
/ . Austral. Math. Soc. (Series A) 28 (1979), 335-345

INERTIAL SUBALGEBRAS OF ALGEBRAS POSSESSING
FINITE AUTOMORPHISM GROUPS

NICHOLAS S. FORD

(Received 15 February 1978; revised 6 March 1979)

Communicated by R. Lidl

Abstract

Let R be a commutative ring with identity, and let A be a finitely generated .R-algebra with
Jacobson radical N and center C. An /?-inertial subalgebra of A is a 7?-separable subalgebra B
with the property that B+N=A. Suppose A is separable over C and possesses a finite group G
of /{-automorphisms whose restriction to C is faithful with fixed ring R. If R is an inertial sub-
algebra of C, necessary and sufficient conditions for the existence of an i?-inertial subalgebra of
A are found when the order of G is a unit in R. Under these conditions, an /{-inertial subalgebra
B of A is characterized as being the fixed subring of a group of /{-automorphisms of A. Moreover,
A ~ B®R C. Analogous results are obtained when C has an /{-inertial subalgebra S=> R.

1980 Mathematics subject classification (Amer. Math. Soc): primary 16 A 48, 16 A 16; secondary
16 A 74, 13H99.

1. Introduction

All rings are assumed to be associative and to possess an identity element. By an
.R-algebra A over a commutative ring R (an .R-algebra A) we mean a ring A together
with a homomorphism from R into Z(A), the center of A. When we say A is a
finitely generated or projective ii-algebra, we mean it is finitely generated or
projective as an i?-module. The Jacobson radical of an 7?-algebra A will be denoted
by rad A=N, while the Jacobson radical of its center C will be denoted by
rad C = n. If A is separable over its center C, it will be termed a central separable
C-algebra. We note that in this case N — nA (DeMeyer and Ingraham (1971),
p. 79). Finally, an 7?-inertial subalgebra B of an 7?-algebra A is an inseparable
subalgebra B of A with the property that B+N = A. If R+N = A, then R is an
i?-inertial subalgebra of A. In this instance we will state simply that R is an inertial
subalgebra of A.
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The Wedderburn Principal Theorem asserts, in this terminology, that if R is a
field and A is a finitely generated i?-algebra such that A/N is separable over R,
then A contains an J?-inertial subalgebra. Azumaya (1951) generalized this result
to finitely generated algebras over local Hensel rings. Ingraham (1966) defined a
(G, /?)-algebra C to be a finitely generated, faithful, and commutative i?-algebra
possessing a finite group G of i?-algebra automorphisms with fixed subring CG = R.
He found necessary and sufficient conditions for the existence of i?-inertial sub-
algebras of connected (G, i?)-algebras. When an /?-inertial subalgebra exists, he
showed that it is unique and, moreover, a Galois (DeMeyer and Ingraham (1971))
extension of R.

We will say that a finitely generated R-algebra is normal with group G if it pos-
sesses a finite group G of jR-algebra automorphisms which restricts faithfully to the
center C of A in such a way that C is a (G, i?)-algebra. If, moreover, A is separable
over C, then A will be said to be a normal central separable /^-algebra with center C
and group G. (We note that this terminology is somewhat at variance with that of
Eilenberg and MacLane (1948), Pareigis (1964) and Childs (1964). In these papers
G is a set, not necessarily a group, of i?-automorphisms of A which restricts faith-
fully to a group of ^-automorphisms of C with respect to which C is a Galois
extension of R.) Let C be a (G, 7?)-algebra, and suppose B is a central separable R-
algebra with the action of G on A = B0R C induced by g(b®c) = b®g{c), for
each gsG. If the order of G is a unit in R, we will show (Proposition 2.2) that
there exists an element xeG such that Y,geG9(x) = 1- In this case, AG=B by
Lemma 1.4, Childs and DeMeyer (1967). Further, if R is assumed to be an inertial
subalgebra of C, then C/n = R and A/nA = B. Therefore B+nA = A, so that B
is an /?-inertial subalgebra of A.

EXAMPLE 1.1. Let B be a central separable R-algebra and let C be a (G, R)-algebra.
Then A = B®R C is a normal central separable R-algebra with center C and group G.
If the order ofG is a unit in R, then AG = B. If R is an inertial subalgebra of C, then
B is an R-inertial subalgebra of A.

The object of this paper is to show that under suitable conditions, Example 1.1
is characteristic. Namely, suppose A is a normal central separable .R-algebra, and
that R is an inertial subalgebra of C. We find necessary and sufficient conditions
for A to have an i?-inertial subalgebra B. Under these conditions, A =; B®RC
so that B may be considered to be the fixed subring of an extension of G from C
to A. We obtain analogous results when C has an i?-inertial subalgebra Sr>R.

2. Preliminaries

This section considers some of the general properties of trace algebras and
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inertial subalgebras which apply to algebras separable over their centers. The
following result is useful for showing that certain subalgebras of such an algebra
add with its Jacobson radical to give the entire algebra.

PROPOSITION 2.1. Suppose A is a finitely generated R-algebra which is separable
over its center C. If B is an R-inertial subalgebra of A with center S, then
A=BCc*B®sC as C-algebras.

PROOF. There is a natural C-algebra homomorphism, \i: B®SC-* A induced
by n(b®c)-*b-c. Since A is central separable over C, it follows that N = nA.
Consequently, a straightforward application of the original Nakayama lemma
yields A=BC. Thus \i is onto. Let U be the two-sided ideal of C given by
C/ = CnKer / / . Since B®SC is central separable over C, it follows that
Ker/i = U{B®SC). Thus for xeU, we have 0 = n(x) = n(x-1) =x-/x(l) = x.
Therefore U = (0), whence n is an isomorphism.

Suppose A is finitely generated .R-algebra which possesses a finite group G of
.ft-automorphisms. The fixed subring of A under G will be denoted by Aa. Let U
be a (two-sided) ideal of A. If H is any subgroup of G, then the inertia subgroup
of H relative to U is defined by J(H, U) = {geH\ g(x)~xe U for all xeA}. We
denote J(G, U) simply by Jv. Since iV = radG4) is invariant under G, the inertia
subgroup JN will be a normal subgroup of G. We denote JN by / . For any sub-
group H of G, the trace map tH : A-*AH is defined by tH{a) = £geHg(a). We
denote tG simply by t.

PROPOSITION 2.2. Let A be a finitely generated, faithful R-algebra which possesses
a finite group G of R-automorphisms. Then tj(A) =AJ if and only if the order of J
is a unit of R.

PROOF. Suppose that n = \J\ is a unit in R. Then tj{\) =Y,g^d^ =n'
tj(A) is an ideal of AJ, it follows that tj(A) = A1.

Conversely, suppose that tj(A)=AJ. Then there exists an xeA such that
tj(x) — l. It follows that l-nx = tJ(x)-nx = Ygej(9(x)~x) *s a n element of N.
Suppose that n is not a unit in R. Then, since nxemA # A for some maximal
ideal m of R, 1 must be an element of every maximal left ideal of A containing
mA, a contradiction.

In Section 3, the order of / will always be assumed a unit of the inertial sub-
algebra of the center. So we will be able to identify A1 with tj(A). One important
reason for this requirement is to be able to apply the next proposition.

PROPOSITION 2.3. Suppose A is a finitely generated R-algebra which possesses a
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finite group G of R-automorphisms. If U is an ideal of A such that the order of Jv

is a unit in R, then tJv(A)+ U — A.

PROOF. If n denotes \JV\, then for each a e ^ w e have

The conclusion follows immediately.

COROLLARY 2.4. Let A be a finitely generated R-algebra which is central separable
over C, and suppose A possesses a finite group G of R-automorphisms. If the order
ofj is a unit in R, then A = Ctj(A).

PROOF. Since A is central separable over C,N = nA. Therefore C- tj(A)+nA = A
by Proposition 2.3. The result now follows by Nakayama's lemma.

3. Inertial subalgebras of normal central separable algebras

In this section we consider the problems of existence and uniqueness of inertial
subalgebras of normal central separable algebras. First, to avoid confusion, we
note the following definitions. A commutative (but not necessarily Noetherian)
ring R is said to be semilocal if it does not contain infinitely many distinct
maximal ideals. If R contains a unique maximal ideal it is said to be local. If R
possesses no idempotents except 0 and 1 it is said to be connected. We now begin
by citing the following lemma, which is Proposition 2.1 of Ford (1976).

LEMMA 3.1. If A is a finitely generated R-algebra with R-inertial subalgebra B,
then every central idempotent of A is contained in B.

THEOREM 3.2. Let R be a semilocal ring, and let A be a normal central separable
R-algebra with center C and group G. Suppose R is an inertial subalgebra of C, and
that C/n is R-projective. IfJnA = G and the order ofG is a unit in R, then t(A) = A°
is an R-inertial subalgebra of A such that t(A)@N = A, t(A)®RCca A, and

PROOF. That a finitely generated, commutative and semi-local ring may be
decomposed into a finite direct sum of connected semilocal rings is well known.
Thus we may write C = © £"= t Ch where each C, is connected. This in turn
induces a decomposition on the C-algebra A as A = © Yj= I <̂> where each A{ is
central separable over Ct. Moreover, in view of Lemma 3.1, R may also be
decomposed as R = © YJ=i Rh where each Rt is connected, semi-local and an
inertial subalgebra of C(.
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Let e be the primitive idempotent of C,, so that C, = Ce. Define

Ge = {geG\g(e) = e}.

It follows from Corollary 2.4 that Ge restricts faithfully from Ae to Ce. Moreover,
Ce is in fact a (Ge, /?e)-algebra by Ingraham (1966), p. 84, so that Ae is a normal
central separable /?e-algebra with center Ce and group Ge. It is not hard to verify
that all the conditions satisfied by A and G are also satisfied by Ae and Ge. Thus
we may assume, without loss of generality, that C (and therefore R) is connected.

We reason as follows to show that under these conditions R must be a field and
C must be local. By assumption R is an inertial subalgebra of C, so that R+n = C.
Since C/n is /?-projective, it is a consequence of Lemma 2.3, Ingraham (1966),
that Rnn = (0). Hence R =* C/n. This, together with the fact that C is semilocal
implies that R is a finite direct sum of fields. Inasmuch as R is also connected,
there can be only one such summand. A similar line of reasoning shows that C
must be local. In view of this, A/N must be free and of finite rank over C/n.

Moreover, by Proposition 2.3, each of the basis elements for A/N over C/n has
a representative in t(A). Since A is projective over the local ring C, a familiar
argument (Bourbaki (1962), p. 43) allows us to conclude that A is in fact free (of
finite rank) over C; and, moreover, that a basis {*;}!"= 1 can be chosen for A over C
such that each xtet(A). Let uet(A)nN. Since N = nA, we can represent
u = Ysnixt> where ntsn. We note that u and each xt is invariant under G.
Necessarily then, each nfeCc = /?. Since Rnn=(0), each n{ = 0 so that
r(y4) n N = (0). Therefore,

and

t(A\ m t(A)/(t(A) nN)^ (t(A)+N)/N <a A/N ^ A<^c C/n ~ A®cR.

Now A is separable over C, so that t{A) ~ A®CR is separable over R. Thus
r(;4) is an i?-inertial subalgebra of A. The center of t(A), Z{t(A)), must therefore
be separable over R. That Z(t(A))+n = C follows from Theorem 1.2, Ford (1976),
whence Z(t(AJ) is an .R-inertial subalgebra of C. However, by Proposition 2.6,
Ingraham (1966), the i?-inertial subalgebra of a finitely generated and commutative
U-algebra is unique. Thus Z(t(A)) = R. It is now immediate by Proposition 2.1
that t(A)®R C^A.

Suppose that R is an arbitrary commutative ring and that A is a finitely generated
.R-algebra the center of which is a (G, /?)-algebra C. The group G will be said to
be identified with a group of /?-automorphisms of A provided A possesses a group
of /^-automorphisms whose faithful restriction to C is G. We will now investigate
conditions which guarantee the existence of /?-inertial subalgebras of A. We
begin with a lemma which shows how the maximal ideals of R interact with t(A).
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LEMMA 3.3. Let A be a normal central separable R-algebra with center C and
group G, and such that R is an inertial subalgebra of C. If the order of G is a unit
in R, then for each maximal ideal m of R, t(A) n mA = mt(A).

PROOF. Let us denote t(A) by B. Since A = CB by Corollary 2.4, it follows
that nA =n2J. Thus each xenA can be represented as x = YJfiwi, where n,en
and w, e B. It follows that t(x) = £ g(x) = £ g ( £ n, wt) = £ *(«,) w, e (rad i?) • B. If
also xeZ?, then x = t(x)/\ G\e(radR)B. Consequently, B n nA = (rad /?) • B.
One next observes that mA=mBC = mB(n+R) = mB+mBn = mB+nB. Sup-
pose yeBn mA. Then y = u+v, where ueW?, and t>en5. Hence

t; = j» -«eBn nA = (rad R)Bc=mB.

Therefore y e mB, so that 5 n mA =

THEOREM 3.4. Let A be a finitely generated R-algebra which is separable over its
center C and with R an inertial subalgebra of C. Suppose C possesses a finite G of
automorphisms whose order is a unit in R, and such that CG = R. Then a necessary
and sufficient condition for the existence of an R-inertial subalgebra of A is that G
be identifiable as a group of automorphisms of A with the property that JnA = G.

PROOF. Necessity. Suppose B is an i?-inertial subalgebra of A. Arguing as in
Theorem 3.1, we find that Z(E) = R. Therefore by Proposition 2.1,

Accordingly each element g e G induces an /{-automorphism of A via

g(b®c)=b®g(c).

Since the order of G is a unit in R, there exists an element xeC such that t(x) = 1.
Consequently, t(A) = A° = Bhy Lemma 1.4, Childs and DeMeyer (1967). Hence
for each gsG and each aeA,

g(a) -a = g(£ be) - (£ be) = £ b(g(c) -c)enA.

Therefore JnA = G.
Sufficiency. Assuming that JnA = G, we will show that t(A) is an .R-inertial sub-

algebra of A. That t(A)+N = A follows from Proposition 2.3. The separability of
t(A) over R will follow by a well-known result of Endo-Watanabe (1967) if it can
be shown that t(A)/mt(A) is /?/»?-separable for every maximal ideal m of R.

Let m be an arbitrary maximal ideal of R. Each g e G induces, in the natural
way, an /?/^-automorphism of C/mC. Moreover, the invariance of mC under G
implies that JmC is a normal subgroup of G, so that G\JmC acts faithfully as a
group of ^/^-automorphisms of C/^tC. Let us denote t(A) by B. It follows from
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Corollary 2.4 that A = BC. For each jsJmC and each WE A, we then have

j(a)-a =j(Zbc)-(£bc) =

This implies that J,nA = JmC, so that G/JmA can be identified as a group of R\m-
automorphisms of Aim A. We denote the group G/JmA by Gm.

Let {<Tk}
s
k=1 be a full set of coset representatives for JmA in G, so that

Suppose ae(A/mA)Gm is arbitrary. There exists an element xeA/mA such that
a = t(x) = YjgzG d(x)- Thus a =b+mA, where b = YJ= i ff«00- Denote the order
ofJ^A by«. Then

n • b - t(x) = n t °,{x) - I g(x) = nt <r,« - I I hat(x)
/ = 1 86G 1 = 1 i = l heJmA

= E t (#)-^))e^.
It follows that a =t(x)/n+mAe(B+mA)/mA. We have therefore shown that
(AlmAf™ = (B+*«.4)/^.4. Similarly, one can show that (C/mC)0"1 = R/<m.

We now show that A/mA fulfills the conditions of Theorem 3.2. It has already
been established that A/mA is a normal central separable algebra with group Gm

and center C/mC. Since R+m = C, there is exactly one maximal ideal of C lying
over mC, whence C/mC is local. Moreover,

Rlm+xa.d{Clm) = R/<m+(n+mC)lmC = C/mC,

which shows that R\m is an inertial subalgebra of C/mC. Finally, that
JIaa{A/mA) = Gm =/rad(c/».c) follows easily from the fact that Aa+N=A. Therefore
by Theorem 3.2, I(a/?uA) =(B+mA)\mA is an /?/»«-inertial subalgebra of A\mA.

We are now in a position to show that B = t{A) is an i?-inertial subalgebra of A.
By Lemma 3.3, Br\mA=mB. Hence B/mB = B/(BnmA) ~(B+mA)/mA, so
that B/mB is .R/»2-separable. Clearly B = t(A) is finitely generated over R. There-
fore by Endo-Watanabe (1967), it follows that B is separable over R. It having
been previously demonstrated that B+N = A, the fact that B is an .R-inertial sub-
algebra of A is now established.

It is to be noted, in view of Proposition 2.1 and Example 1.1, that under these
conditions an /?-inertial subalgebra B of a normal central separable /?-algebra may
be characterized as being the fixed subalgebra AG* of A by some extension G* of G
from C to A. This does not, however, imply either that the inertial subalgebras are
unique or even that they are isomorphic. In fact, quite the contrary is the case as
we are about to show. For, although Ingraham (1965) has demonstrated that
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inertial subalgebras of commutative algebras are unique, and Malcev (1942) has
proved that inertial subalgebras of algebras over fields must be unique up to an
inner automorphism, it has been noted that this phenomenon does not occur
generally. Indeed an extensive class of algebras which possess nonisomorphic
inertial subalgebras has been exhibited, Ford (1976). We proceed to show that
there are members of this class which satisfy all the conditions of Theorem 3.4.
Let R — Z(5) (the localization of the rational integers at the prime ideal generated
by 5), and let C = R+5Ri, where i2 — — 1. We observe that R is an inertial sub-
algebra of C. Define G to be the group of order 2 generated by g(r+si) =r—si,
for all r,seR. We observe that CG = R, and that the order of G is a unit in R.
Define Q(C) to be the generalized quaternion algebra over C. That is,

Q{C) = C®Cx®Cp@CaP,

where a2 = - 1 = ft2, and a)? = floe. Extend G to Q(C) by defining g(pi) = a and
g(fi) = p. Denote the 2x2 matrices over R by M2(R). A straightforward calculation
along the lines of p. 18, Dickson (1960) yields the following result.

EXAMPLE 3.5. Q(C) is a normal central separable R-algebra with center C and
group G, and which possesses R-inertial subalgebras which are not isomorphic. One
pair of nonisomorphic R-inertial subalgebras is Q(R) and M2(R).

The following theorem leads to results which tie in with the outer Galois theory
of DeMeyer (1965). In his paper, DeMeyer considers /^-algebras which are normal
central separable /J-algebras with center C a Galois extension of R. In contrast,
we assume that C contains an i?-inertial subalgebra S, and that Jn =JnA with the
order of this subgroup a unit in S. When /„ =JnA, we denote the subgroup simply
by/.

THEOREM 3.6. Let A be a normal central separable R-algebra with center C and
group G, and suppose C is connected and contains an R-inertial subalgebra S. If
Jn =JnA and the order of this group is a unit in S, then tj(A) =* tG(A)<g)R S is an R-
inertial subalgebra of A. Moreover, to(A) is a central separable R-algebra such that

PROOF. Since C is connected, it follows from Theorem 2.10, Ingraham (1966)
that CJ = S and, moreover, that S is a Galois extension of R with group G/J.
Consequently, tj(A) is an .R-inertial subalgebra of A by Theorem 3.4. Now tj(A)
and S1®; tG(A) are both Galois over tG(A) in the sense of DeMeyer (1965). There-
fore tj(A) c± S®RtG(A) by Lemma 1.4, Childs and DeMeyer (1967). From this,
and the fact that S is faithfully flat over R, it follows that ta(A) is separable over R.
The isomorphisms

A a tj(A)®s C a tG(A)®R S®s C a tG(A)®R C
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are consequences of Proposition 2.1. These in turn imply that Z{tG{A))^CG = R.

COROLLARY 3.7. There exists a one-one correspondence between the R-separable
subalgebras B of A which contain tG{A), and the ̂ R-separable subalgebras K of the
center C of A given by

K • K.tG{A)
Z{B) < B

PROOF. tG{A) is a central separable /^-algebra with the property that

by Theorem 3.6. Using this decomposition of A, the correspondence is established
in the same way as it is in Lemma 2, DeMeyer (1965).

This theorem does not lead to a Galois correspondence between separable sub-
algebras of A and subgroups of G as it did in DeMeyer (1965), since this corres-
pondence depends upon C being a Galois extension of R. In our case, that
assumption forces C = R, by uniqueness of inertial subalgebras in commutative
algebras (Ingraham (1966)). However, since S is Galois over R with group G/J,
we can apply DeMeyer's theorem directly to obtain the following correspondence.

COROLLARY 3.8. The subalgebra tj{A) is a Galois extension of tG{A), and there
exists a one-one correspondence {the usual one) between the R-separable subalgebras
of tj{A) which contain tG{A) and the subgroups of G/J.

A number of results in Ingraham (1966) relating to inertial subalgebras of (G, R)-
algebras can now be extended to the setting of normal central separable algebras.

THEOREM 3.9. Let R be a connected ring, and let A be a normal central separable
R-algebra with group G and center C. Suppose the order of G is a unit in R, and that
C possesses an R-inertial subalgebra S. IfJm =JmAfor all maximal ideals m of C,
then A possesses an R-inertial subalgebra B.

PROOF. Since A is a normal .R-algebra, its center C is a (G, #)-algebra. In view
of the fact that R is connected, it follows from Ingraham (1966), Lemma 2.14,
that C may be decomposed as a finite direct sum C = © £ Ce, where each Ce is
connected. Furthermore, defining Ge = {g e G | g{e) = e] as in Theorem 3.2, we find
that Ce will be a {Ge, J?e)-algebra with Se as its /te-inertial subalgebra.

Each maximal ideal of C will exclude exactly one of the primitive idempotents
of C. Thus the maximal ideals of Ce have the form me, where m is a maximal
ideal of C which excludes e. Let Jme denote J{Ge, me), and let / m denote J{G, m).
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For geJmA, we have g(e) — ee m. Since e$ m it follows that g(e) =e, so that
JmA<=JmAe. Thus we have the following chain of inclusions:
Jme^Jm^JmA^JmAe^Jme- Therefore Jme in fact equals JmAe. It follows easily
that Jne = JnAe. We now show that Ge restricts faithfully from Ae to Ce, the final
step in showing Ae to be a normal central ite-algebra with group Ge and center
Ce. Let g e Ge, and suppose g(ce)=ce for all ceC. Necessarily g eJne, so that g eJnAe.
We note that Ae — Ce-tJnAe(Ae) by Corollary 2.4. Thus for arbitrary aeeAe, it
follows that g{ae) = g ( £ ce • Ae) = ^ g(ce) -gi}.e) = £ ce• Xe = ae. Whence (7e

restricts faithfully to Ce. It now follows from Theorem 3.6 that Be = tJne(Ae) is
an /te-inertial subalgebra of Ae. Therefore B = (B^Be will be an /?-inertial sub-
algebra of A.

COROLLARY 3.10. Let R be a connected ring, and let Abe a normal central separ-
able R-algebra with group G and center C. Suppose that the order of G is a unit in
R, and that C/n is R-separable. lfJm' =JmAfor all maximal ideals m' and m of C
which exclude the same primitive idempotent, then A possesses an R-inertial sub-
algebra.

PROOF. C possesses an /?-inertial subalgebra by Ingraham (1966), Theorem 2.15.
Therefore A will possess an J?-inertial subalgebra by Theorem 3.9.

It is still a matter for conjecture as to whether the conclusion of Theorem 3.4
and the subsequent corollaries still hold without the hypothesis that the order of
G is a unit. In all examples considered by the author thus far, in particular those
of the type of Example 1.1, the answer is in the affirmative.
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