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The fate of deformable buoyancy-driven bubbles rising near a vertical wall under
highly inertial conditions is investigated numerically. In the absence of path instability,
simulations reveal that, when the Galilei number, Ga, which represents the buoyancy-to-
viscous force ratio, exceeds a critical value, bubbles escape from the near-wall region after
one to two bounces, while at smaller Ga they perform periodic bounces without escaping.
The escape mechanism is rooted in the vigorous rotational flow that forms around a bubble
during its bounce at high enough Ga, resulting in a Magnus-like repulsive force capable
of driving it away from the wall. Path instability takes place with bubbles whose Bond
number, the buoyancy-to-capillary force ratio, exceeds a critical Ga-dependent value.
Such bubbles may or may not escape from the wall region, depending on the competition
between the classical repulsive wake–wall interaction mechanism and a specific wall-ward
trapping mechanism. The latter results from the reduction of the bubble oblateness caused
by the abrupt drop of the rise speed when the bubble–wall gap becomes very thin. Owing to
this transient shape variation, bubbles exhibiting zigzagging motions with a large enough
amplitude experience larger transverse drag and virtual mass forces when departing from
the wall than when returning to it. With moderately oblate bubbles, i.e. in an intermediate
Bond number range, this effect is large enough to counteract the repulsive interaction force,
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forcing such bubbles to perform a periodic zigzagging-like motion at a constant distance
from the wall.

Key words: bubble dynamics, gas/liquid flow, wakes

1. Introduction
In the first part of this investigation (Shi, Zhang & Magnaudet 2024, hereinafter referred
to as Part 1), we analysed the results of a series of simulations revealing the mechanisms
governing the lateral migration of freely deformable gas bubbles rising near a vertical
wall in a liquid at rest. The physical parameters were selected so that bubbles rose at
moderate Reynolds number and underwent low-to-moderate deformation, ensuring that
they would rise in a straight line in the absence of the wall. However, millimetre-size gas
bubbles rising in weakly or moderately viscous liquids, especially water, are subject to
path instability (Duineveld 1995; de Vries 2001; Zenit & Magnaudet 2008; Cano-Lozano
et al. 2016; Bonnefis et al. 2023, 2024). Consequently, they usually follow either planar
zigzagging or (possibly flattened) spiralling paths, both of which exhibit large-amplitude
horizontal excursions. Only small enough bubbles, which do not deviate ‘too much’ from
the spherical shape, can still rise in a straight line when the Reynolds number exceeds a few
hundred. These highly inertial regimes, with or without the presence of path instability,
are those on which this second part of our investigation focuses.

As discussed in Part 1, interactions between isolated rising bubbles and a vertical wall
in moderately inertial regimes are largely governed by two distinct mechanisms. These
are the attractive inviscid Bernoulli mechanism, predicted by potential flow theory and
resulting from the acceleration of the flow in the gap (van Wijngaarden 1976; Miloh 1977;
Kok 1993), and the repulsive vortical mechanism associated with the small flow correction
induced by the interaction of the wake with the wall at large distances downstream of
the bubble (Takemura et al. 2002; Takemura & Magnaudet 2003; Sugioka & Tsukada
2015; Shi et al. 2020; Shi 2024). The type of near-wall bubble motion depends largely on
the relative magnitudes of the irrotational and vortical interaction mechanisms, which in
turn depend on the rise Reynolds number, Re, and the geometrical aspect ratio, χ , of the
bubble. Here, Re is based on the bubble’s equivalent diameter and rise speed, and χ is
the length ratio of the major to minor axes of the bubble. Provided that Re is smaller than
a critical value, Re1, increasing from ≈ 35 at χ = 1 to ≈ 100 at χ ≈ 1.5, the repulsive
vortical mechanism dominates, causing bubbles to consistently migrate away from the
wall. On the other hand, for Re > Re1, both mechanisms remain active, and the bubble is
first attracted to the wall down to a certain critical distance at which the total transverse
force vanishes, and then undergoes either regular or damped transverse oscillations.

In Part 1, the bubble Reynolds number was kept below approximately 200, and the
aspect ratio was, in most cases, smaller than 2. The aim in this second part is to explore
the regime in which bubbles rise with Reynolds numbers of O(102 − 103), while their
aspect ratios may vary from 1 to nearly 3. In such highly inertial regimes, isolated bubbles
rising in an unbounded expanse of a weakly viscous liquid are known to undergo a path
instability when their aspect ratio exceeds a critical value χc ≈ 2.0 (Duineveld 1995;
de Vries 2001; Veldhuis 2007; Zenit & Magnaudet 2008; Bonnefis et al. 2024). Depending
on the carrying fluid, the corresponding threshold Reynolds number may vary by more
than one order of magnitude, being approximately 670 for water and approximately 110 for
a silicone oil five times more viscous than water. Hence, depending on χ , two sub-regimes
exist for Reynolds numbers of O(102−103): a stable one, in which the bubble undergoes
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a moderate deformation and maintains a vertical path in the absence of the wall, and an
unstable one, in which its oblateness is somewhat larger and leads to an unstable path.

The only investigation to date in the first sub-regime appears to be the experiments by
de Vries (2001), some of which were described by de Vries, Biesheuvel & van Wijngaarden
(2002). There, bubbles rising near a vertical wall in water were observed to undergo
a regular bouncing motion when their equivalent radius, R, exceeded approximately
0.4 mm (corresponding to a Reynolds number in the absence of the wall, Re∞, of
approximately 150). As the bubble size increased further, the amplitude of the transverse
oscillations grew. Then, provided R exceeded a second critical value of approximately
0.6 mm (corresponding to Re∞ ≈ 370), the bubble, after colliding with the wall, was able
to reach a large wall-normal separation and never returned to the wall. Nevertheless, in the
initial stages, these ‘escaping’ bubbles behaved essentially as regular bouncing bubbles,
and managed to escape from the wall only after (at least) one period of near-wall bouncing.
Clearly, the mechanism promoting the final escape cannot be interpreted as the dominance
of the repulsive vortical mechanism summarised above as, if this were the case, the bubble
would migrate away from the wall from the very beginning of the interaction sequence.
This situation leads to the first objective of this work, which is to clarify the mechanism
triggering the escape from the wall of moderately deformed bubbles rising at sufficiently
high Re.

On the other hand, bubbles with χ > χc follow an unstable path even in the absence of
the wall. For χ � χc, results from Part 1 indicate that the vortical mechanism dominates,
causing all bubbles with Re ≈ 100 to consistently migrate away from the wall. Hence,
the repulsive vortical mechanism governs the bubble–wall interaction slightly below
the onset of path instability. Moreover, the magnitude of the vorticity generated at the
bubble surface (hence the intensity of the wake–wall interaction) increases with increasing
χ (Magnaudet & Mougin 2007). Given these two arguments, one would expect the
dominance of the vortical repulsive mechanism to persist as χ increases beyond χc. If
so, all bubbles undergoing path instability would exhibit a net migration away from the
wall, on which path oscillations would superimpose. This behaviour has indeed been
reported in previous numerical simulations (Zhang et al. 2020; Yan et al. 2022; Mundhra
et al. 2023) and in the recent experiments by Estepa-Cantero, Martínez-Bazán & Bolaños
Jiménez (2024), where bubbles were found to follow either planar zigzagging or flattened
spiralling paths while gradually migrating away from the wall. The same behaviour was
observed in Part 1 with a bubble with (χ, Re) ≈ (2.1, 96). In these investigations, highly
viscous fluids were considered, so that the Reynolds number remained between 100
and 200. In contrast, several experimental studies performed in water (de Vries 2001;
Jeong & Park 2015; Lee & Park 2017; Cai et al. 2023) considered much larger Reynolds
numbers in the range [700 − 1100], corresponding to equivalent bubble radii from 0.97 to
1.96 mm. The observed paths differed dramatically from those described above: instead of
gradually migrating towards the bulk, these high-Re bubbles were found to be trapped
by the wall, undergoing a zigzagging near-wall motion throughout their ascent. This
leads to the second question we wish to examine here, namely the underlying mechanism
responsible for the high-Re wall-ward trapping of bubbles. Is it linked to the attractive
inviscid Bernoulli mechanism, as in the moderately inertial regimes, or is it specifically
related to the interaction between the wall and the double-threaded wake that accompanies
zigzagging and spiralling bubbles?

To make progress on the above questions, we carry out a series of high-resolution
simulations covering a significant range of hydrodynamic conditions and analyse the
different evolution scenarios. In § 2, we formulate the problem, specify the range of
parameters we consider and summarise the numerical approach (a series of tests aimed
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Figure 1. Sketch of the problem. (a): flow configuration and basic quantities characterising the bubble
motion; (b): bubble geometry.

at confirming the adequacy of the grid resolution are detailed in Appendix A). Section 3
provides an overview of the observed scenarios, highlighting the existence of several
distinct regimes depending on whether the bubble path is stable or not. The escape scenario
observed in the absence of path instability is discussed in § 4, while those found in the
unstable path regime, with or without wall-ward trapping, are discussed in § 5. Section 6
summarises the main findings of both parts of this investigation.

2. Statement of the problem and outline of the numerical approach
An initially spherical gas bubble with radius R rises under the effect of buoyancy in a
stagnant liquid in the presence of a nearby vertical wall which we assume to be hydrophilic.
Figure 1(a) specifies the coordinate system, in which the wall lies in the plane x = 0.
The initial and current positions of the bubble centroid are xb0 = (x0, 0, 0) and xb(t) =
(xb(t), yb(t), zb(t)), respectively, and the minimum gap between the wall and the bubble
surface is δ(t).

The bubble translational velocity is denoted as v(t), and its possible oscillation
frequency is f . Similarly, the local fluid velocity is u(x, t), the vorticity is ω(x, t) =
∇ × u, and the possible spinning rate (to be defined later) of the interface is Ω(t).
Assuming that the gas-to-liquid density and viscosity ratios keep very small values, and
that the initial dimensionless separation X0 = x0/R is kept fixed (hereinafter X0 = 2,
except in some runs examined in § 4 and in Appendix B where the influence of X0 is
investigated), the flow and bubble dynamics may entirely be characterised by the Galilei
and Bond numbers, respectively defined as

Ga = ρl g
1/2 R3/2/μl , Bo = ρl gR2/γ , (2.1)

where ρl and μl are the density and dynamic viscosity of the carrying liquid, and γ and g
denote surface tension and gravity, respectively. One of the above two control parameters
may be replaced with the Morton number Mo = gμ4

l /(ρlγ
3) = Bo3/Ga4, which entirely

characterises the carrying liquid in a given gravitational environment. Once v(t) and f
are known, the flow dynamics may be characterised by the instantaneous bubble Reynolds
number Re(t) = 2ρl ||v(t)||R/μl and the Strouhal number (or reduced frequency) St =
2 f R/Vm , where Vm denotes the time-averaged rise speed. Increasing Bo while keeping
Ga fixed primarily increases the bubble aspect ratio, χ . Similarly, increasing Ga with Bo
kept fixed primarily increases Re.
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In Part 1, we focused on the parameter range 10 � Ga � 30 and 0.01 � Bo � 1.0, which
yielded terminal Reynolds numbers 25 � Re � 200 and aspect ratios 1.01 � χ � 2.1.
Here, we consider the more inertial range 30 < Ga � 90 and 0.02 � Bo � 2 in which the
resulting Reynolds numbers are of O(102) to O(103), and the maximum aspect ratio is
up to approximately 2.7. In this parameter range, strongly deformed bubbles with χ � 2.0
rising in an unbounded fluid follow zigzagging or (possibly flattened) spiralling paths
(Zenit & Magnaudet 2008; Cano-Lozano et al. 2016). The corresponding Morton numbers
range from 1.2 × 10−13 to 1.0 × 10−5, i.e. from Galinstan (a liquid metal) to silicone oil
DMS-T11 whose kinematic viscosity is ten times that of water at 20 ◦C.

The results to be discussed below were obtained by solving the three-dimensional time-
dependent two-phase Navier–Stokes equations using the open-source flow solver Basilisk
(Popinet 2009, 2015). Characteristics of this code and conditions imposed at the various
boundaries of the computational domain were discussed in Part 1 and are not duplicated
here. Here, we only mention that the flow within the liquid and the bubble is determined
by solving the Navier–Stokes equations using the one-fluid formulation, assuming that
the interface is free of any contamination. The shape of the interface is governed by
the transport equation for the volume fraction of one of the two fluids, an indicator
that is also used to compute the local density and viscosity of the two-phase medium
according to certain averaging rules detailed in Part 1. Readers are referred to Zhang,
Ni & Magnaudet (2021) for details on the governing equations and numerical method, and
to Part 1 for specific aspects related to grid refinement, especially in the bubble–wall gap.
The computational domain is a cubic box with an edge length L = 480R, twice that used
in Part 1. This larger size allows us to track the bubble over a sufficiently long vertical
distance to examine its behaviour under fully developed conditions. The minimum cell
size, Δmin , is decreased down to Δmin ≡ Δmin/R ≈ 1/68 close to the interface, and to
Δmin ≡ 1/34 in the far wake. Following Part 1, the former minimum is further decreased
down to ≈ 1/136 when δ ≡ δ/R � 0.15 to properly resolve the flow in the gap when the
bubble gets very close to the wall. The resolution in the far wake is approximately twice
as fine as in Part 1, allowing us to track the details of the wake structure over distances
of O(10R) downstream of the bubble. The adequacy of the grid resolution is confirmed
through a grid-independence study detailed in Appendix A. Comparisons between present
predictions and experimental results concerning bubbles with non-straight paths rising
either in the presence (Estepa-Cantero et al. 2024) or in the absence (Duineveld 1995;
Tagawa, Takagi & Matsumoto 2014) of a wall are also discussed in this appendix. The good
agreement obtained with these experimental results confirms the reliability and accuracy
of the numerical approach. However, it must be stressed that even the maximum refinement
Δmin ≡ 1/136 is not sufficient to properly resolve the flow in the gap when δ(t) becomes
extremely small. In such cases, lubrication effects in the gap are not fully captured, leading
to what is referred to as a ‘bubble–wall collision’ in the next sections. It was shown in
Part 1 that this under-resolution has virtually no effect on the bouncing frequency and
only lowers the maximum separation achieved by the bubble after a ‘collision’ event by a
few per cent.

To roughly characterise the bubble geometry, we need to define the orientation and
length a of the minor axis, and the lengths b and c of the major axes in the wall-normal
and wall-parallel planes, respectively. To this end, we first consider the wall-normal plane
containing the bubble centroid and identify the shortest and longest axes passing through
this centroid, following Zhang et al. (2021). With this definition, there is in general no
reason for these two axes (denoted as x ′ and y′ in figure 1(b), respectively) to be strictly
orthogonal. The third axis, denoted as z′ in the figure, is parallel to the wall and passes
also through the bubble centroid. Nevertheless, the maximum horizontal extension of the
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bubble in planes parallel to the wall may not lie along this axis if the bubble exhibits
asymmetries. To better approach this maximum extension, we identify the length c as that
of the longest horizontal segment connecting two points of the bubble surface and lying
in the wall-parallel plane passing through the centroid. We are then in position to compute
the principal aspect ratio χ = b/a, and the equatorial axes ratio, χeq = b/c. In order to
obtain a global characterisation of the fluid motion at the interface, we also introduce
the interface spinning rate, following a suggestion of Rastello et al. (2009). Based on the
velocity of all fluid elements at the interface, we define this spinning rate, Ω , as

Ω(t) = 3
2Vs

∫
Vs

r(t) × u(r, t)

||r(t)||2 dVs , (2.2)

where Vs is the volume of the thin film made of the computational cells straddling the
gas–liquid interface, i.e. those in which the gas and the liquid are both present, and
r(t) = x − xb(t) is the position vector with respect to the bubble centroid. Taking
advantage of the geometric volume of fluid method employed in Basilisk, the above
estimate for the spinning rate may be refined by weighting the integrand in (2.2) by the
interfacial area enclosed in each interfacial cell rather than by the cell volume. Tests
conducted using this refined definition revealed virtually no difference in the estimated
spinning rate in two different regimes, indicating that the definition (2.2) is accurate over
the range of parameters considered in this study. The definition (2.2) may be shown to
yield the exact spinning rate of a sphere undergoing a rigid-body rotation about one of its
diameters. However, bubbles deform over time and the carrying fluid obeys a shear-free
condition at their surface, making the angular dynamics of bubbles very different from that
of usual rigid bodies surrounded by a fluid obeying a no-slip condition. This is why the
term ‘spinning rate’ must not be misunderstood, as a bubble with Ω �= 0 may not rotate as
a whole. Therefore, in general, Ω must only be regarded as a three-dimensional measure
of the average fluid rotation over the bubble surface.

In the following sections, we make extensive use of dimensionless quantities to describe
the flow field and bubble motion. To this end, all variables are normalised using R and√

R/g as characteristic length and time scales, respectively. The dimensionless time and
local position are denoted as T and X = (X, Y, Z), respectively, while the dimensionless
frequency and position of the bubble centroid are f and Xb = (Xb, Yb, Zb), respectively.
Similarly, in the (ex , ey, ez)-basis, the i th component of the dimensionless bubble velocity,
spinning rate, fluid velocity and vorticity are denoted as Vi , Ω i , Ui and ωi , respectively.

3. Overview of the results
Figure 2(a) summarises in the form of a phase diagram in the (Bo, Ga) plane the various
types of near-wall motion observed in the simulations; results for Ga = 30 were taken
from Part 1. The solid line crossing the phase diagram corresponds to the neutral curve
(reproduced from Bonnefis et al. 2024), beyond which the bubble path becomes unstable
when the fluid domain is unbounded. Figure 3 is the equivalent of figure 2(a) in the
(χ, Re)-plane.

3.1. Below the neutral curve
We first review the behaviours observed under conditions where the bubble would rise
in a straight line in an unbounded fluid, which correspond to cases located below the
neutral curve in figure 2(a). Up to Ga = 50, the three types of motion already analysed
in Part 1 are observed. Specifically, periodic near-wall bouncing takes place at low Bo,
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Figure 2. Styles of paths observed in the simulations. (a) Phase diagram in the (Bo, Ga)-plane; (b−d) typical
trajectories illustrating the bouncing–tumbling–escaping (BTE) scenario at (Bo, Ga) = (0.05, 70), the near-
wall zigzagging (NWZ) motion with (solid line, (Bo, Ga) = (0.25, 90)) and without (dashed line, (Bo, Ga) =
(1, 70)) bubble–wall collisions and the wavy migration away (WMA) scenario with a planar zigzagging path
((Bo, Ga) = (0.2, 70), solid line; (Bo, Ga) = (1.5, 50), dashed line), respectively. Solid line in (a) is neutral
curve corresponding to the onset of path instability in an unbounded fluid (Bonnefis et al. 2024); dashed
lines: iso-Mo lines for different liquids (see table 1 in Part 1 for their physical characteristics). Open symbols,
identified with codes (1)–(5), denote cases in which bubbles do not undergo a path instability, with (1) and
(2) periodic near-wall bouncing with and without bubble–wall collisions, respectively; (3) damped bouncing;
(4) migration away from the wall; (5) BTE. Solid symbols, identified with codes (6)–(9), denote scenarios
observed in the presence of path instability, with (6) and (7) NWZ with and without bubble-wall collisions,
respectively; (8) and (9) WMA with a planar zigzagging and a (possibly flattened) spiralling path, respectively.
Data at Ga ≈ 76, Ga ≈ 87 and Ga � 94 in water are taken from experiments by de Vries (2001), while those
identified with symbols (10) (silicone oil DMS-T05 at Ga = 35), and (11) (water–glycerol mixture at Ga ≈ 38)
are taken from those of Estepa-Cantero et al. (2024).
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Figure 3. Styles of paths in the (χ, Re)-plane. For caption, see figure 2. Vertical line: χ = 1.95; thin dashed
lines: iso-Ga curves, with Ga increasing from 30 to 90 from bottom to top and Bo increasing from 0.02 to 2
from left to right on each iso-Ga curve. For cases below the neutral curve, values of Re and χ are based on
final conditions, except in cases with near-wall oscillations, for which average values taken over a single period
are used. For cases beyond the neutral curve, values of Re and χ correspond to averages taken over one period
of the zigzagging or spiralling path in an unbounded fluid.
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while a regular migration away from the wall is observed at large Bo, with, occasionally,
damped bouncing motions in between. As discussed in Part 1, the mechanisms governing
the transition between these three styles of path result from the competition between
the irrotational and vortical interaction mechanisms. A new type of motion occurs for
Ga � 60, in which the bubble manages to escape the near-wall region after one or two
bounces. Figure 2(b) shows a typical path corresponding to this scenario. After two
bounces, the bubble briefly migrates towards the wall (as highlighted in the inset of
panel b), then quickly departs from it, eventually reaching a wall-normal position Xb ≈ 6.7
at a vertical position Yb ≈ 200. Afterwards, the bubble almost rests at this wall-normal
position, its wall-normal velocity exhibiting only minute values. This is because the
disturbance induced by a bubble moving at Re =O(100) decays essentially as the inverse
of the cube of the distance to its centroid, following the prediction of potential flow theory.
Hence, the presence of the wall is only weakly ‘felt’ by the bubble in the late stages of
its ascent, so that it rises almost vertically as in an unbounded fluid. This path evolution
differs from that observed in the damped bouncing regime, where the bubble remains close
to the wall throughout its ascent and finally rests at a wall-normal position where the total
transverse force vanishes.

This escape scenario specific to highly inertial regimes, particularly the brief wall-
ward migration preceding the escape, was observed experimentally in water by de Vries
et al. (2002) (see figure 5 therein) with an air bubble corresponding to (Bo, Ga) ≈
(0.095, 75.5). According to figure 2(a), this scenario only occurs for nearly spherical
bubbles at Ga = 60, but quickly dominates the entire region Bo < 0.1 when Ga is
increased beyond. Figure 3 makes it clear that this scenario is encountered for Re � 600
and χ � 1.85. The underlying mechanisms will be discussed in § 4. Here, we just point out
that, prior to the escape, a strong vortical layer forms in the vicinity of the bubble surface
upon its collision with the wall, causing the z-component of the spinning rate, Ω z , to take
large values. This spinning motion yields a sizeable Magnus-like force pointing away from
the wall, which promotes the bubble escape. In what follows, we refer to this type of path
evolution as the bouncing–tumbling–escaping (BTE) scenario.

To illustrate the influence of the Reynolds number on the style of path, we select a
series of results obtained at two specific values of the bubble aspect ratio, χ = 1.4 and
χ = 1.8. Figure 4 shows the variations of the wall-normal velocity, Vx (T ), with the lateral
position, Xb(T ), as Re increases by one order of magnitude, from values of O(102) to
O(103). For χ ≈ 1.8, the bubble migrates away from the wall at Re = 158, experiences
damped near-wall oscillations at Re = 204 and bounces periodically on the wall at
Re = 509. In these two bouncing cases, the maximum lateral separation between the
bubble and wall increases from 3 to 4 as Re increases. At Re = 792, the bubble manages
to reach a lateral position Xc = 6.3, where it rests. The brief wall-ward migration taking
place before the escape corresponds to the short period of time when Vx (T ) < 0 in the
loop formed by the corresponding curve. For χ = 1.4, the bubble already experiences
periodic near-wall bounces at Ga = 35, corresponding to Re = 218. At Re = 531, while it
still undergoes regular bouncing, its lateral motion weakly reverses during the departing
stage. The maximum lateral position is Xb = 5.3, and this large separation results in a
very slow bouncing frequency, St = 0.0055. As Re increases further, the bubble escapes
from the wall, resting eventually at a lateral position Xc = 7.3 at Re = 793 and Xc = 8.8
at Re = 1247.

Figure 4 also allows the effects of the aspect ratio to be appreciated. First, it is seen that,
in the two cases with Re close to 200, the less deformed bubble experiences periodic
bounces, while that with χ = 1.80 follows a damped bouncing evolution. In the two
cases with Re close to 500, both bubbles undergo regular bouncing but their maximum
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Figure 4. Variations of the bubble wall-normal velocity, Vx , as a function of the bubble–wall distance, Xb, for
selected cases at (a) χ ≈ 1.8, and (b) χ ≈ 1.4. The corresponding values of Bo, Ga and the resulting Re are
indicated in each panel. The initial position is set as (X0, Vx ) = (2, 0). In periodic bouncing cases (red lines),
only the variation during the fully developed stage is shown. In BTE cases (solid green lines), only variations
during the last cycle of motion, starting at a time when the bubble begins to migrate towards the wall, are
shown.

lateral position reduces from 5.3 at χ = 1.42 to 4.0 at χ = 1.79. Accordingly, the reduced
frequency increases from 0.0055 at χ = 1.42 to 0.013 at χ = 1.79. Last, when Re ≈ 790,
both bubbles manage to escape from the near-wall region and their final wall-normal
position also decreases as χ increases.

3.2. Beyond the neutral curve
In figure 3, bubbles with an aspect ratio larger than ≈ 1.95 are found to follow zigzagging
or spiralling paths, consistent with the experimental observations of Zenit & Magnaudet
(2008). Similarly, in figure 2(a), path instability is seen to take place for all (Bo, Ga)

sets located beyond the neutral curve determined for bubbles rising in an unbounded fluid.
This observation suggests that the presence of the wall plays no role in the occurrence
of path instability. However, in its early stage, it selects the orientation of the plane in
which the bubble oscillates, making path instability arise through an imperfect bifurcation.
Up to Ga = 50, all bubbles experiencing path instability migrate away from the wall.
We refer to this type of motion as the wavy migration away (WMA) scenario. In this
regime, bubbles maintain a zigzagging path in the wall-normal plane up to Bo ≈ 1.5 (see
the examples in figure 2d). Then, this path transitions to a spiralling motion at larger
Bond numbers. Bubbles following the WMA scenario were observed experimentally by
Estepa-Cantero et al. (2024). The corresponding data, shown in figure 2(a), corroborate
the present findings. For Ga > 50, the same scenario is encountered both for Bo > 1 and
within a narrow band of significantly lower Bond numbers lying just above the neutral
curve, e.g. Bo ≈ 0.2 for Ga = 70 and Bo ≈ 0.12 for Ga = 90.

When Ga is larger than 50 and Bo is above the aforementioned band but below unity,
a new type of motion emerges. In this intermediate range, the bubble is trapped near
the wall, ultimately undergoing a near-wall zigzagging-like (NWZ) motion. Bubble–wall
collisions due to an incomplete resolution of lubrication effects in the immediate vicinity
of the wall (see § 2) occur for Ga � 70. Two bubble paths typical of this regime, with
and without bubble–wall collisions, are shown in figure 2(c). Although the upper limit
of present simulations is Ga = 90, available data indicate that this scenario still holds at
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Figure 5. Variation of the Strouhal number, St , of path oscillations as a function of the Morton number. Solid
symbols: present results in the wall-bounded configuration (for caption, see figure 2); open circles: present
results in an unbounded fluid. Thin solid and dashed lines connect St values corresponding to a fixed Bo
and different Ga (hence, Mo) in the wall-bounded and unbounded configurations, respectively. Thick solid
line: neutral curve of path instability in an unbounded fluid (Bonnefis et al. 2024); �: selected values of the
critical Strouhal number, Stc, from the same reference; 
: experimental data in water (Duineveld 1994, 1995;
Veldhuis 2007; Veldhuis, Biesheuvel & van Wijngaarden 2008; Jeong & Park 2015) (values were interpolated
from neighbouring Bo). Symbols + and ×indicate data at Bo ≈ 1 from experiments in silicone oil DMS-T05
by Zenit & Magnaudet (2009) and Estepa-Cantero et al. (2024), respectively; �indicates numerical data for
various liquids in an unbounded fluid (Cano-Lozano et al. 2016).

larger Ga. In particular, it was identified in experiments performed in pure water (de Vries
2001; Jeong & Park 2015; Lee & Park 2017; Cai et al. 2023) with millimetre-sized air
bubbles corresponding to 95 � Ga � 270 and 0.125 � Bo � 0.5. It is important to stress
that the NWZ regime and the near-wall bouncing regime observed for low enough Bo and
Ga below the neutral curve (open red symbols in figure 2a) are totally distinct. Indeed,
although bubbles follow periodic near-wall paths in both cases, the mechanisms governing
these two regimes are fundamentally different. In the moderate-Ga near-wall bouncing
regime, periodic bouncing is linked to the shedding of a pair of streamwise vortices in
the bubble wake, with vortex formation governed by the near-wall shear resulting from
the no-slip condition at the wall (see § 4 of Part 1 for details). In contrast, in the high-Ga
NWZ regime, lateral oscillations arise due to path instability that would occur even in an
unbounded fluid. Furthermore, the mechanism preventing NWZ bubbles from escaping
the wall is linked to intense wake–wall interactions, as will become clear in §§ 5.2–5.3,
whereas in the moderate-Ga near-wall bouncing regime, bubble entrapment results from
the attractive inviscid Bernoulli effect.

Figure 5 shows how the Strouhal number (or reduced frequency), St , of the transverse
oscillations vary from one fluid to the other. In the simulations, variations of Mo are
achieved by varying Ga while keeping Bo constant. For each iso-Bo series (thin solid
and dashed lines), St is seen to decrease with increasing Mo (hence, decreasing Ga).
The reduced frequency approaches the threshold value, Stc, predicted by linear stability
analysis (Bonnefis et al. 2024) at the maximum Mo at which path instability takes place at
the considered Bo. This finding indicates that the presence of the wall does not affect the
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oscillation frequency of bubbles close to the threshold of path instability. To check whether
or not this is still the case further away from the threshold, we ran additional runs without
the presence of the wall for (Bo, Ga) sets for which the NWZ evolution is observed
when the wall is present. Comparing both sets of results reveals that interactions with
the wall increase the reduced frequency for Bo � 0.25. For instance, with Bo = 0.5 and
Mo = 1.9 × 10−9, St increases by nearly 20 % from the unbounded to the wall-bounded
configuration. Some available experimental and numerical data, all of which were obtained
in an unbounded fluid except those of Estepa-Cantero et al. (2024), are also included in
the figure. These data are found to agree well with present predictions, confirming the
accuracy of our simulations in the unbounded configuration (the low-Mo simulations of
Cano-Lozano et al. (2016) suffer from under-resolution, which is why the data reported
for Mo =O(10−10) slightly deviate from present predictions).

In the following sections, we examine in more detail the results corresponding to the
three regimes that were not observed in Part 1, namely the BTE scenario which takes
place at large enough Ga in the stable path regime, and the WMA and NWZ scenarios,
which are both observed beyond the threshold of path instability.

4. The BTE regime
Figure 6 illustrates the evolution of several indicators for a bubble with (Bo, Ga) =
(0.05, 70) following a BTE evolution. According to panel (a), the bubble bounces twice
before escaping from the near-wall region. Before each bounce, it first collides with the
wall, as indicated by values of Xb (the distance from the bubble centroid to the wall)
smaller than one. Upon collision, the aspect ratio quickly decreases to a minimum close
to 1.0 and the bubble keeps this virtually spherical shape for approximately 3−4 time
units (see the detailed evolution in panel b). Panels (c, d) show that, upon the second
collision, the bubble rise velocity, Vy , falls dramatically by a factor of six, reducing from
4.8 at T = 33 to 0.75 at T = 36.5. Meanwhile, the direction of the wall-normal velocity,
Vx , reverses three times. Between the last two reversals, Vx is negative, so that the bubble
undergoes a short wall-ward migration prior to escaping definitively away from the wall
region (mentioned as the ‘Reversal’ period in panel b).

Examination of the flow field in the vicinity of the bubble helps elucidate key aspects
of the mechanisms involved. The inset in figure 6(e) shows the iso-contours of the
spanwise vorticity component, ωz , in the wall-normal symmetry plane Z = Zb just after
the collision (T = 36). This component is seen to be uniformly negative in the bubble
vicinity, indicating that fluid particles experience a clockwise rotation about the Z -axis.
The global rotation of fluid particles at the bubble surface may be quantified using
the spinning rate Ω defined by (2.2). The evolution of its spanwise component, Ω z , is
illustrated in figures 6(e, f ). Upon the first collision, |Ω z| quickly increases from zero
to ≈ 1.4. Combined with the simultaneous sharp decrease of Vy , this suggests that part of
the fluid kinetic energy associated with the bubble translation is converted into ‘rotational’
kinetic energy. The fluid surrounding the bubble being spinning, the bubble experiences
a lift force FM

L ∝ Ω × V , which may be interpreted as a Magnus-like force. As Ω z , Vx
and Vy are all of order unity during this transient stage, this force is expected to be
comparable in magnitude to the buoyancy force. Since Vy is always positive, the wall-
normal component of this force is positive, helping the bubble move away from the
wall. This is the key mechanism that makes the BTE scenario possible. An essential
characteristics of the Magnus-like force is that it keeps significant values over a long post-
collision period of time, while the bubble has already moved a substantial distance away
from the wall. For instance, figure 6(b) indicates that the gap is already one bubble radius
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Figure 6. Evolution of several characteristics of the bubble motion during a BTE scenario for (Bo, Ga) =
(0.05, 70). The right panels provide a zoom of the evolution shown in the left panels in the time interval
35 � T � 40. (a,b) show wall-normal bubble position (red line and left axis) and bubble aspect ratio (green
line and right axis). (c,d) show wall-normal (red line and left axis) and vertical (green line and right axis)
velocities of the bubble centroid. (e, f ) show spinning rate of the bubble surface. The inset in panel (e) displays
the iso-contours of the spanwise vorticity ωz at T = 36 in the symmetry plane Z = Zb; red and blue colours
refer to positive and negative values, respectively, with a maximum magnitude of 5.

wide (Xb = 2) at T = 38.3, a moment at which, according to panels (d) and ( f ), the
wall-normal component of Ω × V is still close to unity.

When Vx is positive, the vertical component FM
L · ey is negative, thus counteracting

buoyancy. This leads to a sharp decrease in Vy during the time interval 35.5 � T � 36.7,
and to a lesser extent from T = 37.5 to T = 39. Conversely, during the short wall-ward
stage noticed for 36.7 � T � 37.5, this component cooperates with the buoyancy force,
resulting in an increase of the rise speed. Of course, viscous effects and liquid inertia play
a central role beyond the transient stage during the Magnus-like force controls the bubble
dynamics. Since near-wall dissipation increases as the gap shrinks, viscous processes are
responsible for the sharp decrease of the rise speed prior to the collision (33.5 � T �
35.5). Conversely, inertial effects associated with the amount of liquid displaced by the
bubble result in an added-mass force that limits the time variations of Vy . This is why the
rise speed is still only half its pre-collision value at T = 40, while Ω z has already almost
returned to zero.
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Figure 7. Evolution of the vertical (top row) and wall-normal (bottom row) fluid velocity in the vicinity
of a bubble with (Bo, Ga) = (0.05, 70). Panels (a−b) and (d−e) show the distribution in the wall-normal
symmetry plane Z = Zb at T = 35.2 and 36, respectively. The bubble is rising upwards, and the wall is shown
with a thick black line on the left. (c) Distribution of Uy along the horizontal line Y = Yb, Z = Zb, with solid
and dashed lines showing the velocity outside and inside the bubble, respectively. (d) Same for Ux along the
vertical line X = Xb, Z = Zb.

The discussion above also helps explain the rapid variations noticed in the bubble shape
upon the second collision, particularly the swift recovery of the spherical shape (see also
figures 7a−b and 7 d−e). This recovery is primarily driven by two factors. First, the
significant decrease in the bubble rise speed immediately after the collision revealed by
figure 6(d) reduces the pressure difference between the front stagnation point and the
bubble’s equator. As the bubble moves away from the wall, this quickly reduces its aspect
ratio. Second, the strong collision-induced spinning flow around the bubble attenuates the
local pressure differences in the fluid, maintaining its shape spherical for some time.

Figure 7 shows the bubble shape and position and the velocity distribution of the
surrounding liquid in the symmetry plane Z = Zb just before and after the second
collision. Panel (c) reveals that the extremum of Uy in the gap experiences an abrupt
change from −2.6 at T = 35 to ≈ 2.5 at T = 35.2. The maximum Uy goes on increasing
after the collision, reaching a value of 4.2 at T = 36.5 (not shown), before relaxing slowly
to zero as the bubble moves away from the wall. The massive flow reversal in the gap at the
beginning of the sequence results from the rapid decrease of the bubble rise speed, which
forces fluid elements initially located in the wake to catch up with those located on both
sides of the bubble and eventually replace them. The consequences of this catch-up process
are milder along the fluid-facing side of the bubble, where the negative vertical velocity is
significantly reduced but does not change sign over an O(1)-thick fluid layer. The positive
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Figure 8. Variation of the maximum spinning rate with the Bond and Galilei numbers. Symbols are identical
to those in figure 2. The thick horizontal line corresponds to max(|Ω z |) = 1.8.

Uy in the gap and their negative counterpart on the fluid-facing side both provide negative
contributions to the z-component of the cross product (X − Xb) × U at the bubble surface,
hence to Ω z . However, the contribution coming from the gap is 3 − 4 times larger, and the
difference is even larger before the collision, owing to the weak negative values of Uy on
the fluid-facing side (Uy ≈ 0 at the position where the solid green line corresponding to
T = 35.2 turns dashed). Owing to the predominant suction of the wake towards the gap
region, the wall-normal velocity is negative at the back of the bubble, as panels (d−e)
confirm. These negative Ux values are significantly larger than their positive counterpart
ahead of the bubble (see panel f ), providing another sizeable negative contribution to Ω z .

The BTE regime may set in only if the spinning rate resulting from the mechanism
described above is strong enough. Figure 8 displays the maximum spinning rate computed
along the bubble path for all cases corresponding to a periodic bouncing or a BTE
regime; some cases with Ga � 30 considered in Part 1 are also included. Simulations
corresponding to 40 � Ga � 70 where run with an initial separation X0 = 3.5, to ensure
that the possible escape event takes place after the first collision (see Appendix B for a
discussion of the influence of X0 on the escape process). These results suggest that the
bubble path transitions from the periodic bouncing regime to the BTE regime when the
maximum spinning rate exceeds a critical value close to 1.8.

To get some more insight into the magnitude of the Magnus-like force, an estimate of
the other transverse forces acting on the bubble during its escape from the wall region is
required. Some of the kinematic data provided in panels (b),(d) and ( f ) of figure 6 may be
used for this purpose, noting that the bubble remains nearly spherical in the time interval
36 � T � 40, as panel (b) indicates. Consider for instance the situation at T = 37.5,
a moment at which the transverse velocity, Vx , hence the transverse quasi-steady viscous
drag force, is zero. At this moment, Xb ≈ 1.6, Vy ≈ 2.0, Ω z ≈ −0.95. Once normalised
by ρl gR3, the Magnus-like force may be written in the form FM

L = (4/3)πCΩ
L Ω × V ,

with CΩ
L being the (unknown) Magnus lift coefficient. Hence, the wall-normal component

of this force at this position is approximately 7.95CΩ
L . At the same transverse position,

the attractive force F P = −(π/2)CP V 2
y ex resulting from the Bernoulli effect is close to

−0.38, based on the estimate of the interaction coefficient CP(Xb = 1.6) ≈ 0.06 resulting
from equation 7 of Takemura & Magnaudet (2003). As discussed in Part 1, there is a

1013 A19-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
16

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10167


Journal of Fluid Mechanics

large uncertainty in the magnitude of the transverse component of the inertia-induced
force, owing to the unknown contribution of the trailing vortices entrained laterally by the
bubble. With all due caution, an order-of-magnitude estimate of this force may be obtained
by neglecting this contribution. With this assumption, the transverse inertia-induced
force, F I · ex = −(4/3)πCI dVx/dT may be estimated by simply considering that the
inertia-induced coefficient, CI , is close to the familiar added-mass coefficient of a sphere
accelerating in an unbounded fluid, i.e. CI ≈ 1/2. With dVx/dT ≈ 1.45 at T = 37.5, this
estimate yields F I · ex ≈ −3.04, suggesting that this contribution dominates the overall
force that resists the bubble escape. Summing the two resistive contributions and assuming
that the repulsive Magnus-like force is almost in balance with the overall attractive force
implies CΩ

L ≈ 0.43. A similar estimate may be performed at T = 38.3, a moment when the
gap thickness equals the bubble radius (Xb = 2.0), so that CP ≈ 0.024. At this moment,
Vx ≈ 1.0, Vy ≈ 1.6, Ω z ≈ −0.6 and dVx/dT ≈ 0.8, which yields F P · ex ≈ −0.1 and
F I · ex ≈ −1.68. At this position, the Reynolds number Re = 2Ga(V 2

x + V 2
y )1/2 is close

to 265, making it possible to estimate the quasi-steady transverse drag force using Moore’s
high-Reynolds-number prediction (Moore 1963). In the present notations, this yields FD ·
ex ≈ −12π(1 − 2.2Re−1/2)Ga−1Vx ≈ −0.47. Adding all three attractive contributions
together and balancing with the Magnus-like force now implies CΩ

L ≈ 0.56. The above
two predictions for the Magnus lift coefficient, corroborated by similar estimates for
other (Bo, Ga) sets, suggest that CΩ

L ≈ 0.5 ± 0.07. Although this result is reminiscent
of the well-known inviscid prediction for the lift coefficient Cs

L of a sphere immersed in
a weak linear shear flow, Cs

L = 1/2, this is presumably largely coincidental given the very
different nature of the present conditions, in which unsteadiness, flow inhomogeneity and
wall vicinity play a central role.

5. Regimes encountered beyond the path instability threshold

5.1. The WMA regime
The first phenomenology encountered beyond the neutral curve, at least up to Ga = 90,
corresponds to the WMA regime. To illustrate this regime, we select a bubble with
(Bo, Ga) = (1.5, 50), i.e. a Morton number Mo = 5.4 × 10−7, close to that of silicone
oil DMS-T05. According to figure 2(a), the associated conditions are by far supercritical,
since the critical Bond number for this specific liquid is close to 0.85.

Figure 9 shows how the characteristics of the path and geometry of this bubble evolve
as it rises. Panels (a − b) indicate that path instability quickly sets in and saturates
after a few cycles of oscillations. Path oscillations take place in the wall-normal plane
and give rise to a planar zigzagging motion, since the horizontal wall-parallel velocity
component, Vz , remains vanishingly small throughout the bubble ascent. At the same
time, the bubble gradually migrates away from the wall with, according to panel (a), an
average drift velocity close to 0.01, much smaller than the maximum of Vx , which is close
to 0.4. The evolution of this velocity component is far from being perfectly sinusoidal,
indicating that the dynamics of the zigzagging motion is nonlinear. This nonlinearity is
further highlighted in panel (c), which shows the evolution of the transverse and vertical
accelerations. In particular, the time record of dVx/dT exhibits small oscillations with a
frequency five times larger than that of the primary oscillations. The vertical velocity also
exhibits strongly non-sinusoidal oscillations which make the bubble rise speed vary upon
time by 7.5 %. According to panel (b), the primary oscillations of Vx have a frequency
f = 0.092, in perfect agreement with the predictions of the linear stability analysis
performed by Bonnefis et al. (2024) with a deformable bubble rising in an unbounded fluid
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Figure 9. Evolution of various characteristics of the bubble path and geometry during the lateral migration of
a bubble with (Bo, Ga) = (1.5, 50). (a) Wall-normal position of the centroid; (b) wall-normal (solid red, left
axis), horizontal wall-parallel (dashed red, left axis) and vertical (solid green, right axis) components of the
bubble centroid velocity; (c) wall-normal (red) and vertical (green) acceleration of the centroid; (d) principal
bubble aspect ratio (red, left axis) and equatorial axes ratio (green, right axis). The three circles in (a) identify
the first three moments at which the wake structure is shown in figure 10.

(see their figure 10b). The same study revealed that a secondary mode becomes unstable
when Bo exceeds the critical value 1.38 (their figure 10a). This mode corresponds to
axisymmetric shape oscillations about the bubble minor axis (so-called (2, 0) oscillatory
mode for oblate spheroids). The predictions of Bonnefis et al. (2024) indicate that, for
(Bo, Ga) = (1.5, 50), the frequency of these shape oscillations is 5.5 larger than that of
path oscillations, close to the ratio of five noticed in panel (c). This proximity strongly
suggests that the high-frequency oscillations present in the evolutions of the velocity and
acceleration components in figure 9 are the footprint of this mode of shape oscillations.

Besides these small-amplitude high-frequency oscillations, figure 9(d) makes it
clear that the bubble undergoes significant periodic shape variations along its path.
Both the principal aspect ratio, χ , and the equatorial axes ratio, χeq , reach their
minimum at the extremities of each zigzag, where Vx vanishes and dVx/dT reaches its
extrema. These simultaneous variations indicate that the bubble experiences a periodic
compression/dilatation along the equatorial axis lying in the wall-normal plane (the
x ′-axis with length b in figure 1b). Examination of bubble contours in the appropriate
planes (not shown) reveals that these variations are accompanied by simultaneous phase-
opposed oscillations along the z′-equatorial axis, while the bubble keeps an almost
constant length along the y′-minor axis. Therefore, the observed changes in χ and χeq
appear to be driven by pressure variations whose wavelength is half the perimeter of the
bubble contour lying in the equatorial (x ′, z′)-plane. These oscillations are induced by
(and enslaved to) the transverse motion of the bubble. So, their dynamics is distinct from
that of natural shape oscillations of bubbles rising in a straight line, as underlined by their
much smaller frequency. Note that the wall plays no role in this dynamics, since the figure
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T = 16 38 82 213

Y

X

Figure 10. Distribution of the spanwise vorticity, ωz , in the symmetry plane Z = Zb past a bubble with
(Bo, Ga) = (1.5, 50) at several moments when it reaches the wall-facing extremity of a zigzag (circles in
figure 9a). Red and blue iso-contours refer to positive and negative values of ωz , respectively, with a maximum
magnitude of 2.0.

makes it clear that the minima reached by χ and χeq are identical at both ends of a given
zigzag, i.e. they do not depend on the instantaneous wall-normal position of the bubble. In
addition to these zigzag-driven oscillations, the bubble shape exhibits a marked asymmetry
along the x ′-axis, with its vertical cross section taking an egg-like shape pointing towards
the exterior of the zigzag (see figure 10).This asymmetry is not related to the presence of
the wall. Rather, as analysed by Cano-Lozano et al. (2016), it results from the periodic
rotation of the bubble about the z′-axis, which lowers (increases) the pressure on the part
of the surface located the farthest from (the closest to) the zigzag centreline.

Figure 10 shows how the distribution of the spanwise vorticity evolves as the bubble
moves progressively away from the wall. The four snapshots are taken at moments when
the bubble reaches the wall-facing extremity of a zigzag. A wall layer with significant ωz-
values is present, even ahead of the bubble, at T = 16, with in particular a stripe of intense
negative vorticity (corresponding to a downstream flow) in the bubble–wall gap. This
structure still subsists at T = 38, albeit with a much weaker intensity, and disappears in
later times. Only in the downstream region located several radii downstream of the bubble
do significant non-zero values of ωz subsist close to the wall. This is where the wake
still weakly interacts with the wall, generating a small repulsive force responsible for the
average migration through the familiar vortical mechanism summarised in § 1 and already
active in finite-to-moderately inertial regimes. To summarise, apart from the early stages
of the rise, present observations only detect weak interactions of the wake with the wall,
and reveal a close agreement with the global stability predictions of Bonnefis et al. (2024)
in an unbounded fluid regarding the characteristics of the zigzagging motion. Combining
both aspects leads us to the conclusion that the WMA regime consists essentially of the
superposition of the oscillating path resulting from the path instability mechanism in an
unbounded flow (with the wall only dictating the orientation of the symmetry plane of
the path), and the gradual wake-induced migration away from the wall already active
at lower Ga, especially with moderately deformed bubbles (see figure 16). The same
conclusion holds in the WMA scenario observed with spiralling bubbles. In particular, we
examined the path and dynamics of a bubble with (Bo, Ga) = (2, 60) rising in silicone oil
DMS-T05 and found that once its wake, made of a pair of vortex threads wrapped around
one another, is fully developed, it only weakly interacts with the wall in a manner similar
to that displayed in figure 10.
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Figure 11. Influence of the Bond and Galilei numbers on the evolution of the wall-normal position of the
bubble centroid in the WMA regime. (a) Increasing Ga at fixed Bo; (b) increasing Bo at fixed Ga.

Figure 11 gathers some records of the bubble path for various Ga at Bo = 1.5 (panel
a), and for various Bo at Ga = 50 (panel b). Clearly, the average velocity with which the
bubble migrates away from the wall varies non-monotonically with the control parameters
in both cases. For instance, the fastest migration in panel (a) is seen to be reached for
Ga = 50 (blue curve), while the slowest one is obtained for Ga = 60 (purple), with the
two evolutions corresponding to Ga = 40 (green) and 70 (orange) exhibiting intermediate
migration velocities. Noting that in the saturated stage the amplitude of the zigzagging
motions experiences little variation with Ga, it appears that the early stages of the path
are responsible for the most part of the non-monotonic variations of the average migration
velocity. For a fixed Bo, the higher Ga the larger the growth rate of the zigzagging motion,
since increasing Ga increases the distance to the path instability threshold. For this reason,
the transverse oscillations of paths corresponding to Ga = 60 and 70 quickly reach a large
amplitude, which, at the end of the first cycle of oscillations, brings the bubbles closer to
the wall than at the time of their injection (e.g. Xb ≈ 1.6 at T = 16 for Ga = 60). Taking
the bubble with Ga = 35 as reference, this induces a delay in the average migration of
bubbles with a higher Ga that is never caught up in later stages. Similarly, when Ga is kept
fixed and Bo is increased, the bubble closest to the path instability threshold (Bo = 0.35,
red line in panel b) quickly reaches average distances from the wall larger than bubbles
with Bo = 0.5 (green) and Bo = 1 (blue), whose zigzags amplitude grows faster. However,
at saturation, these amplitudes greatly vary with the Bond number, i.e. with the bubble
shape, passing through a maximum for Bo = 0.5 (see § 5.3 for more discussion on this
aspect). As a result of this marked variation, the amplitude of the zigzags performed by
the bubble with Bo = 0.5 is twice as large as that of the bubble with Bo = 1.5. This is why
the latter migrates faster than those with Bo = 1 and 0.5 which spend more time close to
the wall throughout their ascent.

5.2. The NWZ regime
Figure 2(a) indicates that, beyond the neutral curve but some distance away from
it, bubbles with Ga � 60 and Bo � 1 follow a NWZ scenario. Figure 12 illustrates
the evolution of some characteristics of the dynamics of two such bubbles. The main
difference between the two evolutions is the occurrence of direct bubble–wall collisions
in the former case. Collision events can be identified from the temporal evolution of
the dimensionless gap, δ. In line with the definition recalled in § 2, we consider that
a direct collision takes place when δ becomes less than the minimum cell size, Δmin ,
such as during the first event displayed in the inset of figure 12(a). As this figure shows,
δ decreases to Δmin at regular time intervals, first at T ≈ 18. In all NWZ evolutions
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Figure 12. Evolution of some characteristics of the bubble dynamics for (Bo, Ga) = (0.25, 90) (left column)
and (1, 70) (right column). (a,b) Wall-normal position of the bubble centroid (red line) and gap thickness
(green line); (c,d) wall-normal (red) and vertical (green) components of the velocity of the bubble centroid;
(e, f ) principal aspect ratio (thick red line), equatorial axes ratio (thin red line) and surface area (green line).
In (c− f ), the right axis refers to the quantity shown with the green line. In (a−b), the insets are located at
the actual position on the horizontal (time) axis and only their vertical axis is stretched; the green dashed line
identifies the transverse position 1 + Δmin .

involving collisions, these events occur every other round of transverse oscillations. Upon
collision, Vx reverses and peaks at an absolute value larger than that achieved prior to
the collision (see panel c), which may be interpreted as a rebound with a restitution
coefficient larger than one. Consequently, the maximum separation reached by the bubble
in the upcoming zigzag is significantly larger than that achieved just before the collision.
In contrast, when collisions do not take place, the maximum separation remains constant
once the oscillations have saturated (see panel b), and the restitution coefficient is smaller
than one throughout the bubble ascent. Collisions also deeply affect the evolution of the
bubble rise speed. As panel (c) shows, this component reduces by nearly 50 % shortly
after the collision (Vy ≈ 1.5). In contrast, this reduction reaches only 20 % in the next
zigzagging cycle during which no collision takes place, and the same observation holds
for the second bubble that never collides with the wall (panel d). In addition to these
dominant variations enslaved to the zigzag dynamics, Vy also exhibit fast small-amplitude
oscillations, especially in the case of the bubble with the smallest Bo. Qualitatively
similar evolutions are noticed in panels (e− f ) for the principal aspect ratio χ , and the
surface area Σ (defined as the area of the gas–liquid interface normalised by 4π R2).
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These results reveal the existence of two distinct modes of shape oscillations: a primary
low-frequency mode, by which χ and Σ reach their maximum (respectively, minimum)
when the bubble–wall separation achieves its maximum (respectively, minimum), and a
secondary high-frequency mode with a significantly smaller amplitude. This second mode
is seen to dominate the time variations of the equatorial axes ratio χeq , whose relative
magnitude is up to 20 % in the stages when the bubble is ‘far’ from the wall.

We compared the frequency of this second mode with that of small-amplitude capillary
oscillations in the inviscid limit. For a nearly spherical bubble, the fundamental mode of
such oscillations has a frequency f 2 = √

12Bo−1/2 (Lamb 1932). Increasing the bubble
oblateness leads to a decrease in this frequency, as the nonlinear computations of Meiron
(1989) showed. The two deformable bubbles considered in figure 12 have a principal
aspect ratio χ ≈ 2.1. For this oblateness, Meiron’s predictions indicate that the frequency
of the lowest-order axisymmetric oscillations (corresponding to the (2, 0) mode) is ≈
0.84 f 2. However, variations observed in panels (e− f ) on the equatorial axes ratio χeq
prove that the observed high-frequency oscillations are three-dimensional. The lowest
two three-dimensional capillary modes are the (2, 1) and (2, 2) ones, the wavelength of
which in the equatorial plane is the corresponding perimeter and half of it, respectively.
Meiron’s results predict that, for an oblate spheroid with χ = 2.1, their frequencies are
approximately 0.81 f 2 and 0.56 f 2, respectively. Inspection of the records of χeq in panels
(e− f ) indicates that the frequency of the observed high-frequency oscillations is close
to 0.59 f 2 at Bo = 0.25 and 0.50 f 2 at Bo = 1. Given that the rise Reynolds number in
the second case is less than half that in the first one, viscous corrections are expected to
be more significant in the former. With this in mind, this comparison strongly suggests
that the observed oscillations correspond to the non-axisymmetric (2, 2) mode for both
bubbles.

To better quantify wall effects, we carried out additional runs considering the same two
bubbles in an unbounded domain. After exhibiting flattened spiralling paths, they both
eventually describe planar zigzags with reduced frequencies St = 0.057 and St = 0.113
for (Bo, Ga) = (0.25, 90) and (1, 70), respectively. These frequencies are slightly smaller
than their wall-bounded counterparts (St = 0.063 and 0.126, respectively). However, the
most prominent difference is that shape oscillations keep a much smaller amplitude in
the absence of the wall. This difference is highlighted in figure 13, which shows the
variation over a single zigzag period of the velocity components of the bubble centroid
and its surface area as a function of the lateral displacement, Xb − Xc, with Xc being
the time-averaged wall-normal position of the centroid, i.e. the horizontal position of the
zigzag centreline. In the unbounded configuration, the two halves of the zigzag period
exhibit symmetric evolutions with respect to the mean position X = Xc. For both bubbles,
the relative change in Σ remains less than 3 % throughout the zigzag period, indicating
weak shape oscillations. In the presence of the wall, the mean amplitude of the lateral
oscillations is reduced by 20 %–25 % and no symmetry with respect to X = Xc subsists.
The bubble surface area experiences marked variations, with relative changes from 10 %
to 15 %. For both bubbles, Σ attains its minimum shortly after the bounce, making the
bubble less deformed during most of the departing stage than when it recedes to the wall.

Figure 14 visualises the wake structure downstream of the bubble with (Bo, Ga) =
(0.25, 90) using the λ2 criterion (Jeong & Hussain 1995). In the unbounded case
(panels a, b), this structure corresponds to the ‘4R’ vortex shedding mode, following the
terminology of Horowitz & Williamson (2010). This mode refers to two pairs of counter-
rotating vortices with opposite signs of ωy successively shed in the wake during a zigzag
half-period, with one pair being much stronger than the other, thus allowing the path to
remain almost sinusoidal. The ‘4R’ mode is known to be linked to oscillations in the
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Figure 13. Variation of several characteristics of the bubble dynamics over a single zigzag period in the
presence or absence of a wall for two bubbles with (Bo, Ga) = (0.25, 90) (left column) and (Bo, Ga) =
(1, 70) (right column). (a,b) Horizontal velocity component, Vx , lying in the plane of the zigzagging motion
(i.e. wall-normal component when the wall is present); (c,d) vertical velocity, Vy ; (e, f ) surface area, Σ . Red
and black lines denote results in the presence and the absence of the wall, respectively. Solid and dashed
lines refer to the half-period of the zigzag with negative and positive Vx , respectively; thick and thin red lines
correspond to the sub-period of the zigzag with and without a collision, respectively.

relative velocity between the body and fluid (here the bubble rise speed). It emerges
when the relative magnitude of these oscillations (with reduced frequency 2St) exceeds
approximately 10 % (Horowitz & Williamson 2010; Cano-Lozano et al. 2016; Auguste &
Magnaudet 2018), a condition widely fulfilled in the present case according to figure 12(c).
In the wall-bounded configuration (panels c− f in figure 14), the vortex pair shed towards
the wall degenerates into a short series of vortex patches, creating a strong suction effect
on the bubble in the early departure stage. This is the cause of the sharp decrease in the
bubble rise speed and surface area during this stage. The wall effect is less severe in cases
where collisions do not happen, such as the bubble with (Bo, Ga) = (1, 70) (not shown).
In such cases, the wall compels the same vortex pair to bend and align vertically but the
corresponding primary vortices do not break into distinct patches.

The structure of the vortex pair shed towards the fluid interior differs significantly from
that in the unbounded configuration. Specifically, several single-sided, short-wavelength
loops superimpose onto the primary vortex pair (panels c, e in figure 14). These loops
grow in time and progressively invade the far-wake structure. Close inspection indicates
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(a) (b) (c) (e) ( f )(d )

Figure 14. Two perpendicular views of the wake structure past a zigzagging bubble with (Bo, Ga) = (0.25, 90)

at the moment when the bubble crosses the centreline of the zigzag. (a−b) Unbounded configuration; (c− f )

wall-bounded configuration. Snapshots in panels (c−d) and (e− f ) are taken at the instants of time marked with
open and closed circles in figure 13(a), respectively. The wake structure is visualised using the λ2 criterion,
with iso-λ2 surfaces coloured by the local value of ωy ; red and blue contours refer to positive and negative
values, respectively, with a maximum magnitude of 1.0. The wall is indicated by a dark green line in (c,e) and
a dark green rectangular surface in (d, f ).

that their number matches that of the high-frequency oscillations of the bubble aspect
ratio, suggesting that these short-wavelength loops are a by-product of shape oscillations.
Indeed, every transient change in the bubble shape (especially in the vicinity of the
bubble’s equator) results in a change in the local curvature of the bubble surface, hence
in a variation of the magnitude of the tangential surface vorticity (Veldhuis et al. 2008;
Cano-Lozano et al. 2016). The lifetime of these short-wavelength loops depends on
the oscillatory Reynolds number, Reosc = (ρlγ R)1/2/μl = Ga Bo−1/2, that compares the
characteristic time of shape oscillations with that of their viscous damping. Hence, when
the Bond number is low enough, these oscillations decay slowly and are able to alter
significantly the far-wake structure.

5.3. How a zigzagging bubble gets trapped near the wall
That the NWZ regime is encountered in an intermediate range of Bond numbers for
Ga � 60 is somewhat surprising at first glance. Indeed, at a given Ga, bubbles with a
slightly subcritical Bo migrate away from the wall and those whose Bond number exceeds
1.5 do the same through the WMA scenario (figure 2a). The reduced deformation of the
bubble in the departing stage of the zigzagging motion revealed by figures 13(e, f ), which
itself results from the reduction in the rise speed induced by the intense interaction of
the wake vortices with the wall (figures 14c− f ), is responsible for the observed trapping
phenomenon. Indeed, since the minor and major axes of an oblate spheroid vary as χ−2/3

and χ1/3, respectively, the frontal area of the bubble involved in the transverse motion,
say S⊥, varies as χ−1/3. Thus, it is larger when the bubble moves away from the wall
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with χ ≈ 1 than when it goes back to it with χ > 2. Throughout the departing stage, this
results in an increase in the transverse viscous drag (for a given wall-normal velocity), as
well as in the amount of liquid displaced transversely by the bubble, hence the transverse
added-mass force (for a given wall-normal acceleration). Both effects tend to oppose the
departing motion of the bubble. Therefore, the larger the frontal area S⊥, the weaker the
positive transverse velocity Vx the bubble can achieve at a given wall-normal position Xb.
This is why, as figure 13 highlights, the amplitude of the zigzags, i.e. the horizontal
distance between two successive Vx -reversals, is reduced compared with that achieved
by the same bubble in an unbounded fluid. Moreover, in the highly inertial regime under
consideration, the repulsive interaction force is known to vary approximately as X−4

b V 2
y

for a nearly spherical bubble (Takemura & Magnaudet 2003). Although bubbles concerned
by the NWZ regime are far from spherical, this scaling provides a strong indication that
the dramatic reduction in the rise speed during the first half of the departing stage leads to
a drastic drop in the repulsive force. Both aspects cooperate to hamper the drift of the wall-
normal position of the zigzag centreline, Xc, yielding a near-wall trapping of the bubble
from which the observed periodic path ensues.

Figure 15(a) illustrates the variations of the bubble area, Σ , with the wall distance over
one zigzag pseudo-period for bubbles with Bo = 0.5 at different Ga. With no surprise,
Σ experiences negligible changes at Ga = 40, the critical Ga at which path instability sets
in at this specific Bond number. These variations become discernible at Ga = 50 but the
bubble still manages to escape from the wall region. The surface area is seen to experience
much larger changes (of the order of 7 % − 8 %) for Ga � 60. Figure 2(a) indicates that
this corresponds to the Ga-range in which the NWZ regime is observed for Bo = 0.5,
which is in line with the physical arguments presented above. Figure 15(b) shows how
the contour of the bubble in the diametrical plane perpendicular to the transverse motion
varies along the departing and approaching stages at a given Ga. These plots confirm
that this cross section is significantly less oblate in the departing stage for Ga > 50.
The relative difference in the corresponding frontal area between the two stages becomes
more pronounced as Ga increases further. This difference increases with Ga, i.e. with
the distance to the threshold of path instability, and is approximately 8 % at Ga = 90.
Figures 15(c,d) show results similar to those in the previous two panels for bubbles
with Ga = 70 over a wide range of Bond number. Almost no change in either Σ or S⊥
is noticed at Bo = 0.2, the critical Bo at which path instability sets in at this specific
Galilei number. The situation changes drastically when the Bond number increases up to
0.25, with now a relative difference of around 15 % in S⊥ between the approaching and
departing stages. Then, this difference reduces gradually as Bo goes on increasing. The
NWZ regime subsists up to Bo = 1 and is succeeded by the WMA regime at Bo = 1.5,
where Σ and S⊥ both experience negligible variations.

As pointed out above, the NWZ regime is a consequence of the intense interaction of
the wall with the double-threaded wake accompanying zigzagging bubbles. Therefore,
for this regime to exist, it is necessary that the lateral excursions performed by the
zigzagging bubble have a sufficient amplitude. Given the supercritical nature of path
instability (Mougin & Magnaudet 2002), the required amplitude may only be reached
if Bo is somewhat larger than Boc(Ga), the critical Bond number corresponding to the
onset of the zigzagging motion at the considered Ga. This is why bubbles with Bo only
slightly above Boc are still able to migrate away from the wall. The reason for the existence
of a maximum Bo for the NWZ regime is somewhat more subtle. As is well known,
zigzagging bubbles rise in such a way that their minor axis remains almost aligned with
their path at all times (Ellingsen & Risso 2001; Mougin & Magnaudet 2006). For this,
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Figure 15. Time-dependent deformation of bubbles obeying a NWZ or a WMA scenario. (a) Surface area,
Σ , vs the wall distance, Xb, over one pseudo-period of the zigzag for Bo = 0.5 and various Ga; (b) bubble
cross section in the diametrical plane (Y ′′, Z ′′) perpendicular to the transverse motion at Xb positions midway
between the centreline of the zigzag and its extremity closest to the wall (these positions are marked with
circular symbols in panel a); the Y ′′ axis is parallel to the bubble minor axis and the Z ′′ axis is horizontal
and parallel to the wall. (c,d) Same as (a,b) for Ga = 70 and various Bo. In all panels, the black and blue
evolutions belong to the WMA regime. Solid (respectively, dashed) lines refer to the approaching (respectively,
departing) stage. Values shown in (b,d) correspond to the frontal area, S⊥, enclosed in the contour of the
same colour, with the first and second numbers in each pair referring to the approaching and departing stages,
respectively.

they perform oscillatory rigid-body rotations with an angular velocity that vanishes at
the inflection points of the zigzags and reaches its maxima at their extremities. The more
oblate the bubble is, hence the larger Bo, the larger its resistance to such rotational motions
is. This is due on the one hand to the rapid increase of the viscous torque with χ (for a
given rotation rate), and on the other hand to that of the moment of inertia of the liquid
entrained by the rotational motion (so-called rotational added-mass coefficient), which
governs the rate of change of the angular velocity. For instance, both quantities almost
double from χ = 2 to χ = 2.5 when Re � 1 (Magnaudet 2011). This sharp increase limits
severely the amplitude of the oscillatory rotations a bubble with a given volume may
perform, which translates directly into a reduction in the amplitude of the zigzags. For
instance, with Ga = 70, present simulations indicate that this amplitude decreases by a
factor of two from Bo = 0.25 to Bo = 1.5 in the unbounded configuration, and a similar
decrease may be observed in figure 15(c) in the presence of the wall. The above arguments
concur to the conclusion that the NWZ regime can only exist within a finite range of χ ,
hence of Bo.
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6. Summary
We carried out three-dimensional numerical simulations of the buoyancy-driven motion
of freely deformable bubbles rising near a vertical wall in the parameter range
0.02 � Bo � 2, 35 � Ga � 90. Within this range, provided the Bond number exceeds a
Ga-dependent threshold, Boc(Ga), an isolated bubble immersed in an unbounded fluid
follows a zigzagging or spiralling path, whereas it rises in a straight line if Bo < Boc(Ga).
In the latter case, the three distinct regimes of near-wall rising motions discussed at smaller
Ga in Part 1, namely periodic near-wall bouncing, damped bouncing and migration away
from the wall, are observed up to Ga ≈ 50.

For larger Ga and small Bond numbers (typically Bo < 0.05 at Ga = 60 and Bo �
0.1 for Ga � 70), a new regime is found. In that BTE scenario, the bubble manages to
escape from the wall region after one to two near-wall bounces. The escape mechanism
is rooted in the abrupt flow reversal that takes place in the gap just before the bubble
collides with the wall. This reversal is a consequence of the drop in the bubble rise speed
which brings part of the fluid previously contained in the wake into the gap region. As
a result, a strong rotational flow forms around the bubble surface, leading to a repulsive
Magnus-like lift force that keeps a magnitude of the same order as the buoyancy force over
a significant period of time after the collision. Bubbles are found to eventually escape from
the wall region every time the spinning rate characterising the rotational flow at the bubble
surface exceeds a critical value. A crude force balance allows the coefficient involved in
the expression of the Magnus-like force to be estimated at around 0.5. In an unbounded
domain, path instability takes place when Bo � Boc(Ga). Paths of bubbles rising near a
vertical wall are also found to experience transverse oscillations as soon as Bo > Boc(Ga).
This suggests that the wall plays little role in the occurrence of path instability. Its most
significant effect appears to be the selection of the plane where the zigzagging motion
takes place, which is always perpendicular to the wall. Simulations reveal that zigzagging
or spiralling bubbles rising near a wall experience one of the following two scenarios.

For Bo > Boc(Ga) and Ga up to 50, or Bo > 1 and larger Ga, bubbles ultimately
migrate away from the wall, following a zigzagging motion for Bo � 1.5 and a
spiralling motion at larger Bo, on which a small lateral drift superimposes. The same
phenomenology is observed whatever Ga just above the critical curve, i.e. for Bo �
Boc(Ga). In this WMA regime, the characteristics of the transverse path oscillations
are very close to those determined in an unbounded domain. This is especially true
regarding frequencies, be they those of the path oscillations themselves or those of the
shape oscillations that develop under sufficiently supercritical conditions. In this regime,
bubble wakes only interact weakly with the wall as soon as the gap thickness exceeds half
of the bubble radius. Therefore, the repulsive interaction mechanism is essentially similar
to that observed below the path instability threshold at lower Ga. The net migration away
from the wall does not vary monotonically with the control parameters Ga and Bo. This is
mostly due to the initial stages of the rise, during which the amount of time a given bubble
spends close to the wall depends dramatically on the growth rate and saturated amplitude
of the zigzags. For this reason, bubbles following paths with a slowly growing zigzagging
component or performing lateral excursions with a moderate amplitude migrate faster.

For Ga � 60 and intermediate Bond numbers slightly larger than Boc(Ga) but smaller
than an upper value between 1 and 1.5, bubbles maintain a NWZ motion without migrating
towards the bulk. The trapping phenomenon characterising this regime is a consequence
of the intense interaction of the double-threaded wake with the wall during the stages
when the gap comes to its minimum. The energy dissipation resulting from this wake–
wall interaction translates into a severe drop in the rise speed, which in turn results in
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Figure 16. Complete state diagram of near-wall rising regimes observed in the simulations up to Ga = 90 and
Bo = 2. Panels show (a) the (Bo, Ga)-plane; (b) the (χ, Re)-plane, with χ and Re determined as explained in
the caption of figure 3. Solid line: neutral curve corresponding to the onset of path instability in an unbounded
fluid (Bonnefis et al. 2024). The blue zone straddling the neutral curve represents the whole set of conditions
under which bubbles migrate away from the wall, either in the presence or in the absence of path instability.
In (b), the two bullets at (χ, Re) = (2.1, 710) and (χ, Re) = (2.5, 1100) correspond to experimental data from
de Vries (2001) and Jeong & Park (2015), respectively. Both were obtained in water and show the persistence
of the NWZ regime beyond the maximum Ga reached in the simulations.

a drastic transient reduction of the bubble oblateness. Because of this, the frontal area
opposing the transverse motion is larger when the bubble departs from the wall than when
it returns to it. This makes it possible for resistive transverse forces, such as viscous drag
and added mass, to counteract the repulsive interaction force, maintaining the centreline of
the zigzagging motion a constant distance from the wall. The mechanism at play requires
the zigzag amplitude to be large enough for bubbles to be trapped. This is why this regime
only exists up to a maximum Bond number, the lateral excursions of highly oblate bubbles
being severely limited by viscous and inertial effects resisting the periodic rotation needed
to keep such bubbles broadside on along their path.

Figure 16 gathers present results and those obtained at lower Ga in Part 1. It provides
an overview of all the near-wall rising regimes we could identify for Ga up to 90 and
Bo up to 2. This map allows a global assessment of the influence of fluid inertia and
bubble deformation on the transitions between the various styles of path. For weakly
deformed bubbles, say Bo � 0.1, the response of the system is largely controlled by the two
antagonistic forces that both originate in fluid inertia, namely the repulsive force induced
by the vortical wake–wall interaction mechanism summarised in § 1 and the attractive
force resulting from the acceleration of the fluid in the gap, as predicted when the flow
is assumed irrotational. The vortical effect dominates up to Ga ≈ 10, making bubbles
migrate away from the wall whatever Bo. The influence of the attractive irrotational
effect increases gradually with increasing Ga (hence Re), driving bubbles towards the
wall when Ga � 10 (corresponding to Re � 35). This attractive process gives rise to a
damped near-wall bouncing regime up to Ga ≈ 17, i.e. Re ≈ 65, then to a periodic near-
wall bouncing regime at higher Ga. The latter persists up to Ga ≈ 50 at Bo = 0.01 and
Ga ≈ 70 at Bo = 0.1, which in both limits corresponds to Re ≈ 500. For larger Ga, low-
Bo bubbles escape from the wall region following the BTE scenario. In this regime,
the mechanism responsible for the bubble escape may be viewed as a side effect of the
above irrotational mechanism. Indeed, the intensity of the tumbling flow that forms around
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the bubble surface during the collision with the wall depends crucially on the wall-ward
velocity of the bubble and, thus, on the attractive force acting on it.

As Bo increases beyond 0.1, bubbles become more oblate in inertia-dominated regimes.
The above two antagonistic effects are still at work, but their magnitude is strongly
influenced by the bubble shape. In particular, deformation significantly enhances the
repulsive vortical effect, owing to the increase of the tangential vorticity at the bubble
surface with the local curvature of this surface. This promotes the migration away from
the wall, as the (χ, Re) representation in figure 16(b) highlights. Below the path instability
threshold, all bubbles with Ga � 30 (respectively, Ga > 30) migrate away from the wall
as long as their aspect ratio exceeds ≈ 1.5 (respectively ≈ 1.8). In the presence of path
instability, i.e. for χ � 1.95, bubbles still exhibit an average migration away from the wall,
provided that the transient reduction in χ they experience when they get very close to
the wall remains weak enough. This reduction becomes significant (say � 5 %) when
Ga � 60 for intermediate Bond numbers such that Boc(Ga)� Bo � 1. In this high-Ga
intermediate-Bo range, bubbles are trapped near the wall, undergoing a zigzagging-like
motion without being able to escape to the bulk.

The two parts of this study provide comprehensive insights into the complex dynamics
of buoyancy-driven isolated bubbles rising near a vertical hydrophilic wall. This second
part highlights the complex interplay between wake–wall interactions, wall-induced fluid
displacements, time-dependent bubble deformation and, in the relevant parameter range,
lateral bubble excursions resulting from path instability.

The findings obtained in this study form a solid basis for developing low-order predictive
semi-empirical models of near-wall bubble motion under a broad range of flow conditions.
However, to get closer to practical applications, one has to consider configurations more
representative of wall-bounded bubbly suspensions. In this context, one key aspect is the
influence of inhomogeneity in the ambient flow ‘seen’ by a test bubble. Inhomogeneity
may arise due to the presence of a neighbouring bubble or because the carrying flow
is non-uniform. In the first case, Huang et al. (2025) recently carried out simulations
in which two identical bubbles initially arranged in line rise close to a vertical wall
under moderately inertial conditions. They found that, due to the interaction with the
leading bubble, the trailing bubble may escape from the wall, whereas the same bubble
would bounce periodically close to the wall if it were rising alone. This change in
the nature of the bubble dynamics highlights the need to consider interactions with
neighbouring bubbles, especially if one is to predict the microstructure of the near-wall
region in a bubbly suspension. A relevant and affordable follow-up to the above work
would be its extension to the highly inertial regimes investigated in the present paper.
Inhomogeneity also frequently arises through the non-uniformity of the carrying flow,
especially when this flow is driven by a pressure gradient acting along the wall, such as
in upward or downward pipe flows. In the upward configuration, it is well known that the
shear-induced lift force tends to make nearly spherical or moderately deformed bubbles
accumulate close to the wall, which is expected to strengthen wall–bubble interactions.
Up to now, this problem has essentially been considered in weakly to moderately inertial
regimes and quasi-steady conditions (Magnaudet, Takagi & Legendre 2003; Takemura,
Magnaudet & Dimitrakopoulos 2009; Shi et al. 2020). Only recently has the exploration
of wall-bounded shear flow configurations under highly inertial conditions, where bubbles
undergo zigzagging motions, started (Su et al. 2024), with a focus on the time-averaged
lateral force. How the non-uniformity in the ambient flow affects the nature of wall–bubble
interactions, hence the bubble paths and eventually the time spent near the wall by bubbles
experiencing such highly inertial conditions, is currently an open question. A numerical
approach similar to that employed in the present study is appropriate to address it.
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Another important issue to be considered in future research concerns surfactant-induced
Marangoni effects. Indeed, in most systems, bubbles are contaminated by surfactants
present in the fluid, especially with water. The associated surface tension gradients are
expected to strengthen wake effects, hence repulsive forces. Moreover, interactions with
the wall tend to make the surfactant distribution asymmetric, which in turn induces an
additional transverse force. How the combination of these effects affects the near-wall
bubble dynamics over the various flow regimes has to be considered in future studies to
improve engineering models for wall-bounded bubbly flows.

Funding. P.S. acknowledges the funding of the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) through grant number 501298479.

Declaration of interests. The authors report no conflict of interest.

Appendix A. Preliminary numerical tests
Extensive preliminary tests were carried out to assess the reliability of the numerical
approach. According to the benchmark test for rising bubbles in Basilisk (Popinet 2017),
the temporal and spatial accuracies of the predictions depend largely on five parameters:
the Courant–Friedrichs–Lewy number NC F L , the standard tolerance in the Poisson solver
Tε, the grid refinement criteria for the phase fraction ζ f and velocity ζu and the minimum
grid size Δmin . For the specific problem under consideration, the tests conducted in Part 1
confirmed that setting NC F L = 0.5, Tε = 10−4, ζ f = 10−3, ζu = 10−2 and Δmin = 1/68
(further decreased to 1/136 when δmin � 0.15) provides appropriately converged results.
Specifically, the settings for the last two parameters guarantee a sufficient spatial resolution
of the boundary layers at the wall and the bubble surface, as well as in the far wake (� 10R
downstream from the bubble centroid) for Ga up to 30, the highest Ga considered in
Part 1. In the present work, Ga goes up to 90, necessitating further verification of the
values selected for these two parameters. For this purpose, we consider a case in the BTE
regime with (Bo, Ga) = (0.05, 90), for which the bubble Reynolds number (based on the
terminal velocity and bubble diameter) is approximately 940. Therefore, with Δmin = 1/68
(respectively 1/136) and ζu = 10−2, approximately three (respectively six) cells lie in the
boundary layer surrounding the bubble surface.

Figure 17 compares the predicted bubble motion for (Bo, Ga) = (0.05, 90) using three
different settings for Δmin . For all three runs, ζu is fixed to 10−2. Irrespective of Δmin , the
predicted lateral motion remains largely within the wall-normal plane, as the deviation of
the bubble in the spanwise wall-parallel direction remains small, with Zb never exceeding
0.2. The farthest wall-normal position where the bubble finally rests is approximately 6.75
with Δmin = 1/68, while it is approximately 5.5, i.e. significantly closer to the wall, with
Δmin = 1/136. Close inspection of the predictions reveals that, as Δmin decreases from
1/68 to 1/136, the bubble reaches a slightly larger separation during the final reversal
stage (inset in panel a), resulting in a lower peak in the departure velocity as it escapes
from the near-wall region (consider the situation at T ≈ 12 in panel c). The smaller final
separation obtained with the finer grid follows. Conversely, the final rise speeds obtained
with the different Δmin show no discernible difference (panel d). These observations
prove the importance of a sufficient spatial resolution within the wall boundary layer,
especially during stages of intense bubble–wall interaction, to accurately predict the final
wall-normal position of the bubble. This is further corroborated by the good agreement
observed between predictions with Δmin = 1/136 and those adopting an adaptive Δmin ,
where Δmin = 1/68 is decreased to 1/136 only during stages when δmin(T )� 0.15.
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Figure 17. Effects of the minimum grid size on the predicted bubble motion for (Bo, Ga) = (0.05, 90). Red
and green lines correspond to cases with Δmin = 1/68 and 1/136, respectively, while the blue line refers to
the case where Δmin is decreased from 1/68 to 1/136 only when δmin � 0.15. Panels (a) and (b) show the
bubble path in the wall-normal and wall-parallel planes, respectively; panels (c) and (d) show the evolution of
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(Bo, Ga) = (0.05, 90). Red, green and blue lines correspond to predictions obtained with ζu = 10−2, 5 × 10−3

and 2 × 10−3, respectively.

Effects of ζu are assessed based on the same test case. For this purpose, Δmin is set to
1/68 and ζu is decreased from 10−2 to 2 × 10−3, which decreases the cell size within the
far wake from 1/17 to 1/34. With this refinement, the total number of grid cells when the
boundary layer at the bubble surface is fully developed increases from 4.3 million to 21.8
million. Figure 18 compares the predictions obtained by varying ζu for the wall-normal
and vertical bubble velocity components. It appears that the coarser resolution in the far
wake leads to an underestimate of viscous effects. Specifically, the departing velocity
(and to some minor extent the terminal rise speed) predicted with ζu = 10−2 is slightly
larger than that obtained using smaller values of ζu . In contrast, predictions obtained with
ζu = 5 × 10−3 and ζu = 2 × 10−3 exhibit only modest differences. Given this finding, and
considering the significantly larger number of grid cells required with ζu = 2 × 10−3 (21.8
million compared with 8.4 million), we set ζu = 5 × 10−3 in all runs discussed in the paper.

Following the above observations and taking advantage of our prior preliminary tests in
Part 1, we find it reasonable to set the five numerical parameters as follows: NC F L = 0.5,
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Figure 19. Comparison between predictions (red line, (Bo, Ga) = (1, 35)) and experimental results from
Estepa-Cantero et al. (2024) (black line, (Bo, Ga) = (0.97, 35)) for the evolution of (a) the wall-normal
position of the bubble centroid; and (b) the wall-normal velocity of the centroid.

Tε = 10−4, ζ f = 10−3, ζu = 5 × 10−3 and Δmin = 1/68, automatically reduced to Δmin =
1/136 when δmin(T )� 0.15.

To further check the numerical approach, we carry out two additional runs belonging
to different (Bo, Ga) ranges, for which reference data are available. First, we select
(Bo, Ga) = (1, 35), corresponding to an air bubble with R ≈ 1.46 mm rising in silicone
oil DMS-T05 (Mo = 6.2 × 10−7), as considered experimentally by Estepa-Cantero et al.
(2024). Present predictions and experimental observations both conclude that the bubble
departs from the wall and exhibits path oscillations in the wall-normal plane. Figure 19
shows how the results for the evolution of the wall-normal bubble position, Xb, and
velocity, Vx , compare. Owing to differences in the bubble shape and rise speed in
the initial state, differences are observed between the predicted and the experimental
evolutions in the early stages of the near-wall motion. The agreement is fairly good in
later stages, although slight deviations subsist in the maximum and minimum wall-normal
position beyond T ≈ 100. In the simulation, the Reynolds number based on the mean
rise speed reached by the bubble when it moves far away from the wall (Xb � 3) is
Re ≈ 110.6, closely matching the value determined experimentally in the absence of the
wall, Re = 114.6. Additionally, for T � 100, the crest-to-crest amplitude of the transverse
oscillations, the magnitude of the maximum wall-normal velocity and the reduced
frequency of the oscillations are a = 1.37, V max

x = 0.370 and St = 0.108 in the simulation,
closely aligning with the experimental values a = 1.36, V max

x = 0.358 and St = 0.104.
In the second case, we consider a bubble rising from rest in an unbounded domain for

(Bo, Ga) = (0.134, 99). This parameter set corresponds to an air bubble with R = 1 mm
rising in pure water at 20 ◦C (Mo = 2.54 × 10−11), a configuration already considered in
experiments (Duineveld 1995; Tagawa et al. 2014). Figure 20 illustrates the evolution of
the bubble path, velocity and aspect ratio, all obtained from the present simulation. The
bubble successively follows a straight path, then a flattened helical path and finally tends to
transition to a planar zigzagging path. This transition sequence differs from that reported
by Tagawa et al. (2014), presumably due to the different initial conditions in the simulation
and the experiment (Tchoufag, Fabre & Magnaudet 2015). Aside from this difference, the
mean values for the rise speed Vy , the reduced frequency associated with the wall-normal
velocity Vx (which is half that associated with Vy), and the bubble aspect ratio (averaged
over the last five periods of oscillation of Vy) are Vy = 3.55, St = 0.04, χ = 2.14, all
in good agreement with the values from previous investigations, namely Vy = 3.59,

St = 0.038, χ = 2.14.

1013 A19-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
5.

10
16

7 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2025.10167


Journal of Fluid Mechanics

400

4.0

3.5

3.0

2.5

2.0

2.0

1.5

1.0
0 50 100

T

1.5 –1.0

–0.5

0

0.5

1.0

1.5

300

200

100

0
–2 –1 0 1Xb

Yb

Vy

V x
, V

z

χ

Zb
2 2 1

0 –1

(a) (b)

(c)

Figure 20. Predictions of the path characteristics of a single bubble with (Bo, Ga) = (0.134, 99) rising from
rest in an unbounded fluid domain. (a) Front and bottom views of the path; (b) evolution of the vertical (green
line), and horizontal (red and blue lines) velocity components of the bubble centroid; (c) evolution of the bubble
aspect ratio. The path eventually converges to a planar zigzagging motion in the (x, y) plane.

Appendix B. Influence of initial separation
The regime map gathering the various styles of path that are observed (figure 2a) was
established based on simulations with an initial bubble–wall separation X0 = 2. However,
as the following discussion shows, this regime map remains unchanged when the initial
separation is varied, provided that X0 is not too large for wall effects to remain sizeable.

Below the neutral curve of path instability, four distinct scenarios take place. The
influence of the initial separation on the first three of them (periodic near-wall bouncing,
damped bouncing, migration away from the wall) was assessed in Part 1 (see Appendix C
therein). In all cases it was found that X0 only affects the initial stage of the bubble motion,
leaving it unchanged in the fully developed state. Here, while Ga is larger, the mechanisms
responsible for these three scenarios remain unchanged and so are the conclusions reached
in Part 1. Figure 21 displays the influence of the initial separation in a case typical of
the last of these four scenarios, the BTE regime. The corresponding (Bo, Ga) set is
that considered in figure 6. All bubbles are found to eventually escape from the wall,
since the final bubble–wall separation is large (Xb(T → ∞) > 6) in all cases. The only
noticeable effect of X0 is that the bubble needs to bounce twice against the wall before
escaping when it is released close enough to wall, typically for X0 � 2.0. This is because
the maximum wall-normal distance the bubble attains after a bounce depends largely on
its impact velocity, which itself depends on the magnitude of the attractive force resulting
from the irrotational Bernoulli mechanism. As figure 21(b) shows, the maximum rise
speed achieved by the bubble before its first bounce decreases significantly with the initial
separation when X0 � 2, making the attractive force resulting from this mechanism (which
goes like V 2

y ) too weak to generate a large enough impact velocity during the first bounce
in such cases.

For (Bo, Ga) sets located above the neutral curve, bubbles follow either a WMA or
a NWZ scenario (figure 2a). In the former case, the wall dictates the orientation of the
plane in which the bubble oscillates in the early stages. Nevertheless, once the saturated
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correspond to (Bo, Ga) = (1, 70) and (0.25, 90), respectively. Black line: X0 = 2; red line and triangles:
X0 = 1.5; blue line and circles: X0 = 2.5 in (a−c) and X0 = 3 in (d− f ). The time interval between adjacent
points in (b−c, e− f ) is 0.5. Evolutions in (b−c) correspond to the last zigzagging period, while in (e− f )

they refer to the last cycle of path oscillations when the bubble collides with the wall.

state is reached, the characteristics of the motion are no longer affected by X0. To reach
this conclusion, we examined the two typical NWZ cases discussed in § 5.2, comparing
results obtained with three different initial separations. Figure 22 shows the evolution of
the bubble trajectory and velocity in these two cases. In the first of them (figure 22a−c),
direct collisions with the wall do not take place. As the corresponding panels show,
the path characteristics always converge towards a developed state where the vertical
displacement and amplitude of the lateral drift during a single period no longer vary over
the zigzagging period. Comparing the evolutions obtained with different X0 confirms that
the path characteristics in this fully developed state are independent of X0. Accordingly,
the evolutions of the wall-normal and vertical velocities of the bubble centroid collapse on
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a single curve irrespective of X0 (figure 22b−c). The initial separation only influences the
time required to reach the developed state. Specifically, at the largest separation (X0 = 2.5),
five periods of transverse oscillations take place before the developed state is reached.
This is way slower than in a periodic near-wall bouncing scenario where the developed
state is reached after the second period of bouncing irrespective of X0. This indicates a
relatively long memory of the system with respect to the initial separation for bubbles
evolving in the NWZ regime. This memory effect becomes more pronounced when Ga
is large enough for bubble–wall collisions to take place (figure 22d− f ). With X0 = 2,
the bubble path reaches a fully-developed state starting from the second bounce. In this
developed stage, the amplitude of the lateral drift just after the collision is larger than that
after the next or previous cycle of bouncing, where no collision takes place. In contrast,
with X0 = 1.5 and 3, a much larger number of zigzagging periods is required to reach a
similar state (figure 22d). The evolution of the two components of the bubble velocity in
the last zigzagging cycle where collision takes place is reported in panels (e− f ). While
the evolutions corresponding to the three different X0 are close, there are still sizeable
differences, which highlights the long memory of the system with respect to X0 at large
Ga and low-to-moderate Bo.

The non-negligible influence of X0 has been reported in previous experiments with air
bubbles rising near a wall in pure water (Jeong & Park 2015; Cai et al. 2023). These
experiments were performed using bubbles with radii ranging from 1.14 to 1.96 mm,
which corresponds to 120 � Ga � 270. In most cases, these bubbles were found to follow
the NWZ scenario reported here. Nevertheless, given the larger Ga, the memory effect
related to the initial separation may last for much longer times than in present simulations,
such that very long vertical displacements are required for the path to reach a fully
developed state. It is even plausible that in these experiments, the vertical distance crossed
by the bubble before it reaches the measurement window (≈ 10R in Jeong & Park 2015
and ≈ 200R in Cai et al. 2023) is still not large enough for the corresponding memory
effect to have completely faded away.
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