Some quadratic reverses of the continuous triangle inequality for the Bochner integral of vector-valued functions in Hilbert spaces are given. Applications for complex-valued functions are provided as well.

1. INTRODUCTION

Let \(f : [a, b] \to \mathbb{K}, \mathbb{K} = \mathbb{C} \text{ or } \mathbb{R} \) be a Lebesgue integrable function. The following inequality is the continuous version of the triangle inequality

\[
\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx
\]

and plays a fundamental role in Mathematical Analysis and its applications.

It seems, see [6, p. 492], that the first reverse inequality for (1.1) was obtained by Karamata in his book from 1949, [4]:

\[
\cos \theta \int_a^b |f(x)| \, dx \leq \left| \int_a^b f(x) \, dx \right|
\]

provided

\[
|\arg f(x)| \leq \theta, \quad x \in [a, b],
\]

where \(\theta \) is a given angle in \((0, \pi/2)\).

This integral inequality is the continuous version of a reverse inequality for the generalised triangle inequality

\[
\cos \theta \sum_{i=1}^n |z_i| \leq \left| \sum_{i=1}^n z_i \right|
\]

provided

\[
a - \theta \leq \arg(z_i) \leq a + \theta, \quad \text{for } i \in \{1, \ldots, n\},
\]
where \(a \in \mathbb{R} \) and \(\theta \in (0, \pi/2) \), which, as pointed out in [6, p. 492], was first discovered by Petrovich in 1917, [7], and, subsequently rediscovered by other authors, including Karamata [4, p. 300–301], Wilf [8], and in an equivalent form by Marden [5].

The first to consider the problem for sums in the more general case of Hilbert and Banach spaces, were Diaz and Metcalf [1].

In our previous work [2], we pointed out some continuous versions of Diaz and Metcalf results providing reverses of the generalised triangle inequality in Hilbert spaces. We mention here some results from [2] which may be compared with the new ones obtained in Sections 2 and 3 below.

We recall that \(f \in L([a, b]; H) \), the space of Bochner integrable functions defined on \([a, b]\) and with values in the Hilbert space \(H \), if and only if the function \(f : [a, b] \rightarrow H \) is Bochner measurable on \([a, b]\) and \(\|f\| \) is Lebesgue integrable on \([a, b]\) (see for instance [9, pp. 132 et seq.]).

Theorem 1. If \(f \in L([a, b]; H) \) and there exists a constant \(K \geq 1 \) and a vector \(e \in H, \|e\| = 1 \) such that

\[
\|f(t)\| \leq K \Re \langle f(t), e \rangle \quad \text{for almost all } t \in [a, b],
\]

then we have the inequality:

\[
\int_a^b \|f(t)\| \, dt \leq K \left(\int_a^b f(t) \, dt \right).
\]

The case of equality holds in (1.5) if and only if

\[
\int_a^b f(t) \, dt = \frac{1}{K} \left(\int_a^b \|f(t)\| \, dt \right) e.
\]

As particular cases of interest that may be applied in practice, we note the following corollaries established in [2].

Corollary 1. Let \(e \) be a unit vector in the Hilbert space \((H; \langle \cdot, \cdot \rangle), \rho \in (0, 1)\) and \(f \in L([a, b]; H) \) so that

\[
\|f(t) - e\| \leq \rho \quad \text{for almost every } t \in [a, b].
\]

Then we have the inequality

\[
\sqrt{1 - \rho^2} \int_a^b \|f(t)\| \, dt \leq \left\| \int_a^b f(t) \, dt \right\|,
\]

with equality if and only if

\[
\int_a^b f(t) \, dt = \sqrt{1 - \rho^2} \left(\int_a^b \|f(t)\| \, dt \right) \cdot e.
\]
COROLLARY 2. Let \(e \) be a unit vector in \(H \) and \(M \geq m > 0 \). If \(f \in L([a, b]; H) \) is such that
\[
\Re \langle Me - f(t), f(t) - me \rangle \geq 0
\]
or, equivalently,
\[
\|f(t) - \frac{M + m}{2} e\| \leq \frac{1}{2}(M - m)
\]
for almost every \(t \in [a, b] \), then we have the inequality
\[
\frac{2\sqrt{mM}}{M + m} \int_a^b \|f(t)\| \, dt \leq \left\| \int_a^b f(t) \, dt \right\|
\]
or, equivalently
\[
0 \leq \int_a^b \|f(t)\| \, dt - \left\| \int_a^b f(t) \, dt \right\| \leq \frac{(\sqrt{M} - \sqrt{m})^2}{M + m} \left\| \int_a^b f(t) \, dt \right\|.
\]
The equality holds in (1.12) (or in the second part of (1.13)) if and only if
\[
\int_a^b f(t) \, dt = \frac{2\sqrt{mM}}{M + m} \left(\int_a^b \|f(t)\| \, dt \right) e.
\]

The case of additive reverse inequalities for the continuous triangle inequality has been considered in [3].

We recall here the following general result.

THEOREM 2. If \(f \in L([a, b]; H) \) is such that there exists a vector \(e \in H \), \(\|e\| = 1 \) and \(k : [a, b] \to [0, \infty) \) a Lebesgue integrable function such that
\[
\|f(t)\| - \Re \langle f(t), e \rangle \leq k(t)
\]
for almost every \(t \in [a, b] \), then we have the inequality:
\[
(0 \leq) \int_a^b \|f(t)\| \, dt - \left\| \int_a^b f(t) \, dt \right\| \leq \int_a^b k(t) \, dt.
\]
The equality holds in (1.15) if and only if
\[
\int_a^b \|f(t)\| \, dt \geq \int_a^b k(t) \, dt
\]
and
\[
\int_a^b f(t) \, dt = \left(\int_a^b \|f(t)\| \, dt - \int_a^b k(t) \, dt \right) e.
\]
This general result has some particular cases of interest that may be easily applied [3].

Corollary 3. If \(f \in L([a, b]; H) \) is such that there exists a vector \(e \in H \), \(\|e\| = 1 \) and \(\rho \in (0, 1) \) such that

\[
\|f(t) - e\| \leq \rho \quad \text{for almost every } t \in [a, b],
\]

then

\[
0 \leq \int_a^b \|f(t)\| \, dt - \left\| \int_a^b f(t) \, dt \right\|
\leq \frac{\rho^2}{\sqrt{1 - \rho^2}(1 + \sqrt{1 - \rho^2})} \Re \left< \int_a^b f(t) \, dt, e \right>.
\]

Corollary 4. If \(f \in L([a, b]; H) \) is such that there exists a vector \(e \in H \), \(\|e\| = 1 \) and \(M \geq m > 0 \) such that either

\[
\Re \left< Me - f(t), f(t) - me \right> \geq 0
\]

or, equivalently,

\[
\left\| f(t) - \frac{M + m}{2} e \right\| \leq \frac{1}{2} (M - m)
\]

for almost every \(t \in [a, b] \), then

\[
0 \leq \int_a^b \|f(t)\| \, dt - \left\| \int_a^b f(t) \, dt \right\|
\leq \frac{(\sqrt{M} - \sqrt{m})^2}{2\sqrt{mM}} \Re \left< \int_a^b f(t) \, dt, e \right>.
\]

Corollary 5. If \(f \in L([a, b]; H) \) and \(r \in L_2([a, b]) \), \(e \in H \), \(\|e\| = 1 \) are such that

\[
\|f(t) - e\| \leq r(t) \quad \text{for almost every } t \in [a, b],
\]

then

\[
(0 \leq) \int_a^b \|f(t)\| \, dt - \left\| \int_a^b f(t) \, dt \right\| \leq \frac{1}{2} \int_a^b r^2(t) \, dt.
\]

The main aim of this paper is to point out some quadratic reverses for the continuous triangle inequality, namely, upper bounds for the nonnegative difference

\[
\left(\int_a^b \|f(t)\| \, dt \right)^2 - \left\| \int_a^b f(t) \, dt \right\|^2
\]

under various assumptions on the functions \(f \in L([a, b]; H) \). Some related results are also pointed out. Applications for complex-valued functions are provided as well.
2. Quadratic Reverses of the Triangle Inequality

The following lemma holds.

Lemma 1. Let \(f \in L([a,b]; H) \) be such that there exists a function \(k : \Delta \subset \mathbb{R}^2 \rightarrow \mathbb{R} \), \(\Delta := \{(t,s) \mid a \leq t \leq s \leq b\} \) with the property that \(k \in L(\Delta) \) and

\[
\|f(t)\| \|f(s)\| - \text{Re} \langle f(t), f(s) \rangle \leq k(t, s),
\]

for almost every \((t, s) \in \Delta\). Then we have the following quadratic reverse of the continuous triangle inequality:

\[
\left(\int_a^b \|f(t)\| \, dt \right)^2 \leq \left\| \int_a^b f(t) \, dt \right\|^2 + 2 \int_\Delta k(t, s) \, dt \, ds.
\]

The case of equality holds in (2.2) if and only if it holds in (2.1) for almost every \((t, s) \in \Delta\).

Proof: We observe that the following identity holds

\[
\left(\int_a^b \|f(t)\| \, dt \right)^2 = \int_a^b \int_a^b \|f(t)\| \|f(s)\| \, dt \, ds - \left\langle \int_a^b f(t) \, dt, \int_a^b f(s) \, ds \right\rangle
\]

\[
= \int_a^b \int_a^b \|f(t)\| \|f(s)\| \, dt \, ds - \int_a^b \int_a^b \text{Re} \langle f(t), f(s) \rangle \, dt \, ds
\]

\[
= \int_a^b \int_a^b \left[\|f(t)\| \|f(s)\| - \text{Re} \langle f(t), f(s) \rangle \right] \, dt \, ds := I.
\]

Now, observe that for any \((t, s) \in [a,b] \times [a,b]\), we have

\[
\|f(t)\| \|f(s)\| - \text{Re} \langle f(t), f(s) \rangle = \|f(s)\| \|f(t)\| - \text{Re} \langle f(s), f(t) \rangle
\]

and thus

\[
I = 2 \int_\Delta \left[\|f(t)\| \|f(s)\| - \text{Re} \langle f(t), f(s) \rangle \right] \, dt \, ds.
\]

Using the assumption (2.1), we deduce

\[
\int_\Delta \left[\|f(t)\| \|f(s)\| - \text{Re} \langle f(t), f(s) \rangle \right] \, dt \, ds \leq \int_\Delta k(t, s) \, dt \, ds,
\]

and, by the identities (2.3) and (2.4), we deduce the desired inequality (2.2).

The case of equality is obvious and we omit the details.

Remark 1. From (2.2) one may deduce a coarser inequality that can be useful in some applications. It is as follows:

\[
(0 \leq) \int_a^b \|f(t)\| \, dt - \left\| \int_a^b f(t) \, dt \right\| \leq \sqrt{2} \left(\int_\Delta k(t, s) \, dt \, ds \right)^{1/2}.
\]
Remark 2. If the condition (2.1) is replaced with the following refinement of the Schwarz inequality

(2.5) \(0 \leq \langle k(t, s) \rangle \leq \|f(t)\|\|f(s)\| - \text{Re} \langle f(t), f(s) \rangle \)

for almost every \((t, s) \in \Delta\), then the following refinement of the quadratic triangle inequality is valid

(2.6) \(\left(\int_t^b \|f(t)\| \, dt \right)^2 \geq \left(\int_t^b k(t, s) \, dt \right)^2 + 2 \int_t^b k(t, s) \, dt \, ds \)

The equality holds in (2.6) if and only if the case of equality holds in (2.5) for almost every \((t, s) \in \Delta\).

The following result holds.

Theorem 3. Let \(f \in L([a, b]; H) \) be such that there exists \(M \geq 1 \geq m \geq 0 \) such that either

(2.7) \(\text{Re} \langle Mf(s) - f(t), f(t) - mf(s) \rangle \geq 0 \) for almost every \((t, s) \in \Delta\),
or, equivalently,

(2.8) \(\|f(t) - \frac{M + m}{2} f(s)\| \leq \frac{1}{2} (M - m) \|f(s)\| \) for almost every \((t, s) \in \Delta\).

Then we have the inequality:

(2.9) \(\left(\int_a^b \|f(t)\| \, dt \right)^2 \leq \left(\int_a^b \|f(t)\| \, dt \right)^2 + \frac{1}{2} \cdot (M - m)^2 \int_a^b (s - a) \|f(s)\|^2 \, ds. \)

The case of equality holds in (2.9) if and only if

(2.10) \(\|f(t)\|\|f(s)\| - \text{Re} \langle f(t), f(s) \rangle = \frac{1}{4} \cdot \frac{(M - m)^2}{M + m} \|f(s)\|^2 \)

for almost every \((t, s) \in \Delta\).

Proof: Firstly, observe that, in an inner product space \((H; \langle \cdot, \cdot \rangle)\) and for \(x, z, \) \(Z \in H \), the following statements are equivalent

(i) \(\text{Re} \langle Z - x, x - z \rangle \geq 0 \) and

(ii) \(\|x - (Z + z)/2\| \leq \|Z - z\|/2. \)

This shows that (2.7) and (2.8) are obviously equivalent.

Now, taking the square in (2.8), we get

\[\|f(t)\|^2 + \left(\frac{M + m}{2} \right)^2 \|f(s)\|^2 \leq 2 \text{Re} \left(f(t), \frac{M + m}{2} f(s) \right) + \frac{1}{4} (M - m)^2 \|f(s)\|^2, \]
for almost every \((t, s) \in \Delta\), and obviously, since
\[
2\left(\frac{M + m}{2}\right)\|f(t)\|\|f(s)\| \leq \|f(t)\|^2 + \left(\frac{M + m}{2}\right)^2\|f(s)\|^2,
\]
we deduce that
\[
2\left(\frac{M + m}{2}\right)\|f(t)\|\|f(s)\| \leq 2\Re\left(\langle f(t), \frac{M + m}{2}f(s) \rangle + \frac{1}{4}(M - m)^2\|f(s)\|^2,
\]
giving the much simpler inequality:
\[
(2.11) \quad \|f(t)\|\|f(s)\| - \Re\langle f(t), f(s) \rangle \leq \frac{1}{4} \cdot \frac{(M - m)^2}{M + m} \|f(s)\|^2
\]
for almost every \((t, s) \in \Delta\).

Applying Lemma 1 for \(k(t, s) := \frac{1}{4} \cdot \frac{(M - m)^2}{M + m}\|f(s)\|^2\), we deduce
\[
(2.12) \quad \left(\int_a^b \|f(t)\| \, dt\right)^2 \leq \left(\int_a^b f(t) \, dt\right)^2 + \frac{1}{2} \cdot \frac{(M - m)^2}{M + m} \int_{\Delta} \|f(s)\|^2 \, ds
\]
with equality if and only if (2.11) holds for almost every \((t, s) \in \Delta\).

Since
\[
\int_{\Delta} \|f(s)\|^2 \, ds = \int^b_a \left(\int^b_a \|f(s)\|^2 \, dt\right) \, ds = \int^b_a (s - a)\|f(s)\|^2 \, ds,
\]
then by (2.12) we deduce the desired result (2.9).

Another result which is similar to the one above is incorporated in the following theorem.

Theorem 4. With the assumptions of Theorem 3, we have
\[
(2.13) \quad \left(\int_a^b \|f(t)\| \, dt\right)^2 - \left(\int_a^b f(t) \, dt\right)^2 \leq \frac{(\sqrt{M} - \sqrt{m})^2}{2\sqrt{MM}} \left(\int_a^b f(t) \, dt\right)^2
\]
or, equivalently,
\[
(2.14) \quad \int_a^b \|f(t)\| \, dt \leq \left(\frac{M + m}{2\sqrt{MM}}\right)^{1/2}\left(\int_a^b f(t) \, dt\right).
\]
The case of equality holds in (2.13) or (2.14) if and only if
\[
(2.15) \quad \|f(t)\|\|f(s)\| = \frac{M + m}{2\sqrt{MM}} \Re\langle f(t), f(s) \rangle,
\]
for almost every \((t, s) \in \Delta\).
PROOF: From (2.7), we deduce
\[\|f(t)\|^2 + Mm\|f(s)\|^2 \leq (M + m) \text{Re} \langle f(t), f(s) \rangle \]
for almost every \((t, s) \in \Delta\). Dividing by \(\sqrt{Mm} > 0\), we deduce
\[\frac{\|f(t)\|^2}{\sqrt{Mm}} + \sqrt{Mm}\|f(s)\|^2 \leq \frac{M + m}{\sqrt{Mm}} \text{Re} \langle f(t), f(s) \rangle \]
and, obviously, since
\[2\|f(t)\|\|f(s)\| \leq \frac{\|f(t)\|^2}{\sqrt{Mm}} + \sqrt{Mm}\|f(s)\|^2, \]
hence
\[\|f(t)\|\|f(s)\| \leq \frac{M + m}{\sqrt{Mm}} \text{Re} \langle f(t), f(s) \rangle \]
for almost every \((t, s) \in \Delta\), giving
\[\|f(t)\|\|f(s)\| - \text{Re} \langle f(t), f(s) \rangle \leq \frac{(\sqrt{M} - \sqrt{m})^2}{2\sqrt{Mm}} \text{Re} \langle f(t), f(s) \rangle. \]
Applying Lemma 1 for \(k(t, s) := (\sqrt{M} - \sqrt{m})^2/\sqrt{Mm} \text{Re} \langle f(t), f(s) \rangle\), we deduce
\[(\int_a^b \|f(t)\| dt)^2 \leq \int_a^b \|f(t)\| dt^2 + \frac{(\sqrt{M} - \sqrt{m})^2}{2\sqrt{Mm}} \text{Re} \langle f(t), f(s) \rangle. \]
On the other hand, since
\[\text{Re} \langle f(t), f(s) \rangle = \text{Re} \langle f(s), f(t) \rangle \quad \text{for any } (t, s) \in [a, b]^2, \]
hence
\[\iint_\Delta \text{Re} \langle f(t), f(s) \rangle dt \, ds = \frac{1}{2} \int_a^b \int_a^b \text{Re} \langle f(t), f(s) \rangle dt \, ds \]
\[= \frac{1}{2} \text{Re} \left\langle \int_a^b f(t) dt, \int_a^b f(st) ds \right\rangle \]
\[= \frac{1}{2} \left\| \int_a^b f(t) dt \right\|^2 \]
and thus, from (2.16), we get (2.13).

The equivalence between (2.13) and (2.14) is obvious and we omit the details. \(\square\)
3. Related Results

The following result also holds.

Theorem 5. Let \(f \in L([a, b]; H) \) and \(\gamma, \Gamma \in \mathbb{R} \) be such that either

\[\text{Re} \left(\Gamma f(s) - f(t), f(t) - \gamma f(s) \right) \geq 0 \text{ for almost every } (t, s) \in \Delta, \]

or, equivalently,

\[\left\| f(t) - \frac{\Gamma + \gamma}{2} f(s) \right\| \leq \frac{1}{2} |\Gamma - \gamma| \|f(s)\| \text{ for almost every } (t, s) \in \Delta. \]

Then we have the inequality:

\[\int_a^b \left[(b - s) + \gamma \Gamma (s - a) \right] \|f(s)\|^2 \, ds \leq \frac{\Gamma + \gamma}{2} \left(\int_a^b \|f(s)\|^2 \, ds \right)^2. \]

The case of equality holds in (3.3) if and only if the case of equality holds in either (3.1) or (3.2) for almost every \((t, s) \in \Delta.\)

Proof: The inequality (3.1) is obviously equivalent to

\[\|f(t)\|^2 + \gamma \Gamma \|f(s)\|^2 \leq (\Gamma + \gamma) \text{Re} \left(f(t), f(s) \right) \]

for almost every \((t, s) \in \Delta.\)

Integrating (3.4) on \(\Delta,\) we deduce

\[\int_a^b \left(\int_a^s \|f(t)\|^2 \, dt \right) \, ds + \gamma \Gamma \int_a^b \left(\int_a^s \|f(t)\|^2 \, dt \right) \, ds \]

\[\leq (\Gamma + \gamma) \int_a^b \left(\int_a^s \text{Re} \left(f(t), f(s) \right) \, dt \right) \, ds. \]

It is easy to see, on integrating by parts, that

\[\int_a^b \left(\int_a^s \|f(t)\|^2 \, dt \right) \, ds = s \int_a^s \|f(t)\|^2 \, dt \bigg|_a^b - \int_a^b s \|f(s)\|^2 \, ds \]

\[= b \int_a^s \|f(s)\|^2 \, ds - \int_a^b s \|f(s)\|^2 \, ds \]

\[= \int_a^b (b - s) \|f(s)\|^2 \, ds \]

and

\[\int_a^b \left(\|f(s)\|^2 \int_a^s \, dt \right) \, ds = \int_a^b (s - a) \|f(s)\|^2 \, ds. \]

Since

\[\frac{d}{ds} \left(\int_a^b f(t) \, dt \right) \|^2 = \frac{d}{ds} \left(\int_a^s f(t) \, dt, \int_a^s f(t) \, dt \right) \]

\[= \left(f(s), \int_a^s f(t) \, dt \right) + \left(\int_a^s f(t) \, dt, f(s) \right) \]

\[= 2 \text{Re} \left(\int_a^s f(t) \, dt, f(s) \right), \]
hence
\[
\int_a^b \left(\int_a^s \text{Re} \langle f(t), f(s) \rangle \, dt \right) \, ds = \int_a^b \text{Re} \left(\int_a^s f(t) \, dt \right) \, ds = \frac{1}{2} \int_a^b \frac{d}{ds} \left(\left\| \int_a^s f(t) \, dt \right\|^2 \right) \, ds = \frac{1}{2} \left\| \int_a^b f(t) \, dt \right\|^2.
\]
Utilising (3.5), we deduce the desired inequality (3.3).

The case of equality is obvious and we omit the details.

REMARK 3. Consider the function \(\varphi(s) := (b - s) + \gamma (s - a) \), \(s \in [a, b] \). Obviously,
\[
\varphi(s) = (\Gamma \gamma - 1)s + b - \gamma a.
\]
Observe that, if \(\Gamma \gamma \geq 1 \), then
\[
b - a = \varphi(a) \leq \varphi(s) \leq \varphi(b) = \gamma (b - a), \quad s \in [a, b]
\]
and, if \(\Gamma \gamma < 1 \), then
\[
\gamma (b - a) \leq \varphi(s) \leq b - a, \quad s \in [a, b].
\]
Taking into account the above remark, we may state the following corollary.

COROLLARY 6. Assume that \(f, \gamma, \Gamma \) are as in Theorem 5.

(a) If \(\Gamma \gamma \geq 1 \), then we have the inequality
\[
(b - a) \int_a^b \left\| f(s) \right\|^2 \, ds \leq \frac{\Gamma + \gamma}{2} \left\| \int_a^b f(s) \, ds \right\|^2.
\]
(b) If \(0 < \Gamma \gamma < 1 \), then we have the inequality
\[
\gamma (b - a) \int_a^b \left\| f(s) \right\|^2 \, ds \leq \frac{\Gamma + \gamma}{2} \left\| \int_a^b f(s) \, ds \right\|^2.
\]

4. APPLICATIONS FOR COMPLEX-VALUED FUNCTIONS

Let \(f : [a, b] \to \mathbb{C} \) be a Lebesgue integrable function and \(M \geq 1 \geq m \geq 0 \). The condition (2.7) from Theorem 3, which plays a fundamental role in the results obtained above, can be translated in this case as
\[
(4.1) \quad \text{Re} \left[\left(M f(s) - f(t) \right) \overline{\left(f(t) - m f(s) \right)} \right] \geq 0
\]
for almost every \(a \leq t \leq s \leq b \).
Since, obviously
\[\Re \left[(M f(s) - f(t)) (\overline{f(t)} - m \overline{f(s)}) \right] = \left[(M \Re f(s) - \Re f(t)) (\Re f(t) - m \Re f(s)) \right] + \left[(M \Im f(s) - \Im f(t)) (\Im f(t) - m \Im f(s)) \right] \]

hence a sufficient condition for the inequality in (4.1) to hold is
\[(4.2) \quad m \Re f(s) \leq \Re f(t) \leq M \Re f(s) \quad \text{and} \quad m \Im f(s) \leq \Im f(t) \leq M \Im f(s) \]
for almost every \(a \leq t \leq s \leq b \).

Utilising Theorems 3, 4 and 5 we may state the following results incorporating quadratic reverses of the continuous triangle inequality:

Proposition 1. With the above assumptions for \(f, M \) and \(m \), and if (4.1) holds true, then we have the inequalities
\[
\left(\int_a^b |f(t)| \, dt \right)^2 \leq \int_a^b |f(t)|^2 \, dt + \frac{1}{2} \frac{(M - m)^2}{M + m} \int_a^b (s - a) |f(s)|^2 \, ds,
\]
\[
\int_a^b |f(t)| \, dt \leq \left(\frac{M + m}{2 \sqrt{M m}} \right)^{1/2} \int_a^b |f(t)| \, dt,
\]
and
\[
\int_a^b \left[(b - s) + mM(s - a) \right] |f(s)|^2 \, ds \leq \frac{M + m}{2} \left| \int_a^b f(s) \, ds \right|^2.
\]

Remark 4. One may wonder if there are functions satisfying the condition (4.2) above. It suffices to find examples of real functions \(\varphi : [a, b] \to \mathbb{R} \) verifying the following double inequality
\[(4.3) \quad \gamma \varphi(s) \leq \varphi(t) \leq \Gamma \varphi(s) \]
for some given \(\gamma, \Gamma \) with \(0 \leq \gamma \leq 1 \leq \Gamma < \infty \) for almost every \(a \leq t \leq s \leq b \).

For this purpose, consider \(\psi : [a, b] \to \mathbb{R} \) a differentiable function on \((a, b) \), continuous on \([a, b] \) and with the property that there exists \(\Theta \geq 0 \geq \theta \) such that
\[(4.4) \quad \theta \leq \psi'(u) \leq \Theta \text{ for any } u \in (a, b). \]

By Lagrange's mean value theorem, we have, for any \(a \leq t \leq s \leq b \)
\[\psi(s) - \psi(t) = \psi'(\xi)(s - t) \]
with \(t \leq \xi \leq s \). Therefore, for \(a \leq t \leq s \leq b \), by (4.4), we have the inequality
\[\theta(s - t) \leq \psi(s) - \psi(t) \leq \Theta(s - t) \leq \Theta(b - a). \]

If we choose the function \(\varphi : [a, b] \to \mathbb{R} \) given by
\[\varphi(t) := \exp \left[-\psi(t) \right], \quad t \in [a, b], \]
and \(\gamma := \exp \left[\theta(b - a) \right] \leq 1, \Gamma := \exp \left[\Theta(b - a) \right] \geq 1 \), then (4.3) holds true for any \(a \leq t \leq s \leq b \).
REFERENCES

School of Computer Science and Mathematics
Victoria University of Technology
PO Box 14428
MCMC Vic. 8001
Australia
e-mail: sever@csm.vu.edu.au