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1. Introduction. Suppose that 

(1.1) <t>(x) is measurable and essentially bounded on [0, 1], 

and define the bounded self-adjoint operators H and J on the Hilbert space 
i 2 ( 0 , 1) by 

(1.2) (Hf)(x) = * / ( * ) and ( / / ) (*) = ( « r ) - i / > ( * ) $ ( * ) ( ' - * ) " 7 ( 0 dt, 

the integral being a Cauchy principal value 

f=lim f (...)*. 
It is seen that 

(1.3) HJ - JH = iC, where (C/)(*) = TT"1 J] 4>(x)$(t)f(t) dt, 

or, equivalently, 

(1.4) ,4,4* - 4 M = 2C, where 4 = i f + U. 

Since (C/, / ) = 7r—1| (/, $) |2 è 0, A is semi-normal. (For a discussion of such 
operators, see [4].) 

The problem is still open as to whether the spectrum of every semi-normal 
operator T, that is, an operator satisfying 

(1.5) TT* - T*T ^ 0 or S 0, 

but which is not normal, must have positive (planar) measure. In fact, a 
stronger (and plausible) conjecture is that even 

(1.6) v\\TT* - T*T\\ ^ meas sp ( r ) , 

where sp(T) denotes the spectrum of T; cf. [4, p. 51]. 
In this paper an investigation of the spectrum of the integral operator A 

will be made. Whether (1.6) must hold even in this special case (with T = A) 
for arbitrary <j> will remain unsettled. However, its validity will be established 
if 4> is restricted to a certain class, for example, if 4> is Riemann integrable 
on [0, 1]. See the Corollary to Theorem 4. 

The following theorems will be proved. 
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THEOREM 1. Let $(x) satisfy (1.1) and let 

(1.7) Mx = ess lim sup 

If A is defined by (1.1), (1.2), and (1.4), then the following inclusion relations 
hold: 

(1.8) spG4) C S = {x + iy: 0 ^ s ^ 1, -ikf* ^ y ^ ¥ , ) 

and 

(1.9) spG4) D {s = x ± iMx: 0 ^ x ^ 1} + {z = iy: -M0 g y ^ M0} 

+ {z = 1 + iy: -Mx ^ y S MJ + {z = x: Q ^ x ^ 1}. 

That is, sp(^4) is contained between the lines x = 0 and x = 1 a?zd //ze graphs 
y = ±MX (0 rg x ^ 1) cmd, m addition, sp(^4) contains the graph of the two 
functions y = ±MX on [0, 1], the vertical segments of the lines x = 0 and x = 1 
joining these two graphs, and also the interval [0, 1]. 

THEOREM 2. Z,e£ </>(#) satisfy (1.1) <md suppose in addition that 

(1.10) |<K#)| > const > 0 on some open interval (a, 6) C [0, 1]. 

Then every point of (a,b) is an interior point of sp(A); that is, if a < c < b, 
then there exists a disk centred at c and lying in sp(A). Moreover, there exist 
operators A satisfying 

(1.11) \4>(x)\ > 0 on [0,1] 

and for which sp(^4) has no interior points whatever (so that, in particular, 
(1.10) must be violated). 

THEOREM 3. Let 4>(x) satisfy (1.1) and suppose that <t>(x) is continuous at 
some point c, 0 < c < 1. Then the vertical segment consisting of points c + iy, 
— \<t>(c)\2 S y ^ \(f)(c)\2, is contained in sp(A) and moreover, if <j>(c) 9e 0, all 
points c + iy, where — |<£(c)|2 < y < |<KC)I2> are interior points of sp(^4). 

It is seen that if $(x) merely satisfies (1.1), but <ji(x) ^ 0 a.e., the assertion 
of Theorem 1 does not assure that sp (A ) has positive measure. On the other 
hand, this assertion does follow from Theorem 3 if it is also assumed that 
(j)(x) has at least one continuity point c with <j>(c) 7e 0, or, from Theorem 2, 
if only (1.10) holds. 

THEOREM 4. Let cf>(x) satisfy (1.1) and for each a > 0 let 

(1.12) Ea = {x Ç [0, 1]: |<K*)| > a}, a > 0. 

Suppose that [0, 1] is the union of disjoint sets M and N; thus 

(1.13) [0, 1] = M + N, 

where M is an open set with the property that 

(1.14) Ea is nowhere dense on M for every a > 0, 
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and almost all points of the set N are continuity points of 4>(x); thus 

(1.15) N C {x £ [0, 1]: 4>{x) continuous) + a zero set. 

Then 

(1.16) 2 f \4>(t)\*dt ^ m e a s s p ( ^ ) . 

/ / , m addition, 

(1.17) |0(s) |2 = M*a.e. on [0, 1], 

£&£» equality holds in (1.16), and in (1.8), so that the spectrum of the operator 
A on L2(0, 1) defined by (1.1), (1.2), and (1.4) is given by 

(1.18) sp(i4) = {x + iy: 0 S x S 1, - M * g y ^ Af*}. 

Since 7r(̂ 4^4* — A*A) = 27rC, where C is given by (1.3), and since 

(1.19) 2T||C|| = 2 / J | * ( 0 p d * , 

it is seen that in general 

(1.20) TT\\AA* - A*A\\ ^ Area{x + iy: 0 ^ x ^ 1, -Mx g y ^ M*}. 

Thus, under the hypotheses (1.13)—(1.15) only of Theorem 4, the inequality 
(1.16), hence (1.6) with T = A, holds. Further, if (1.17) is also assumed, 
then the asserted equality in (1.16) implies equality in (1.6). Whether relation 
(1.18) must hold for <£ arbitrary, that is, for <j> satisfying only (1.1), will 
remain undecided. However, the following result holds. 

COROLLARY OF THEOREM 4. If <f> is Riemann integrable on [0, 1], then (1.18) 
holds. 

The proof of the corollary follows from the observation that the sets M 
and N can now be chosen to be the empty set and [0, 1], respectively. 

2. Some Lemmas. 

LEMMA 1. Let T be any bounded operator satisfying (1.5) and let T = H + iJ, 
where H and J are self-adjoint. Then the spectra of H and J are precisely the 
projections of the spectrum of T onto the x-axis and y-axis {regarded as real lines). 

Proof. See [4, p. 46]. 

Before formulating the second lemma, some terminology will be needed. 
Let the spectral resolution of the (arbitrary) self-adjoint operator H be 
given by 

(2.1) H = f\dEx, 

and for any open interval A and bounded operator R on the underlying 
Hilbert space § put RA = E(A)RE(A). Then if J is also self-adjoint and if 
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H J — JH = iC, one has H AJA — JAHA = iC&, SO that if T = H + iJ is 
semi-normal, so also is r A ; cf. [4, p. 49]. (Here and below, operators of the 
form RA are regarded as operators on the Hilbert space E(A)§. ) 

LEMMA 2. Let T satisfy (1.5) and let the real number c belong to the open 
interval A. Then, for t real, we have: 

sup{£: c + it G sp(T)} = sup{/: c + it G sp(TA)}, 

inf{/-: c + it e sp(T)} = inf{*: c + it G sp( r A )} . 

Proof. It will be clear that it is sufficient to prove only the first relation 
of (2.2). Suppose that sp(T) contains some point of the form c + it and let 
d = sup{/: c + it G sp(T)}. Since c + id is a boundary point of sp(T) 
(cf. [4, p. 47]), there exists a sequence of unit vectors {xn} satisfying 

(2.3) (H — cl)xn —> 0 and (J — dl)xn —> 0, as n —» oo . 

Since A is open, c is an interior point of A and the first relation of (2.3) implies 
that xn — E(A)xn —> 0, so that without loss of generality it can be supposed 
that xn = E(A)xn for all n. It follows from (2.3) that (iJA — clA)xn —* 0 and 
(JA — dlA)xn —> 0, so that c + ^ G sp(TA). Thus, if 

6 = sup{£: c + it £ sp ( r A ) j , 

then d ^ e. 
Similarly, if sp(TA) contains some point of the form c + it, then c + ie is 

a boundary point of sp(TA) and there exist unit vectors xn = E(A)xn satisfying 

(2.4) (if - cl)xn -> 0, £(A) ( / - el)xn -> 0. 

Since HcJe — JeHc — iC (where, for any operator R, R\ = R — \I), then 
(HcJexn,xn) — (JeHcxnixn) = i(Cxn,xn), which, by (2.4), tends to 0 as 
n —» oo . Since C ^ 0 or C ^ 0, then Cxn —» 0. Hence, Hcyn —> 0, where 
Jn — {J — el)xn. Since c is an interior point of A, it now follows from the 
second relation of (2.4) (cf. [4, p. 54]) thsityn —-> 0, so that both (H — cI)xn—>0 
and ( / — el)xn -^ 0. Hence c + ie G sp(T) and, in particular, e S d. This 
completes the proof of Lemma 2. 

LEMMA 3. ^4s above, let T — H + iJ" satisfy (1.5). Suppose that a < d < b, 
where a and b denote the left and right end points, respectively, of the set sp(H), 
and let A denote either of the intervals [a, d] or [d,b]. Let c = a or c = b and, 
for a real t, suppose that c + it G sp(TA). Then also 

(2.5) c + ite s p ( r ) . 

Proof. Since c + it is a boundary point of sp(TA) (cf. Lemma 1), there 
exists a sequence of unit vectors xn = E(A)xn satisfying 

(2.6) (H - cl)xn -> 0 and £(A) (J - tl)xn -» 0. 
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As in the proof of Lemma 2, 

(2.7) (H - ci) (J - tl)xn -> 0. 

Since c is an end point of sp(H), it follows from (2.7) and the second relation 
of (2.6) that (J - tl)xn -> 0. Thus both (H - cl)xn -> 0 and (J - tl)xn -> 0, 
and hence (2.5) holds. 

LEMMA 4. Let {Tn} denote a sequence of bounded operators on a Hilbert space 
H which is strongly convergent to T, Tn —> T; thus 

(2.8) Tnx —» Tx for all x in § . 

Suppose that an £ sp(Tn) and that an —» a as n —» oo. / « addition, suppose that 
there is a constant 8 > 0 /or which 

(2.9) (rB - anI)*(Tn - anI) ^ 57 /or a// n. 

Finally, suppose that Tn*Tn — TnTn* = Cn w completely continuous and that 
the sequence {Cn\ converges in the uniform norm topology to a (completely 
continuous) operator C; thus 

(2.10) \\Cn- C|| —>0. 

Then 

(2.11) a G sp ( r ) (in fact, â is in the point spectrum of T*). 

Proof. Since an G sp(Tn) and (2.9) holds, then there exist unit vectors xn 

such that (Tn — anI)*xn—>0. Since {xn} is a bounded sequence, it has a 
weakly convergent subsequence, which will also be denoted by {xn}, thus 
there exists a vector x such that xn -̂ > x. For any fixed vector y, Tny —> Ty, 
and hence 

((Tn - anI)*xn, y) = (xni(Tn - an/)y) -> (x, (T - a/)y) = ( ( r - al)*x, y), 

that is, (Tn — anI)*xn ^ (T — al)*x, and hence (T — a/)*x = 0. If x 9e 0, 
then (2.11) holds, and the proof is complete. 

Suppose then, if possible, that x = 0, so that xn —+ 0. However, 

\1 n anl ) \1 n anl )Xn \J- n &n-L ) \ •*• n Olni ) Xn = C W X W , 

and since \\Cn — C\\ —>0 (and C is completely continuous), it follows that 
Cnxn —> 0. Since (Tn — anI)*xn —» 0, then also (Tn — anI)xn —* 0, in 
contradiction to (2.9). This completes the proof of Lemma 4. 

By the essential spectrum, es sp(T), of a bounded operator T is meant the 
complement of the set of complex numbers c for which the range of T — ci 
is closed and the null spaces of T — ci and (T — ci)* are both finite-
dimensional. (Cf. [10; 7; 6].) If B(!Q) denotes the Banach space of bounded 
operators on the Hilbert space § and if C denotes the ideal of com
pletely continuous operators on § , then it is known that the essential 
spectrum of an operator T on § coincides with the spectrum of its natural, 
homomorphic image in the factor algebra B ( § ) / C ; cf. [1; 7]. 
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LEMMA 5. Let T be a semi-normal operator, so that (1.5) holds, with no 
non-trivial reducing subspace on which T is normal, and suppose also that 
TT* — T*T = C is completely continuous. Then 

(2.12) es sp(T) = {c: TCT* and TC*TC both singular}, 

where Tc = T — ci. 

Proof. Let c € essp(T) . Then both TCT* and T*TC must be singular. 
Otherwise, let us say that TCT* ^ 81, where 8 = const > 0. (A similar 

argument works if TC*TC ^ 81.) Then there exists a bounded operator B 
such that BTCTC* = TCTC*B = / and, since TCTC* — TC*TC = C, BTC*TC = 
I + D, where D is completely continuous. Since TC*TCB* = I + D*, Tc has 
both a right and left inverse modulo C and hence c is not in essp(T) , a 
contradiction. (The above holds even if T is not semi-normal.) 

Next, suppose that both TCT* and T*TC are singular. Since T is semi-
normal, then TCTC* — TC*TC is semi-definite and it will be clear that there is 
no loss of generality in supposing that T*TC §; TCT*. There exists a sequence 
of unit vectors {xn} such that Tcxn —> 0. Since {xn} is bounded, it has a weakly 
convergent subsequence, which will be denoted by {xn\, thus But if 
x = 0, then Tc cannot have a left inverse modulo C; for if BTC = I + E, 
where E is completely continuous, then xn —> 0 (strongly), a contradiction, 
since the xn are unit vectors. Thus c £ es sp(T). On the other hand, if x ^ 0, 
then Tcx = 0 and, since T*TC ^ TCT *, also Tc*x = 0. Thus T would have 
a normal reducing subspace, a contradiction. 

LEMMA 6. Let T and Tn (n = 1 ,2 , . . . ) denote bounded operators on a Hilbert 
space and suppose that 

(2.13) | | r „ - r | | ->o . 
Then 

(2.14) meassp(r ) ^ lim sup (meas sp(rw)). 
ft->co 

Proof. Let ikf denote a bounded open set containing all sets sp(Tw) and 
the (closed) set sp(T) and let Mi denote the open set Mi = M — sp(T). 
Next, let N be any closed subset of Mi, so that, in particular, N lies at a 
positive distance from the boundary of Mi. Then 

(2.15) sp(Tn) r\ N is empty for n sufficiently large. 

For, otherwise, there would exist cnk G sp(TnA.) r\ N(rii < ri2 < . . .), and 
hence a subsequence {m }̂ of {T^} such that c = lim cmk exists. Since N is 
closed, c £ N and, since cmA. Ç sp(TmA) and ||rmfc — T\\ —» 0, also £ Ç sp(T). 
Thus sp(T) r\ N is not empty, which is impossible. Next, let e > 0 and choose 
N = N€ so that meas (Mi — N€) < e. Since sp(!T) = M — Mi and since, by 
(2.15), sp(Tn) C M — Ne for n sufficiently large, it is clear that (2.14) holds. 
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3. Proof of Theorem 1. First, some properties of the self-adjoint singular 
integral operator J defined in (1.2) will be noted. If M is defined by 

(3.1) M = ess sup \(j>(x)\\ 
[0,1] 

then sp ( r ) = [-M, M]; cf. [3; 5]. Let A = H + U now be defined by (1.1), 
(1.2), and (1.4), let c be any point of (0, 1), and let A denote any open (half-
open if c = 0 or 1) subinterval of (0, 1) containing c. Then, in the notation 
following the statement of Lemma 2, consider the (semi-normal) operator A A. 
It now follows from Lemma 1 that there exist points Z\ and z2 in sp(^4A) 
such that Re(zi), Re(z2) belong to the closure A' of A and Im(zi) = MA 

and 11x1(32) = — MA, where 

MA = ess sup |<f>(#)| • 
A' 

According to Lemma 2, both %\ and z2 also belong to sp(^4). On letting A 
shrink to the point c, and noting that c is arbitrary in (0, 1), it follows that 
{z = x ± iMx: 0 g x S 1} belongs to sp(A), with Mx defined by (1.7). 
Further, it is clear from Lemma 1 and from (2.2) of Lemma 2 that (1.8) 
holds. 

That the set {z = iy: —M0 g y ^ M0} occurring in (1.9) also belongs to 
sp(A) follows from Lemma 3. To see this, let A6 = [0, e], where e > 0. Then 
if / is any point in [ — me, me], where 

m6 = ess sup |<£(x)| » 

there exists some z G SP(^4A), hence, by Lemma 3, also z G sp(^4), satisfying 
Im(s) = L By Lemma 1, Re(2) G A€. Since [ — M0, M0] C [•—rae, rae], it is 
clear that if — Mo S t ^ M0, there exist zn = cn + it G sp(^4) with cn —> 0. 
Hence it G sp(^4), and thus the set {z = iy: —M0 ^ y ^ M0} belongs to 
sp(A). A similar argument shows that the set {z = 1 + iy: —Mi ^ y ^ M^\ 
also belongs to sp(^4). 

It remains to be proved that 

(3.2) [0, l ] C s p ( , 4 ) . 

The argument will be somewhat complicated and another lemma will be 
needed before continuing with the proof. 

LEMMA 7. Suppose that 

(3.3) 4>(x) is of class C2 and that |#(x)| > 0 on [0, 1], 

and let A be defined by (1.1), (1.2), and (1.4). Then 

(3.4) es sp(4) = {z = x =fc i\(t>(x)\2: 0 ^ x ^ 1} 

+ {z = iy: - |0(O)|2 ^y ^ |<^(0)|2} 

+ {z=l+iy: - |<K1)|2 S y S |0(1)|2}. 
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Also 

(3.5) sp(i4) = {x + iy:0£x£l, -\<Kx)\2 S y è |<K*)|2}, 

that is, sp(^4) is the region between the graphs y = zb|0(x)|2 over 0 S x ^ 1 
and between the lines x = 0 and x = 1. 

Proof. The assertion (3.4) is essentially a result of Schwartz [7]. Actually, 
the singular integral operators considered by Schwartz are Cauchy principal 
values of the form 

lim 
€-»0 

I (. . .)(t + ie- x)~1dt, 

but his methods involving the theory of commutative Banach algebras apply 
equally well (and almost verbatim) in the present case to yield (3.4). The 
details will be omitted. (Relation (3.4) holds even if C2 is replaced by C°.) 

It is clear from (3.3) that the set of (3.4) is a piecewise C2 simple closed 
curve. The assertion of (3.5) is that sp(^4) consists of this curve together 
with its interior. Since A is semi-normal, its spectrum cannot be precisely 
the above simple closed curve unless A is normal; see [8; 9; 11]. However, if 
A is normal, then clearly 4>(x) = 0, in contradiction with the second relation 
of (3.3). 

Consequently, there exists at least one point of sp (A ) in the interior of the 
curve (3.4). Since \<t>(x)\ > 0, it is clear that A has no non-trivial normal 
reducing subspaces. (In fact, it follows from the Weierstrass approximation 
theorem that L2(0, 1) is the least space containing the range of C in (1.3) 
and (1.4) and which is invariant under the multiplication operator H = x.) 
Hence, by Lemma 5, relation (2.12) (with T = A) holds. But (even for any 
bounded operator) at any boundary point c of sp (A ), both A *A c and A CA c* 
(where Ac = A — ci) are singular. It now follows that the entire interior 
of the set (3.4) is in sp(^4), that is, relation (3.5) holds, and the proof of 
Lemma 7 is complete. 

Next, consider the finite interval Hilbert transform Q defined on L2(0, 1) by 

(3.6) (Qf)(x) = (iT)-1 ( {t - x)-xf(t) dt. 

For any a > 0, define 4>a(x) on [0, 1] by 

1 <j)(x) if \<j)(x)\ ^ a, 
v J \a if |<Kx)| < a, 

and let the self-ad joint singular integral operator Ja be defined by 

(3.8) (Jaf)(x) = (.V)-1 f <t>a{x)$a(t)(t-xTlf{t)dt. 
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It is clear that 

(3.9) Jf - J J = <t>Q($f) - 4>aQ{$af) 

= (* - 4>a)QW) + 4>aQ(($ - A ) / ) , 

and hence 

| | ( / - / a ) / | | ^ 2asup |0(x) | H/ll, 
[0,1] 

so that, in particular, \\J — Ja\\ —> 0 as a —> 0. Hence, if Aa = H + iJay H 
being the multiplication operator x on L2(0, 1), then 

(3.10) p « - ; 4 | | - » 0 a s a - + 0 . 

It will be shown that for each a > 0, 

(3.11) [ 0 , l ] C s p ( i 4 a ) . 

Relation (3.2) then follows from (3.10) and (3.11). 
In order to prove (3.11), let 0 ^ c ^ 1 and, as above, let Aa = H + iJay 

where Ja is defined by (3.8). Then if Ba = Aa — ci one has (cf. (1.4)) 

(3.12) BaBa* = (H-cI)* + Ja
2 + Ca, 

where 

(3.13) (Caf)(x) = TT"1 f 4>a(pc)$a(t)d(f)dt. 

Now suppose that c (£ sp(^4a), so that, in particular, 

(3.14) (Aa- rf)(Aa- ci)* ^ dl 

holds for some constant ô > 0. 
Next, define An = H + £/» (» = 1, 2, . . .), where i J is as given in (1.2) and 

(3.15) Vnf)(x) = {iirT1 f <i>n{x)4>n{t){t-x)-1j{t)dt1 

where the 4>n are defined below. These functions <t>n should satisfy 

(3.16) <t>n G C2 on [0, 1], a ^ \<ki(x)\ S const, 4>n(x) -+4>a(x) a.e. 

In view of (3.16), one has 

(3.17) Anf->Aaf, An*f->Aa*f, a s w - ^ o o , for e a c h / G L2(0, 1), 

that is, the sequences {An} and {An*} converge strongly to A and A*, 
respectively. This can be seen from a relation similar to (3.9). In fact, 
(An - Aa)f = i(Jn - Ja)f and 

( /» ~ Ja)f = (tn - 4>a)Q&nf) + 4>aQ({$n ~ & ) / ) . 
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Using (a + 6)2 ^ 2 (a2 + b2), one obtains 

(3.18) f | ( /„ - Ja)f\
2dt ^ 2 f I*. - 4>«|2 |<2W)|2^ 

The second integral on the right of the inequality is majorized by 

const||<2((<^ - &0/) | |2 ^ constHfo - 0«)/||2. But <t>n -» <j>a a.e. 

and also \($n — $ a) / |2 ^ const|/|2, and hence by Lebesgue's dominated 
convergence theorem \\($n — $a)f\\ ~~>0 as n—-»oo. Thus, in order to prove 
(3.17), it is sufficient to show that the first integral on the right of the inequality 
(3.18) also tends to 0. But this integral equals 

(3.19) f \*n ~ <t>a\\\K\2 - \h\") dt + f \$n - <j>a\
2\h\2 dt, 

wherehn = Q($nf) andh = (?(&»/)• Since \\$nf - $af\\ - * 0 , then ||ft» - h\\ ->0 . 
Since |0„ — $a | ^ const, the first integral of (3.19) tends to 0. That the last 
integral of (3.19) also tends to 0 follows from another application of the 
dominated convergence theorem, and thus (3.17) is now established. 

Next, it will be shown that there exists a constant y > 0 such that 

(3.20) (An-cI)(An-cI)* ^yl. 

By a relation similar to (3.12), 

(3.21) 11(4, - c/)*/ll2 = \\(H - cl)f\\* + \\JJ\\> + ( Q , / ) , 
/ € L * ( 0 , 1 ) , 

where (Cnf)(x) = x_1<^„(/, <£„). Let gn be denned by 

(3.22) gn = ( & / & ) / . 

Then / „ / = 4>nQ($nf) and Jagn = <t>aQ($agn), so that by (3.22), 

(3.23) Jnf = (<t>n/4>a)Jagn-

Now Cnf = 7r_1<k(/> <t>n) and Caf = X_1<Ê«(/> 4>a)> and hence 

(Cnf, f) = x- 'K/ , 4>J|2 = x - 1 ! ^ , 0a)|2 = (Cagn, gn). 

Consequently, 

| | ( 4 , - d)*f\Y = J (* - C ) 2 | ^ a / 0 , | 2 | g , | 2 <& + j \4>n/<t>a\Vagn\2 dt + (Cagn, gn). 

Furthermore, 

(3.24) || (4a - c/)*g„||2 = / (* - c)2|gn|2 dt + j \Jagn\
2 dt + (Cagn, fo). 

Since 0 < a ̂  |^a(x)|, |#„(x)| ^ const, it is clear that there exist positive 
constants a, /3, where 0 < a < 1 < /3, such that, for all x, one has 

a- ^ |4>a(x)/0„(x) | , |<Êre(x)/<Êa(x)| ^ £ , 
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and hence 

(3.25) a*\\{Aa - cl)*gn\\
2 g 11(4, - cIYf\\2 g p\\(Aa - <tf)*&||*. 

In view of (3.22), 

(3.26) a||/|| 1k\\gn\\ IkmV 

Relations (3.25), (3.26), and (3.14) now yield (3.20). 
As noted above, 

n(Cnf — Caf) = 4>n(f, <t>n) ~ <t>a(f, <t>a) = <j>n(f, <l>n — 4>a) + (<t>n ~ 4>a)(f, 4>a) > 

and hence 7r||Qf— Caf\\ ^ const||<£n — $a | | | | / | | . Thus \\Cn — C\\ —> 0 as 
n —» oo. Now, for 0 S c S 1, it follows from (3.5) of Lemma 7 (with 0, A 
replaced by <j>ni An) that c G sp(^4w), hence c = c f sp(^4w*). Thus Lemma 4 
can be applied, with the Tn, T, Cn, and C corresponding to the present An*, Aa*y 

2Cn, and 2C, respectively, and an = c. It follows that c Ç sp(^4a). Thus the 
assumption that c Ç sp(^4fl) implies (3.14), which, in turn, implies that 
c € sp(^4a), a contradiction. Thus, it follows that, indeed, c £ sp{Aa) and, 
since c is arbitrary in [0, 1], also [0, 1] C sp(^4a). As noted earlier, (3.2) follows, 
and the proof of Theorem 1 is now complete. 

4. Proof of Theorem 2. Suppose that 0 < c < 1 and that \4>(x)\ ̂  
const > 0 on (a, b), where a < c < b. Then it will be shown that there exists 
a disk about c lying in sp(^4). (That c lies in sp(^4) was proved in Theorem 1 
above.) Suppose the contrary, so that c is a boundary point of sp{A ), and hence 

(4.1) {A -d)*gn^0 

holds for a sequence of unit vectors {gn}. A relation similar to (3.21) holds for 
11(il - c / )*^ | | 2 ; thus 

(4.2) 11(4 - cl)*gn\\
2 = j (x - cy\gn\*dt+j\Jgn\>dt + Tr-i\(gn,<t>)\\ 

By (4.1) and (4.2) it follows t h a t / (x - c)2\gn\
2 dt-+0. Hence 

f |g»|* * - > < ) , 
« /[0,l]-(a,&) 

and hence there is no loss of generality in supposing that gn = 0 outside (a, &). 
Now, in place of the sequence of operators An of § 3, consider the single 

operator B where 

(4.3 ) (Bf) (x) = */(*) + i (J+f) (x), 

W)(«) = (*T)_1 f ^{x)Ut){t-xy1f{t)dt, 

and where \p(x) is of class C2 on [0, 1] and \\p(x)\ ^ const > 0 on [0, 1]. 
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(For instance, one could take \p(x) = 1.) Corresponding to (3.22), define 
now/ n by 

(4.4) fn = ($/f)gH. 

Clearly, (fn, \p) = (gn, </>), and hence 

(4.5) ||(B - cl)*fn\\> = $ (x - c)*|/B |2<«+.f | / ^ / B | 2 ^ + 7r-^|fe,^)!^. 

Since all terms on the right of (4.2) tend to 0 as n -^ oo, it is clear (in view 
of (4.4)) that at least the first and third terms on the right of (4.5) also tend 
to 0. But (cf. (3.23)) Jgn = {<t>/^)J^fn and hence, since |^| g const on [0, 1], 
we have 

(4.6) J |* IW»l 2 *-»0 , n-+oo. 

However, 

(4.7) f |/*/»r&->0. 
« / [ 0 , l ] - ( a , & ) 

To see this, recall that (H — d)gn-^0 (H = x on L2(0, 1)), and hence 
(H - rf)fn-+0. But (cf. (1.3)), (H - cI)J+ - J*(H - ci) = iC^ where 
(CV/)(x) = TT~V(/» \p). In particular, Q ^ 0. Since 

«H - cI)Jtfn,fn) - (MH - cl)fn,fn) = i||C^II2^0, 

it is clear that (H — ci)J^fn —• 0, that is, J* (x — c)2|J^/w|2 d£ —> 0. Since 
c € (a, 6), (4.7) follows. It now follows from (4.6), (4.7), and (1.10) that 
| | / , / „ | | - * 0 . Thus, by (4.5), 

(4.8) ||(5 -d)%\\-+0, 

where B is defined by (4.3). It is clear that 0 < const ^ | |/n | | ^ const. 
Since (B - d)(B - ci)* ^ (B - rf)*(B - cl) (cf. (1.4)), it follows from 
Lemma 5 that c is in the essential spectrum of B. But, since x// is of class C2, 
and since \\p(x)\ ^ const > 0 on [0, 1], in particular on (a, b), this is impossible 
by Lemma 7 (with <j> replaced by ^ ) , a contradiction. Thus, the hypothesis 
that c is a boundary point of sp(^4) in untenable. Thus, since c belongs to 
sp(^4), c is an interior point of sp(^4), as was to be shown. 

5. An example. In this section, the proof of Theorem 2 will be completed 
by giving an example of a function <j>(x) satisfying (1.11) for which the 
spectrum of the associated operator A defined by (1.1), (1.2), and (1.4) has 
no interior points. 

Let 0 < /3 < 1 and define a Cantor set G (nowhere dense perfect set) of 
positive measure on [0, 1] by putting G = [0, 1] — £i"n, where \In) is a 
sequence of open intervals defined as follows. Let I\ be an open interval of 
length | i i | = J/3 and in the centre of [0,1]. Next, remove open intervals 
J2 and 1% from the centre of each of the two remaining closed intervals and 
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suppose that \I2\ + l-fsl = i)3. Similarly, remove open intervals I4, I5, h, and 
I 7 of total length (3/8 from the centre of each of the remaining four (closed) 
intervals. Continuing in this way, one obtains a Cantor set d of measure 
|Ci| = 1 — j3. Next, one proceeds with a similar construction on each of the 
removed intervals /2 , ^3, • . . . (Actually these intervals are open, but this is 
of no consequence.) This procedure is repeated indefinitely in such a way that 
the sum of the measures of the Cantor sets thereby constructed is 1. One 
thus obtains a sequence of disjoint nowhere dense sets {Cn} (n — 1, 2, . . .) 
such that [0, 1] = Yl Cn-\- Z, where Z is a set of measure 0 and Cn and Z 
are pairwise disjoint. Then define <f> (a.e.) by 

(5.1) *(*) = 1/n on Cn (n = 1, 2, . . .). 

If Ea is defined by (1.12), it is clear that Eai being the union of a finite number 
of the Cns, is nowhere dense on [0, 1]. That sp(A) cannot have any interior 
points follows readily from (1.8). 

It is interesting to observe that (1.8) can be improved in this case to the 
assertion 

(5.2) sp(A) = [x + iy: 0 ^ x ^ 1, -Mx S y è Mx). 

In order to see this, define <t>n(x) on [0, 1] by 

and define the self-adjoint singular integral operators /„ by 

(5.4) (Jnf)(x) = («V)-1 f 4>„(x)Ut)(t-xy1f(t)dt. 
Jo 

It is clear that for each fixed n, <f>n(x) > 0 on Sn = YJk=i Ck and (f>n(x) = 0 a.e. 
on [0, 1] — 2*=i Cki so that, in particular, Jn leaves invariant §w = L2(Sn). 
Thus Jn = Jn/&n © 0/§„•»-. The second term denotes the 0 operator on 
§ w

x = L2(0, 1) © § n . Since §w is obviously invariant under the multiplication 
operator H = x, then §w reduces An = H + iJn and thus one has the 
representation 

(5^) An = Bn® x/&n±, where Bn = An/$n. 

It is clear (cf. the argument following (3.9)) that 

(5.6) \\A - An\\ - » 0 , n->oo, 

and that 

(5.7) sp(AH) = sp(£M) + sp(x/<p^). 

Since sp(Re(5»)) is the closure of Y,l=i Ck, which is nowhere dense on [0, 1], 
it follows from [4, p. 54, Theorem 3.7.1] that 

(5.8) T r p J V - Bn*Bn\\ ^ meas'sp(Sn). 
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Further, it is clear that the left side of (5.8) is unchanged if Bn is replaced by 
An and, from (5.7), that meas sp(5w) = meas sp(i4n). (Note that the measure 
here is that of the plane.) Consequently, 

(5.9) v\\AnAn* - An*An\\ g meassp(,4n). 

In view of (5.6) and Lemma 6, 

(5.10) ir\\AA* - A*A\\ ^ meassp(^) . 

Hence (cf. 1.19)), 

(5.11) meas sp(A) è 2J] \cf>(t)\2 dt 

= Area {% + iy: 0 g x ^ 1, —[0(x)|2 g y ^ \<t>(x)\2}. 

Since, in the present example, Mx = |$(x)|2 a.e., (5.2) now follows from (1.8) 
and the fact that the set S is closed. 

6. Proof of Theorem 3. Let 0 < c < 1 and suppose that 4> is continuous 
at c and that <j>(c) ^ 0. Then \<j>{%)\ > 0 on some open interval containing c 
and, by Theorem 2, there exists a disk about c belonging to sp(A). It follows 
in particular that for t real and |/| sufficiently small, all points c + it are 
interior points of sp(^4). It will be shown that if d = sup{s: c + it are interior 
points of sp {A ) for 0 ^ t ^ s}, then 

(6.1) d = \<Kc)\\ 

The argument with "sup" replaced by "inf" and |#|2, [0, s] replaced by 
—1#|2, [s, 0] is similar. Thus, in order to complete the proof of Theorem 3 
it is sufficient to show that (6.1) holds. 

First, it is clear that c + id is in the boundary of sp(A) and (cf. (1.8)) 
that d ^ \<f>(c)\2. It will be shown that the supposition that (6.1) does not 
hold, that is, d < |$(c)|2, leads to a contradiction. The argument will be 
essentially that used in § 4. 

To see this, note that if z = c + id, then (A — zI){A — zl)* is singular, 
so that there exists a sequence {gn} of unit vectors for which 

(6.2) ||(;4 -zI)*gn\\-+0. 

Corresponding to (4.2), this becomes 

(6.3) \\(A - zl)*gn\\
2 = J (x - c)2\gn\

2dt+f\(J - dl)gn\
2dt + 7r-i\(gni 0)|2 . 

Let \f/(x) denote the constant function defined by 

(6.4) * ( * ) « 4>(c) 

and define J^ and B as in (4.3) and /„ by (4.4). In view of (6.2), the first 
integral of (6.3) tends to 0 and it follows as in § 4 that there is no loss of 
generality in supposing that the gn(x) = 0 outside of open intervals (ani bn) 
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containing c and such that bn — an —» 0 as n —> GO . A simple calculation yields 

(6.5) ( / - dl)gn = (*/*)( /* - <//)/„ + <*(*/* - 0/0)/». 

Since &w — aw —» 0 and since <j> is continuous at x = c, it can be supposed 
that (j)(x) ^ O o n (an, bn). (At points of [0, 1], where <j> may be 0, fn is also 0 
and one interprets {yp/<t>)fn as 0.) 

By (6.3) and (6.5) and noting again that (fnj \p) = (gn, </>), one has 

(6.6) H04 - zl)*gn\\> = j (x - cY\$/4>)fn\* dt 

+ J ! (*/*)( /* - dl)fn + d(4>/4, - $/4>)fn\
2dt + *-i\(fn, *)\\ 

Since, by (4.4) and the definition of gn, also fn = 0 outside (an, bn) and since 
(</>/̂  - #/<?) = (|</>|2 - M 2 ) / ^ , it is clear from (6.4) that 

(6.7) j 1(0/* - $/4>)fn\
2dt->0 as?*->oo, 

and hence 

(6.8) | | (4 - zl)*gn\\* =j (x - cy\®/$)fn\*dt +JW*(J* - dl)fn\*dt 

+ *-1\(fn,t)\2 + o(l), 

where o(l) denotes a term which tends to 0 as n —> oo. But, corresponding 
to (4.5), 

(6.9) I K ^ - S / ) ^ ! ! 2 ^ / ^ - ^ 2 ! ^ 2 ^ ^ / ! ^ - ^ ) ^ 2 ^ ^ - ^ - 1 ! ^ , * ) ! ^ 

The argument of § 4 shows that a relation similar to (4.7) but with J^ replaced 
by Jyp — dl holds, where now (a, b) is some fixed interval containing c on 
which \4>{x)\ > const > 0. 

Relations (6.2) and (6.8) now imply that (B - zl)% -> 0. As in § 4, this 
leads to a contradiction. For, since \f/ is of class C2, this implies by Lemma 5 
that z is in the essential spectrum of B. But d < \\p(c)\2 = |#(c)|2 a n d hence 
this is impossible (by Lemma 7). This completes the proof of Theorem 3. 

7. Proof of Theorem 4. Let <j>a(x) be defined on [0, 1] by 

M /«(*) ilxeN+(MnEa), 
U.-U *«W ^0 otherwise, that is, if x G M - Ea. 

Let J a and 4 a be defined by (1.1), (1.2), and (1.4) with <j> replaced by 0a. 
Since 

(7.2) <t>a (x) —> 0(x) uniformly on [0, 1] as a —» 0, 

it is clear (cf. § 3) that \\Ja — J\\ —» 0 as a —» 0, and hence 

(7.3) p - ; l a | | - » 0 a s a - ^ 0 . 

If £ a = L2(iV + (Jlf H E a ) ) , then ^ = L 2 (M - £fl) and, since </>a(x) = 0 
o n l - £ a , it is clear that Ja leaves §a-L invariant, hence also § a . Since 
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H = x also leaves these spaces invariant , these spaces reduce Aa. Thus , if 
Ba = Aa/$a, then 

(7.4) Aa = Ba®x/$a± o n L 2 ( 0 , l ) = & e ^ . 

Let H = x = J X dE\. If Ca is defined by (1.4) with A replaced by Aa, thus 
Caf = v-^aif, 4>a), then it is clear (cf. (1.19)) t h a t 

(7.5) 2ir\\E(P)CE(P)\\ = 2 / p | « ( 0 | 2 * 

holds for any Borel set P. Since almost all points of the set Na = N C\ Ea 

are cont inui ty points of both 0 and $ a , i t follows from Theorem 3 t ha t the 
segment Lx: x + iy, with —|0(x) | 2 g y g |<K*0I2> belongs to sp(^4a) for 
almost all x in Na. But , by (7.4), sp(^4a) = sp(J5a) + sp(x/§ a J- ) and hence, 
for almost all x in Na, Lx is also in s p ( 5 a ) . Thus , 

(7.6) 2JNa \4>{t)\*dt g measjs G s p ( £ a ) : Re(*) G iVa}. 

Since s p ( R e ( ^ a ) ) is the closure of the set N + (M C\ Ea) and since Ea is 
nowhere dense on M, it follows t h a t the set {x Ç s p ( R e ( 5 a ) ) : x G Af ^ Ea) 
is nowhere dense on M. If Af = X! In is the canonical decomposition of M 
as the union of disjoint open intervals {In}, then i t follows from the a rgument 
in [4, pp . 54-55], t h a t if / G § a and if Ca

f = CJ $&a, then 

(2*)* | | (C f l ' )*£( /») / | | £ [meas{s: z G s p ( £ a ) and Re(s) G J n}]* | |E(JB ) / | | . 

Since {2^\\Ca
fE{M)f\\^ {2^Y.\\C(;E{In)f\\, an application of the 

Schwarz inequali ty together with \\E(M)Ca'E(M)\\ = \\(Ca')*E(M)\\* yields 

(2TT)\\E{M)CJE(M)\\ g measjs: 2 G s p ( £ a ) and Re(2) G M } . 

Hence, by a relation for Ca ' corresponding to (7.5), 

(7.7) 2JMC]Ea \<t>(t)\2dt ^ measjs: 2 G s p ( 5 a ) and Re (z) G M } . 

Combining (7.6) and (7.7) and noting (7.4), one obtains 

(7.8) 2jE | 0 ( / ) | 2 * ^ meassp( i3 a ) = meassp(^4 a ) . 

Relation (1.16) now follows from (7.8), (7.3), and Lemma 6. 
In case (1.17) is also assumed, then 2 /* |<K0|2 dt is the area of the set 5 

in (1.8). I t follows from (1.8) and (1.16) t h a t equali ty must hold in (1.16) 
and, since 5 is closed, also in (1.8). Th is completes the proof of Theorem 4. 
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