑝) (𝜆/𝛿)−

𝑑
4 𝛽 (𝑝)−

1
4 𝛼(𝑝) ,

we deduce from equation (6.2) that

‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 � 𝜆𝜎 (𝑝)/2𝛿1/2 + 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)𝛿−

𝑑
2 𝛽 (𝑝)

+ 𝜆𝜖 (𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)

𝑑
4 𝛽 (𝑝)𝑒−

1
2

√
𝑑𝛼(𝑝)𝛽 (𝑝) log(𝛿𝜆) log(𝜆/𝛿) ,

where the last term is omitted if 𝑘1 <
√
𝐵/𝐴. This is the remaining bound in Theorem 6.1. �
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6.3. From Theorem 6.1 to Theorems 1.2 and 1.4

Proof of Theorem 1.2. We use throughout the proof the notation 𝛼(𝑝) = 1 − 2
𝑝 , 𝛽(𝑝) = 1 − 𝑝𝑆𝑇

𝑝 from

equation (6.1). As in the theorem, we assume 𝛿 > 𝜆
𝛼(𝑝)−𝑑𝛽 (𝑝)
𝛼(𝑝)+𝑑𝛽 (𝑝) . We claim that 𝛿 ≥ 𝜆−

𝑑−1
𝑑+1 , that is to say

1 − 𝛽(𝑝)𝛼(𝑝)−1𝑑

1 − 𝛽(𝑝)𝛼(𝑝)−1𝑑
>

1 − 𝑑

1 + 𝑑
,

which is true since 𝛽(𝑝)𝛼(𝑝)−1 < 1 and 1−𝑑𝑥
1+𝑑𝑥 is an increasing function of x.

The last bound in Theorem 6.1 will now agree with Conjecture 1.4 if

(𝜆𝛿)
𝑑
4 𝛼(𝑝) (𝜆/𝛿)−

1
4 𝛼(𝑝)𝛿−

𝑑
2 𝛽 (𝑝) ≤ 𝜆

𝑑−1
2 − 𝑑

𝑝 𝛿1/2. (6.4)

Grouping all the terms with a 1/𝑝 and without a 1/𝑝 in their exponent, the bound in equation (6.4) is
exactly

𝜆
𝑑+1
2𝑝 𝛿

(𝑑+1)2
2(𝑑−1) 𝑝 ≤ 𝜆

𝑑−1
4 𝛿

𝑑+1
4 ,

which is to say (𝜆𝛿 𝑑+1
𝑑−1 )− 𝑑−1

4 𝛽 (𝑝) ≤ 1, and this is true since 𝛿 ≥ 𝜆−
𝑑−1
𝑑+1 and 𝑝 > 𝑝𝑆𝑇 . �

Proof of Theorem 1.4. As in the last proof, we use throughout the notation 𝛼(𝑝) = 1− 2
𝑝 , 𝛽(𝑝) = 1− 𝑝𝑆𝑇

𝑝

from equation (6.1), noting that since 𝑑 = 3, we have 𝑝𝑆𝑇 = 4 and 𝛽(𝑝) = 1 − 4
𝑝 . If 𝑑 = 3, the first

bound in Theorem 6.1 agrees with the conjecture when

(𝜆𝛿)
3
4 𝛼(𝑝) (𝜆/𝛿)

3
4 𝛽 (𝑝) (𝛿𝜆)−

1
4 𝛼(𝑝) (𝜆/𝛿)−

3
4 𝛽 (𝑝)

+ (𝜆𝛿)
3
4 𝛼(𝑝) (𝜆/𝛿)

3
4 𝛽 (𝑝) (𝛿𝜆)−

2
4 𝛼(𝑝) (𝜆/𝛿)−

3
8 𝛽 (𝑝) ≤ (𝜆𝛿)

3
4 𝛼(𝑝) (𝜆/𝛿)

1
4−

3
2𝑝 + (𝜆𝛿)

1
2 𝛼(𝑝) ,

that is

(𝜆𝛿)𝛼(𝑝) + (𝜆𝛿)
1
4 𝛼(𝑝) (𝜆/𝛿)

3
8 𝛽 (𝑝) ≤ (𝜆𝛿)

3
4 𝛼(𝑝) (𝜆/𝛿)

1
4−

3
2𝑝 + (𝜆𝛿)

1
2 𝛼(𝑝) .

The first term on the left-hand side is clearly bounded by the last term. The second term on the left-hand
side is bounded by the right-hand side if

(𝜆/𝛿)
1
8 ≤ (𝜆𝛿)

1
2 𝛼(𝑝) or (𝜆/𝛿)

3
8 𝛽 (𝑝) ≤ (𝜆𝛿)

1
4 𝛼(𝑝) .

This is 𝛿 ≥ min{𝜆−
3𝑝−8
5𝑝−8 𝜆−

8−𝑝
5𝑝−16 }, and recalling our standing assumption 𝛿 ≥ 𝜆−(𝑑−1)/(𝑑+1) from Theorem

6.1, this gives the result. �

A. The Euclidean case

We prove here the estimate in equation (1.2) and show its optimality; the arguments are classical and
elementary, but we give them here for ease of reference.

First notice the scaling relation ‖𝑃𝜆, 𝛿 ‖𝐿2→𝐿𝑝 = 𝜆
𝑑
2 −

𝑑
𝑝 ‖𝑃1, 𝛿/𝜆‖𝐿2→𝐿𝑝 , which reduces matters to

𝜆 = 1: it suffices to prove that

‖𝑃1, 𝛿 ‖𝐿2→𝐿𝑝 �

{
𝛿1/2 if 𝑝 ≥ 𝑝𝑆𝑇

𝛿
(𝑑+1)

2

(
1
2−

1
𝑝

)
if 2 ≤ 𝑝 ≤ 𝑝𝑆𝑇

.
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This is achieved by interpolating between the following points:

◦ 𝑝 = 2, which is trivial by Plancherel’s theorem;
◦ 𝑝 = ∞, which follows from the Hausdorff-Young and Cauchy-Schwarz inequality, as well as

Plancherel’s theorem:

‖𝑃1, 𝛿 𝑓 ‖𝐿∞ �

����𝜒(
|𝜉 | − 1

𝛿

)
�̂�

����
𝐿1
�

����𝜒(
|𝜉 | − 1

𝛿

)����
𝐿2
‖ �̂� ‖𝐿2 � 𝛿1/2‖ 𝑓 ‖𝐿2 ;

◦ 𝑝 = 𝑝𝑆𝑇 , for which we will use the formula

𝑃1, 𝛿 𝑓 =
∫ ∞

0
𝜒

(
𝑟 − 1
𝛿

) ∫
R𝑑

�̂� (𝜉)𝑒𝑖𝑥 ·𝜉 𝑑𝜎𝑟 (𝜉) 𝑑𝑟,

where 𝑑𝜎𝑟 is the surface measure on the sphere 𝑆𝑟 with center at the origin and radius r. We can
then apply successively the Minkowski inequality, the Stein-Tomas theorem [27, 25], the
Cauchy-Schwarz inequality and the Plancherel theorem to obtain

‖𝑃1, 𝛿 𝑓 ‖𝐿𝑝𝑆𝑇 (R𝑑) ≤
∫ ∞

0
𝜒

(
𝑟 − 1
𝛿

)����∫ �̂� (𝜉)𝑒𝑖𝑥 ·𝜉 𝑑𝜎𝑟 (𝜉)
����
𝐿𝑝𝑆𝑇 (R𝑑)

𝑑𝑟

≤
∫ ∞

0
𝜒

(
𝑟 − 1
𝛿

)
‖ �̂� ‖𝐿2 (𝑆𝑟 ) 𝑑𝑟 � 𝛿1/2‖ 𝑓 ‖𝐿2 (R𝑑) .

Finally, there remains to check optimality. It follows from two examples:

◦ The Knapp example is a function �̂� , which is a cutoff function adapted to a rectangular box of size
∼ 𝛿 in one direction, and ∼ 𝛿1/2 in 𝑑 − 1 directions; this box is furthermore chosen to be contained
in 𝐵(0, 𝑟 + 𝛿) \ 𝐵(0, 𝑟 − 𝛿). Such a function is easily seen to achieve

‖𝑃1, 𝛿 𝑓 ‖𝐿𝑝

‖ 𝑓 ‖𝐿2
∼ 𝛿

(𝑑+1)
2

(
1
2−

1
𝑝

)
.

◦ The radial example is �̂�(𝜉) = 𝜒
(
|𝜉 |−𝜆
𝛿

)
. Using the fact that the Fourier transform of the surface

measure on the unit sphere decays like |𝜉 |− 𝑑−1
2 as |𝜉 | → ∞, one can check that

‖𝑃1, 𝛿 𝑓 ‖𝐿𝑝

‖ 𝑓 ‖𝐿2
∼ 𝛿1/2 for 𝑝 >

2𝑑
𝑑 − 1

.
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