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ABSTRACT. Calving from tidewater glaciers and ice shelves accounts for around half the mass loss from
both polar ice sheets, yet the process is not well represented in prognostic models of ice dynamics. Benn
and others proposed a calving criterion appropriate for both grounded and floating glacier tongues or
ice shelves, based on the penetration depth of transverse crevasses near the calving front, computed
using Nye’s formula. The criterion is readily incorporated into glacier and ice-sheet models, but has
not been fully validated with observations. We apply a three-dimensional extension of Benn and others’
criterion, incorporated into a full-Stokes model of glacier dynamics, to estimate the current position
of the calving front of Johnsons Glacier, Antarctica. We find that two improvements to the original
model are necessary to accurately reproduce the observed calving front: (1) computation of the tensile
deviatoric stress opening the crevasse using the full-stress solution and (2) consideration of such a tensile
stress as a function of depth. Our modelling results also suggest that Johnsons Glacier has a polythermal
structure, rather than the temperate structure suggested by earlier studies.

1. INTRODUCTION

Iceberg calving is an important mass-loss mechanism from
ice shelves and tidewater glaciers for many mid- and high-
latitude glaciers and ice caps (e.g. Dowdeswell and others,
2008) and for the polar ice sheets. It accounts for about half
the losses from the Greenland ice sheet (e.g. Thomas, 2004)
and it has long been believed to be the dominant mechanism
of ice loss from the Antarctic ice sheet (e.g. Bentley, 2004).
Recent work, however, has suggested that the ice loss from
Antarctica is ∼50% due to calving and ∼50% due to
basal melting, although there is a wide variability (10–90%)
among different drainage basins (personal communication
from E. Rignot, 2009). Despite its important contribution to
the mass budget of glaciers and ice sheets, an adequate
representation of calving is still missing from prognostic
models of ice dynamics. As Benn and others’ (2007b)
review of the calving problem pointed out, understanding
the processes controlling calving rates has long been a
major unsolved problem in glaciology. The calving process
is further complicated by its close link to two other long-
standing problems of glaciology: the realistic computation
of stresses near the grounding line (e.g. Hindmarsh, 2006;
Schoof, 2007a,b) and the appropriate representation of basal
sliding (e.g. Fowler, 1981, 1986; Schoof, 2005, in press;
Gagliardini and others, 2007). Recent catastrophic ice-
shelf break-up (MacAyeal and others, 2003; Shepherd and
others, 2003) followed by acceleration of outlet glaciers
that feed them (Rott and others, 1996; Rignot and others,
2004; Scambos and others, 2004), and acceleration of
Greenland outlet glaciers (Howat and others, 2007, 2008;
Holland and others, 2008; Joughin and others, 2008) have
increased the interest in obtaining a proper understanding of
calving processes. Recent work has further stressed the need
for such an understanding; for example, Nick and others

(2009) showed that the recent ice acceleration, thinning
and retreat of Greenland’s large Helheim Glacier began
at the calving terminus, then propagated extremely rapidly
upstream through dynamic coupling along the glacier. This
suggests that such changes are unlikely to be caused by
basal lubrication through surface melt propagating to the
glacier bed, a flow acceleration mechanism proposed for
the Greenland ice sheet by Zwally and others (2002) and
supported, amongst others, by Parizek and Alley (2004).
Many so-called ‘calving laws’ have been proposed to

incorporate the calving processes into prognostic models of
glacier and ice-sheet dynamics (see section 3 for a discussion
of the main ones). Most of these laws are empirical (i.e.
observation-based) rather than theoretical (i.e. physically
based). Moreover, some are valid only for particular types of
glaciers (e.g. tidewater glaciers with grounded calving front).
These characteristics make many of them inappropriate for
use in prognostic models. The calving criterion recently
proposed by Benn and others (2007a) is based on the
penetration depth of transverse crevasses near the calving
front, computed from the strain field using Nye’s (1955,
1957) formula; i.e. it is theoretical. A great advantage of this
criterion is flexibility: it can be applied to both floating and
grounded tidewater glaciers, and to ice shelves. However,
the models of ice dynamics used by Benn and others
(2007a) are limited in that they are two-dimensional, do not
incorporate longitudinal-stress gradients and are strictly valid
only for crevasses near the centre line of glaciers. In this
paper, we present a three-dimensional extension of Benn
and others’ (2007a) calving criterion, which uses a full-
Stokes model of glacier dynamics, thus providing a more
realistic representation of the velocity gradient producing
the transverse crevasses. Additionally, we have computed the
crevasse depths using not only Nye’s (1955, 1957) simplified
formula but also more advanced methods based on the
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Fig. 1. Location and map of Livingston Island, South Shetland Islands. The right panel shows details of Hurd Peninsula, where Johnsons and
Hurd Glaciers are located.

full-Stokes stress field derived from the model solution. We
have applied the improved model to Johnsons Glacier, a
grounded tidewater glacier on Livingston Island, Antarctica.
The record of the front positions of Johnsons Glacier spans
only a few years during the last decade, and during this
observation period the front has remained at a nearly
constant position, so a full modelling exercise of time
evolution to follow the front-position changes of the glacier
has not been possible. Instead, our modelling experiment is
a diagnostic one, aimed at establishing whether the model
adequately reproduces the current front position of Johnsons
Glacier. Our results validate fundamental assumptions made
in Benn and others’ (2007a) calving criterion, although
the above-mentioned improvements to the model were
necessary to accurately reproduce the current position of the
calving front.

2. GEOGRAPHICAL SETTING, GLACIER
GEOMETRY AND GLACIOLOGICAL DATA
Johnsons Glacier is a small (∼5.6 km2) tidewater glacier on
Livingston Island, South Shetland Islands, Antarctica (Fig. 1),
that terminates in a 50m high ice cliff extending 500m along
the coast. A local ice divide, with altitudes between 200 and
330ma.s.l., defines it as a separate glacier basin within the
Hurd Peninsula ice cap (Fig. 2). The northern part of the
glacier has steeper slopes (typical values ∼10◦) than those
in the southern part (typical values ∼6◦). The confluence of
the northern and southern flows of ice results in a folded and
highly fractured terminal zone (Ximenis and others, 2000).
Ice surface velocities of Johnsons Glacier reach values

up to 44ma−1 near the calving front (Ximenis, 2001).
Accumulation and ablation rates show a large spatial and
temporal (yearly) variability, with maximum accumulation
rates ∼1mw.e. a−1 (reached in the northern sector because
of the topography and the prevailing northeasterly wind
direction) and maximum ablation rates up to −4mw.e. a−1
measured over the past 10 years (Ximenis, 2001; Otero,
2008). The equilibrium line (approximate location shown in
Fig. 2) lies close to the 180m altitude contour line.
Johnsons Glacier has traditionally been considered a

temperate glacier, on the basis of limited temperature–depth
profiles measured at some shallow/intermediate boreholes

(Furdada and others, 1999), which have been said to be
consistent with measurements at other locations in the South
Shetland Islands (e.g. Qin and others, 1994), and also on the
basis of measured radio-wave velocities in ice (Benjumea
and others, 2003). However, more recent investigations
(Molina and others, 2007; Navarro and others, 2009) have
suggested that at least the land-terminating glaciers on
Hurd Peninsula are polythermal. Ground-penetrating radar
sections of Johnsons Glacier also show, in the ablation zone,
some layers and patches of cold ice.
The surface topography of Johnsons Glacier, determined

from geodetic measurements (total station and differential
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Fig. 2. Surface topography of Johnsons Glacier derived from geodetic
measurements (total station and differential GPS) in 1999–2000;
contour level interval is 20m. The black dots indicate stakes for ice-
velocity and mass-balance measurements. The red curve indicates
an example flowline on which the parameters involved in the
parameterization of the height of the basal water column are shown.
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Fig. 3. Bedrock topography of Johnsons Glacier determined
by subtracting the ice thickness (retrieved from low-frequency
(20MHz) radio-echo sounding measurements) from the surface
topography (Fig. 2); contour line interval is 20m. The red lines on
the glacier surfaces indicate the radar profiles, and the curves in
the proglacial embayment indicate the bathymetric profiles. The ice
thickness for the highly crevassed terminal area (down-glacier from
the dashed curve in the figure) was determined by interpolation
between the glacier-bed topography up-glacier from the dashed
curve and the sea-bed topography in the neighbourhood of the
terminal cliff.

GPS; Molina and others, 2007), is shown in Figure 2,
while Figure 3 shows the bedrock topography retrieved from
low-frequency (20MHz) radio-echo soundingmeasurements
(Benjumea and others, 2003; Navarro and others, 2005,
2009). Figure 3 also shows the location of the radar profiles
and, in the proglacial embayment, the bathymetric profiles.
The radar data show a maximum ice thickness of∼160±3m
and an average thickness of 97 ± 3m. Total ice volume in
2000was estimated at 0.545±0.014km3 (Molina and others,
2007). Note, in Figure 3, that most of the glacier bed is above
sea level, reaching values slightly below sea level only next
to the calving front and in the central part of the basin, further
up-glacier from the terminus.
Although Johnsons Glacier has been losing mass for at

least the past 50 years, the geodetic mass balance during
the period 1956–2000 has been moderately negative at
−0.23mw.e. a−1 for the ensemble Johnsons–Hurd Glaciers
(Molina and others, 2007), and the Johnsons Glacier calving
front has remained at a nearly constant position during the
past decade (D. Garcı́a and J. Calvet, unpublished data).
The latter is consistent with the small water depth in the
proglacial embayment (just a few metres) and the absence
of a reverse-slope bed near the present calving front (Meier
and Post, 1987; Van der Veen, 1996; Vieli and others, 2001).
However, it is difficult to quantify, a priori, how much the
present surface geometry differs from a steady-state one,
because this depends on the availability of an adequate
representation of the calving processes.

We have previously published two modelling experiments
for Johnsons Glacier. One uses a two-dimensional model
(Corcuera and others, 2001), the other uses a three-
dimensional model (Martı́n and others, 2004); however,
neither of these models includes a calving front. Instead, we
excluded the glacier terminus region from the model domain
and defined an artificial boundary in the lower part of the
glacier. There we established velocity boundary conditions
based on measured ice velocities at the Johnsons Glacier
network of stakes, which is dense near the terminus. In this
paper, we extend our domain to include the calving front.

3. CALVING LAWS
3.1. A brief overview of calving laws
Calving rate is defined as the difference between the ice
velocity at the glacier terminus and the change of glacier
length over time, i.e.

uc = uT − dL
dt
, (1)

where uc is the calving rate, uT is the vertically averaged ice
velocity at the terminus, L is glacier length and t is time.
This equation can be interpreted in two ways (Van der Veen,
1996): (1) a forward approach, in which the calving rate
is estimated from independent environmental variables and
then the changes in terminus position are determined from
calving rate and ice velocity (e.g. Siegert and Dowdeswell,
2004) and (2) an inverse approach, in which the calving rate
is determined from ice velocity and changes in front position
(e.g. Van der Veen, 1996, 2002). Various ‘calving laws’ have
been proposed following either approach. In what follows,
we outline the major points of these calving laws. A more
detailed account on the subject is given in the thorough
review by Benn and others (2007b).
Most of the early calving laws were based on the forward

approach, focusing on the direct estimate of the calving
rate, relating it to some independent variable and then using
it, together with the glacier velocity, to infer changes in
ice-front position. Two main approaches were followed in
the choice for the independent variable. The first (Brown
and others, 1982; Pelto and Warren, 1991) considers the
calving rate to depend linearly on the water depth at the
calving front, with the particular linear relationship being
based on the fit to field observations. The main problem
with this approach is that the empirical relationships between
water depth and calving rate vary greatly from one glacier
to another (Haresign, 2004), are quite different for tidewater
and freshwater glaciers (Funk and Röthlisberger, 1989) and
also vary with time (Van der Veen, 1996), which makes
them of limited use for prognostic models. The second main
approach for the choice of independent variables is that of
Sikonia (1982), later used, for example, by Venteris (1999),
which relates the calving rate to a height-above-buoyancy at
the glacier terminus.
The inverse approach of Van der Veen (1996) also uses the

height-above-buoyancy criterion, but inverts the problem,
focusing on the factors controlling the terminus position
rather than those controlling the calving rate. His calving
criterion was based on the observation that, at Columbia
Glacier, Alaska, the terminus is located where the height
of the terminal cliff is ∼50m above buoyancy. Vieli and
others (2000, 2001, 2002) adopted a modified version of the
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Fig. 4. (a) Schematics for the model of calving by crevasse depth, adapted from figure 1 of Benn and others (2007a). (b) Close-up showing
some of the variables in greater detail.

Van der Veen (1996) criterion, in which the fixed height-
above-buoyancy is replaced by a fraction of the flotation
thickness, the fraction being an adjustable model parameter.
The main drawback of any of the height-above-buoyancy
calving laws is that they do not allow for the development
of floating ice tongues, which restricts their application to
glaciers with grounded calving fronts.

3.2. Benn and others’ (2007a) calving criterion
A major advance in calving models came with the calving
criterion proposed by Benn and others (2007a). This criterion
was preceded by a full analysis of the calving problem (Benn
and others, 2007b), which considered the most prominent
calving processes: the stretching associated with surface
velocity gradients; the force imbalance at terminal ice cliffs;
the undercutting by underwater melting; and the torque
arising from buoyant forces. Benn and others (2007b) then
established a hierarchy of calving mechanisms, concluding
that longitudinal stretching in the large-scale velocity field of
the glacier near the terminus can be considered the first-order
control on calving. The other mechanisms are second-order
processes, superimposed on the first-order mechanism.
Consequently, Benn and others’ (2007a) criterion assumes

that the calving is triggered by the downward propagation
of transverse surface crevasses, near the calving front, as a
result of the extensional stress regime. The crevasse depth
is calculated following Nye (1955, 1957), assuming that the
base of a field of closely spaced crevasses lies at a depth
where the longitudinal tensile strain rate tending to open
the crevasse equals the creep closure resulting from the
ice overburden pressure. Crevasses partially or totally filled
with water will penetrate deeper, because the water pressure
contributes to the opening of the crevasse. These arguments
lead to the following equation for crevasse depth, d :

d =
1
ρig

[
2
(
ε̇∗
A

) 1
n

+ (ρwgdw)

]
. (2)

We note that the factor 2 is located at a different
position in the corresponding equations of Benn and others
(2007a,b), which are now recognized to be in error (personal
communication from D. Benn, 2009). g is the acceleration
due to gravity, ρi and ρw are the densities of ice and water,
A and n are Glen’s flow-law parameters, dw is the water
depth in the crevasse (Fig. 4) and ε̇∗ is the longitudinal strain

rate (∂u/∂x) minus the threshold strain rate required for
crevasse initiation, ε̇CRIT. Benn and others (2007a) adopted
the simplifying assumption that ε̇CRIT = 0, and hence
ε̇∗ = ∂u/∂x. This could lead to a slight overestimate of the
crevasse depth, as confirmed by some field measurements
(e.g. Holdsworth, 1969). In more recent work, Mottram and
Benn (2009) considered ε̇CRIT �= 0 and used it as a tuning
parameter to fit computed and observed crevasse depths.
Nye’s (1957) formulation does not account for stress

concentrations at the tip of the fracture. This is admissible,
however, because crevasses near the terminus appear as
fields of closely spaced crevasses where stress-concentration
effects are reduced by the presence of nearby fractures.
Formulations such as those of Weertman (1973) and
Smith (1976), which take into account stress-concentration
effects for approximating the penetration depth of isolated
crevasses, do not seem appropriate for crevasses near
the terminus, because they rely on the assumption of
isolated crevasses. This has been confirmed by field
measurements (Mottram, 2007) which show that Weertman’s
(1973) formulation consistently overestimates the depths of
crevasses. There exist more rigorous frameworks for the
calculation of crevasse depths, such as the linear elastic
fracture mechanics (LEFM) used by Van der Veen (1998)
and Rist and others (1999). However, there are a number of
difficulties associated with the use of LEFM, most notably that
the assumption of linear rheology is not suitable for glacier
ice. LEFM is also very sensitive to crevasse spacing, which is
often unknown. Finally, field observations (Mottram, 2007;
Mottram and Benn, 2009) have shown that Nye’s approach
performs as well as the more complicated LEFM approach of
Van der Veen (1998) in predicting observed crevasse depths.
Benn and others’ (2007a) criterion provides that calving

occurs when the base of the crevasses reaches sea level. The
terminus position is then located where the crevasse depth
equals the glacier freeboard above sea level, h, i.e.

x = L for d (x) = h(x), (3)

where h = H − Dw, H being the ice thickness and Dw the
sea (or lake) water depth.
The justification for using sea level instead of the glacier

bed as the relevant crevasse penetration for triggering calving
is as follows. Observations of many calving glaciers show
that surface crevasses near the terminus penetrate close to the
waterline (Benn and Evans, 2010), and it has been noted that
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calving often develops as collapse of the subaerial part of the
calving front followed, after some delay, by buoyant calving
of the subaqueous part (e.g. O‘Neel and others, 2007). An al-
ternative explanation is that, near the terminus, longitudinal
crevasses intersecting the ice front are commonly observed in
addition to the transverse ones. This is especially true for fjord
glaciers. If such crevasses extend below the waterline, then
there is a free hydraulic connection between crevasses and
sea or lake water, implying a continuous supply of water to
the crevasses and associated deepening, by hydrofracturing,
until the crevasse depth reaches the bed (Benn and Evans,
2010). Both these arguments justify, as a first approximation,
taking sea level as the critical depth of crevasse penetration
for triggering calving.
Equations (2) and (3) show that the first-order calving

processes can be parameterized using longitudinal strain
rates, ice thickness and depth of water filling the crevasse.
The longitudinal strain-rate term provides the link between
the calving processes and ice dynamics, and allows an easy
implementation of this calving criterion in prognostic models
of tidewater glacier dynamics, no matter whether the tongues
are grounded or floating, or are ice shelves.
Alley and others (2008) proposed a simple law for ice-

shelf calving which relies on the same basic assumption as
Benn and others’ (2007a) model, that calving is dominated
by cracks transverse to the flow. They differ in that Alley and
others’ (2008) calving law is empirical, and the calving rate
is parameterized in terms of the product of stretching rate,
ice thickness and half-width of the ice shelf.

3.3. Three-dimensional extension of, and our
improvements to, Benn and others’ (2007a) model
Limitations of the published implementations of Benn and
others’ (2007a) calving model are that they are two-
dimensional and that the dynamic models employed are
simplistic (driving stress supported either by basal drag, or
by drag at the lateral margins, or by a combination of
both; i.e. longitudinal-stress gradients are not taken into
account). To overcome such limitations, we have developed
a three-dimensional extension of Benn and others’ (2007a)
calving criterion which uses a full-Stokes model of glacier
dynamics. We refer to the application of this model to
Johnsons Glacier as experiment 1. We detected a further
limitation of Benn and others’ (2007a) model, related to the
use of Nye’s (1955, 1957) formula for calculating crevasse
depths. Consequently, we developed a further improvement
to Benn and others’ (2007a) model, which we refer to as
experiment 2. Experiment 3, which further departs from
Benn and others’ (2007a) model, consists of an additional
improvement in the calculation of crevasse depth. Finally,
the introduction of a ‘yield strain rate’ is considered in
experiment 4. All of these successively refined calving
models share the basic features described below, and their
implementation steps are very similar. We first present their
common aspects and then give the details for each particular
experiment. In the following, we use d0 to denote the
crevasse depth when the crevasse does not have any filling
water. In the case of crevasse depths calculated using Nye’s
(1955, 1957) formula, we therefore have

d0 =
2
ρig

(
ε̇∗
A

) 1
n

=
2B(ε̇∗)

1
n

ρig
, (4)

where B is the stiffness parameter related to the softness
parameter used in Equation (2), A, by B = A−1/n. The

common features of all of our experiments, corresponding
to their three-dimensional model geometry, are:

1. We consider the glacier length, L, as a function of x and
y , i.e. L = L(x, y ), which represents the glacier length
following each flowline.

2. The longitudinal strain rate, ε̇∗, calculated as ∂u/∂x
in Benn and others’ (2007a) model, now becomes the
strain rate following the ice-flow direction at each point,
calculated as

ε̇∗ ≈ ‖u2 − u1‖
‖x2 − x1‖ =

√
(u2 − u1)2 + (v2 − v1)2√
(x2 − x1)2 + (y2 − y1)2

, (5)

where u1 = (u1, v1) and u2 = (u2, v2) are the velocity
vectors at two positions, x1 = (x1, y1) and x2 = (x2, y2),
with x2 = x1 + u1Δt . We have neglected the vertical
component of velocity, which is very small near the
calving front. Equation (5) gives an approximation to
the rate of change of the velocity field, u, along the
direction of flow in which changes in both magnitude
and direction of u along the flowline are taken into
account. A more accurate estimate of the strain rate in
the direction of flow could be obtained by computing
the norm of the directional derivative of the vector field,
u, in the direction of flow. The latter, however, involves
a rather cumbersome computation which gives no
appreciable differences in the calculated crevasse depths.
The procedure described is approximately equivalent to
rotating the traction vector to align it in the direction of
ice flow.

3. ε̇∗ is computed from the velocity field resulting from the
solution of a full-Stokes model of ice dynamics described
in section 4.

The steps for implementing all the models considered can
be summarized as follows:

1. Let L0(x, y ) be the terminus position at a starting time, t0.

2. We solve the dynamical full-Stokes model to obtain
the velocity field, u(x, y ). The velocity field under
consideration (whether at the surface or at different
depths) depends on the particular model employed.

3. We compute ε̇∗ from u(x, y ) using Equation (5).

4. Using ε̇∗, and perhaps a given (or modelled) height
of water partially filling the crevasse, we calculate the
crevasse depth, d (x, y ). The method used for calculating
the crevasse depth depends on the particular model under
consideration.

5. The new terminus position, L1(x, y ), will be located
where d − h = 0.

6. We use the computed velocity field at the surface,
us(x, y ), and a given accumulation/ablation field, a(x, y ),
to calculate the new glacier geometry after a time,
Δt , calving the glacier front, as determined by L1(x, y ).
Δt can be assigned any value, provided a(x, y ) is
available at such a temporal resolution. The choice of
Δt determines whether or not the model reproduces
seasonal variations. This is important if one wishes to
consider the contribution of surface meltwater to crevasse
deepening.
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7. We repeat the above processes until we reach a steady-
state configuration (surface geometry and front position)
consistent with the prescribed a(x, y ).

Experiment 1
This experiment is a three-dimensional extension of Benn
and others’ (2007a) calving model that parallels their
implementation steps. In this experiment, we use the model-
computed velocity at the surface, us(x, y ), to calculate ε̇∗,
and then Equation (4) to estimate the crevasse depth. Before
proceeding we note that, in Benn and others’ (2007a)
model, the velocity used to calculate crevasse depth using
Equation (4) was the vertically averaged velocity. Benn
and others’ (2007a) model assumes that the longitudinal
strain rate is dominated by the along-flow variations of
basal sliding, i.e. the creep component is small compared
with basal sliding, as usually occurs in fast-flowing calving
glaciers. Therefore, it does not matter whether the velocity
used for computing the crevasse depth is that at the surface, at
the bed, or the vertically averaged one, because their along-
flow derivatives are nearly equal. However, this may not be
the case, as discussed below in experiment 3.

Experiment 2
The model considered in this experiment involves an
important conceptual difference to Benn and others’ (2007a)
calving model. The derivation of Nye’s (1957) formula for
calculating crevasse depth assumes plane strain, i.e. v = 0
(v being the velocity component transverse to the direction of
flow) and τxy = τyz = 0 (deviatoric shear-stress components
acting on the plane of flow), from which the normal stress
component, σyy , also equals zero. Nye’s (1957) analysis
also assumes ∂w/∂x = 0. As Nye points out, ‘The main
feature of a real glacier that is omitted in our model is the
variation in the y [z in Nye’s terminology] direction – that is
to say, the influence of the valley walls’. Consequently, the
calculation of crevasse depth using Nye’s (1957) equation is
an approximation which becomes better for wider glaciers,
and probably very good for an ice sheet. Benn and others
(2007a) rightly stress that their analysis focuses on flow along
the centre line of an outlet glacier, because at exactly the
centre line (but not if we move away from it) the same
assumptions of plane strain hold. Therefore, the use of Nye’s
(1957) formula for calculating crevasse depths is valid only
for crevasses near the centre line, and is expected to worsen
as we move away from it.
To reduce this problem, instead of using Nye’s equation as

given by Equation (4), we have derived the crevasse depth
equation by balancing two terms: (1) the tensile deviatoric
stress tending to open the crevasse, calculated directly from
Nye’s (1957) generalization of Glen’s (1955) constitutive
equation and the strain field produced as output of our full-
Stokes model, and (2) the ice overburden pressure tending
to close the crevasse, approximated as ρigd0. Nye’s (1957)
generalization of Glen’s (1955) flow law is given by

τij = 2με̇ij = Bε̇ij ε̇
(1/n)−1, (6)

where τij is the deviatoric stress tensor, and

ε̇ij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
and ε̇ =

(
1
2
ε̇ij ε̇ij

)1/2
(7)

are the strain-rate tensor and the effective strain rate,

respectively. If, in order to allow direct comparison with
Equation (4), we consider that the ice flows in the direction
of x, we find

τxx = Bε̇xx ε̇
(1/n)−1 = ρigd0, (8)

with ε̇xx = ∂u/∂x. The crevasse depth is thus given by

d0 =
B(∂u/∂x)ε̇(1/n)−1

ρig
, (9)

which can be compared with Equation (4) with ε̇∗ = ∂u/∂x.
We note the absence in Equation (9) of the factor 2 and the
presence of the effective strain-rate factor. In the general case
of ice flow in any direction, we use

d0 =
Bε̇∗ε̇(1/n)−1

ρig
, (10)

with ε̇∗ the strain rate following the ice-flow direction at each
point, calculated using Equation (5). In this experiment, as
in experiment 1, we use the velocity field at the surface,
us(x, y ), to compute the along-flow strain rate.

Experiment 3
This experiment involves another important conceptual
difference, compared to Benn and others’ (2007a) calving
model and the two previous experiments, all of which are
underpinned by the assumption that the creep component is
small compared with basal sliding, and that the along-flow
deviatoric stress relevant to the opening of the crevasse will
be very close to its value on the surface. However, strain
rates, and corresponding stresses, are functions of depth
within the ice. Consequently, the new improvement to the
model considered in experiment 3 is based on finding the
depth at which the model-computed tensile deviatoric stress,
considered as a function of depth, equals the ice overburden
closure pressure.

Experiment 4
A final improvement to our modelling of Johnsons Glacier
calving is to use ε̇∗ as the longitudinal strain rate in the
flow direction minus the threshold strain rate required for
crevasse initiation, ε̇CRIT. This was introduced in the theory
of Benn and others (2007a), but their implementation into
models of glacier dynamics assumes ε̇CRIT = 0. Mottram and
Benn (2009) incorporated the effect of such a threshold strain
rate (referred to as ‘yield strain rate’) in the computation of
crevasse depths from the strain rates measured at the surface
of Breiðamerkurjökull, Iceland, using Equation (4). As they
discuss, ‘the idea of a yield strain rate is introduced as a
heuristic device to fulfil the role of a critical-stress intensity
factor required to overcome the fracture toughness of the ice.
The inclusion of ε̇CRIT allows the Nye model to be tuned,
to allow for the observation that crevasses form only when
the applied stresses exceed some (variable) value (Vaughan,
1993; Van der Veen, 1999)’. They used ε̇CRIT as a tuning
parameter to adjust the predicted depths to those measured
in the field. They tested a range of values of yield stresses
(converted to yield strain rate in the model) of 10, 30, 50,
60 and 100 kPa, concluding that 60 kPa produced the best fit
between observations and model calculations. We use this
value in our computations, to test whether it improves the
modelling of the Johnsons Glacier calving front position.
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4. FULL-STOKES MODEL OF GLACIER DYNAMICS
We consider the ice mass to be an incompressible and
isotropic non-linear viscous fluid. Because of the extremely
low Reynolds number (e.g. Re∼ 10−13 for ice sheets;
Schiavi, 1997), we consider a stationary quasi-static flow
regime. Our glacier-dynamics model can be separated
into three submodels (dynamical, thermal and free-surface
evolution) whose unknowns are functions of space and time,
and are solved separately, through an iterative procedure that
uncouples the equations. A limited set of front positions is
available for Johnsons Glacier, spanning a period of only
10 years. Moreover, the bedrock in the terminus area and
the proglacial embayment is very flat and has a shallow
water depth (just a few metres), resulting in a nearly constant
glacier front position. Additionally, Johnsons Glacier is
mostly temperate, though our radar studies reveal some
patches of cold ice. Therefore, we restrict ourselves to the
dynamical submodel, described below.

4.1. Basic equations
The equations describing the dynamical model are the
usual ones for steady conservation of linear momentum
and conservation of mass for an incompressible continuous
medium:

∂σij

∂xj
+ ρgi = 0, (11)

∂ui
∂xi

= 0, (12)

where σij and ui represent the stress tensor and velocity
vector components, respectively, and ρ is ice density and
gi are the components of the vector accelaration of gravity.
We follow Einstein’s convention of summation on repeated
indexes. As a constitutive relation, we adopt Glen’s flow law,
given by Equation (6). The constitutive relation is expressed in
terms of deviatoric stresses, while the conservation of linear
momentum is given in terms of full stresses. Both stresses are
linked through the equation

σij = −pδij + τij , p = −σii/3, (13)

where p is the pressure (compressive mean stress). Conserva-
tion of angular momentum implies the symmetry of the stress
tensor, i.e. σij = σji . We have set n = 3 and taken B as a
free parameter to be tuned to fit the observed and computed
velocities at the glacier surface.

4.2. Boundary conditions
The domain boundary can be divided into portions that have
boundary conditions of different types. The upper surface is
a traction-free area with velocities unconstrained. At the ice
divides the horizontal velocities and the shear stresses are
expected to be small, so we set null horizontal velocities and
shear stresses and leave the vertical velocity unconstrained.
Note that, in a three-dimensional model, the horizontal
velocities at the divides are not necessarily zero. What
should be zero are their components normal to the divide
plane, but the components tangent to the latter could be
non-zero, though they will usually be small. At the basal
nodes the horizontal velocities are specified according to a
Weertman-type sliding law (e.g. Paterson, 1994, chapter 7),
while the vertical component is derived from the horizontal

ones and the mass-continuity condition, assuming a rigid
bed:

ub = −K (ρgH)
p |∇s|p−1 ∂s

∂x
(ρgH − ρwgHw)q

, (14a)

vb = −K
(ρgH)p |∇s|p−1 ∂s

∂y

(ρgH − ρwgHw)q
, (14b)

wb = ub
∂b
∂x

+ vb
∂b
∂y
, (14c)

where u, v and w are the components of velocity and
the subscript ‘b’ denotes evaluation at the glacier bed. The
variables s and b represent the vertical coordinates of the
glacier surface and bed, respectively, and Hw is the height
of the basal water column. As a simplifying approximation,
we computed the basal shear stress using the shallow-ice
approximation (SIA) and calculated the ice pressure at the
bed hydrostatically. This is a rough approximation for a
model that solves the full-Stokes system of equations in the
interior of the domain. It could be improved by introducing
an iteration loop for the computation of the basal shear stress.
The SIA estimate would be the initial iteration, successively
refined by the basal shear stresses computed using the full-
Stokes model. However, this would be extremely costly
computationally. Other workers using finite-element three-
dimensional models of glacier dynamics have used the same
approach (e.g. Hanson, 1995). In the above equations, we
used p = 2 and q = 1, though different values were tested
during the tuning procedure.
As there are no basal water-pressure measurements

available for Johnsons Glacier, we derived a functional form
for the height of the basal water column. At the glacier
front, we assume that it equals the sea-water depth (Vieli
and others, 2000). For the interior of the glacier, we use
different laws for the ablation and accumulation zones. We
parameterize them in terms of the distances, measured along
flowlines, between the point and the ice front (dfront,point ), the
point and the equilibrium line (dela,point), the front and the
equilibrium line (dfront,ela) and the equilibrium line and the
summit (dela,summit) (Fig. 2):

Habw = C
dfront,point
dfront,ela

+ abs(min(0,b)), (15)

Hacw = C
(
1− dela,point

dela,summit

)
, (16)

where the superscripts ‘ab’ and ‘ac’ denote ablation and
accumulation zones. The constant, C , defining the slope
of the straight line was roughly fitted through a pre-tuning
procedure for which we assigned to the constants B in the
flow law and K in the sliding law values from a previous
paper on Johnsons Glacier dynamics that did not include
calving (Martı́n and others, 2004). Different trials for C led
to the choice C = 40. The height of the basal water column
given by Equations (15) and (16) is plotted in Figure 5. The
assumption that, at the glacier front, it equals the sea-water
depth is a reasonable one. The assumption that it smoothly
increases as we move up-glacier through the ablation area
is also quite reasonable, and similar linear variations (as a
simple choice for the functional form) have been used by
others (e.g. Vieli and others, 2000). Finally, the assumption
that it decreases as we move from the equilibrium-line
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Fig. 5. Height of the basal water-saturated ice (dark blue), as given by Equations (15) and (16), along the flowline of Johnsons Glacier
indicated by a red line in Figure 2. Light blue indicates unsaturated glacier ice above the basal water-saturated ice.

altitude (ELA) to the glacier head has also been used by
other workers (e.g. Hanson, 1995) and is consistent with the
equipotential surfaces of the hydraulic potential dipping up-
glacier (with a slope of ∼11 times the slope of the glacier
surface), resulting in englacial water conduits dipping down-
glacier, approximately perpendicular to the equipotential
surfaces (Shreve, 1972).
At the glacier front, we have set stress boundary condi-

tions, taking them as null above sea level and equal to the
hydrostatic pressure below sea level.

4.3. Numerical solution
Equations (11) and (12) are a Stokes system of equations,
which is solved without discarding any stress components,
i.e. using a full-Stokes solution. It is non-linear because
of the constitutive relation (Equation (6)) employed. The
unknowns are the velocity components and the pressure.
This system is reformulated in a weak form, whose solution
is approximated by finite-element methods with Galerkin
formulation, using a mixed velocity/pressure scheme (e.g.
Quarteroni and Valli, 1994). The basis functions of the
approximating spaces for velocity and pressure are taken as
quadratic and linear, respectively. This choice of polynomial
spaces of different degree is dictated by considerations of
convergence and stability of the numerical solution (e.g.
Carey and Oden, 1986). The ice density and the rheological
parameters, B and n, as well as the density, have been taken
as constant across the entire glacier. The non-linear system
of equations resulting from the finite-element discretization
was solved iteratively, using a direct procedure based on
fixed-point iteration (Martı́n and others, 2004). The linear
system associated with each step of this iterative procedure
was solved by lower–upper decomposition. The iteration
procedure stops when the norm of the vector difference
between the solutions for successive iterations falls below
a prescribed tolerance. The system actually solved is a non-
dimensional one. The details of the dimensionless variables
are given by Corcuera and others (2001). Martı́n and
others (2004) give further details of the numerical-solution
procedure, including the full set of finite-element equations.

5. DOMAIN GRIDDING AND TUNING OF MODEL
PARAMETERS
Our finite-element grid is an unstructured grid made
up of tetrahedral elements constructed by the Voronoi
method, following Delaunay triangulation rules. Details of
the procedure can be found in chapter 3 of Otero (2008).
The grid used in the computations is shown in Figure 6,
and consists of 5845 nodes and 3731 elements. This grid is
a compromise solution between grid size and computation

time, based on the results of a test of the sensitivity of the
model to grid size.
The free parameters in our model are the stiffness

parameter, B, in the constitutive relation and the coefficient,
K , in the sliding law. Tuning of these parameters aimed to
minimize the differences between computed and observed
surface velocities. This misfit was calculated as

E =
1
n

N∑
j=1

‖ucj − umj ‖, (17)

where the superscripts ‘c’ and ‘m’ denote computed and
measured, respectively, and the summation extends over the
N points at which measurements of ice velocity at the surface
are available. Note that Equation (17) takes into account
the misfit in both magnitude and direction of the velocity
vectors, averaged over the total number of measurements.
In the tuning procedure, B values were increased from
0.18 to 0.33MPaa1/3, in steps of 0.01MPaa1/3, and
K from 0 to 2ma−1Pa−1, in steps of 0.1ma−1Pa−1. The
results of the tuning are shown in Figure 7a. Although an
absolute minimum of the misfit (E ∼ 5.2ma−1) is found
at K = 0.9ma−1 Pa−1, B = 0.22MPaa1/3, it lies within
an elongated ‘valley’ defined by the misfit contour line
E = 5.4ma−1, i.e. there is a wide range of values of
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Fig. 6. Finite-element grid of tetrahedra used for the model
computations. Note that this figure has a different orientation than
the maps of Johnsons Glacier in this paper, in order to properly show
the location of the calving front in the grid. The latter corresponds
to the area surrounded by the red curve in the foreground. The
boundaries contoured with a blue curve correspond to ice divides.
Those without any coloured curve represent margins where the
glacier has contact with lateral walls.
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Fig. 7. (a) Tuning of the free parameters of the model, B and K , for the case in which a single value of K is used for the whole glacier.
The plot shows the magnitude of the differences between the computed and observed velocities at the glacier surface, calculated using
Equation (17). The exact location of the absolute minimum (E ∼ 5.2ma−1) is indicated by the red dot. (b) Comparison of computed (red)
and measured (green) velocities at the glacier surface, for the choice of model parameters B = 0.22MPa a1/3 and K = 0.9ma−1 Pa−1,
with K constant across the whole glacier.

K and B that produce nearly equal misfits. Within this valley,
the misfits computation/observation corresponding to the
highest values of both B and K (upper right side of the
figure) are physically meaningless. They imply such a large
amount of sliding that velocities corresponding to internal
deformation are forced to become negative in order to fit the
computed velocities to the observed velocities at the glacier
surface. The model velocities computed for the choice of
free parameters corresponding to the absolute minimum of
the misfit mentioned above, unfortunately, do not provide
an appropriate fit to the observed velocities, especially for
locations close to the calving terminus, as Figure 7b clearly
shows.
To minimize the differences between computation and

observation near the terminus, we made a number of tests,
selecting different powers for the basal shear stress and the
effective pressure terms in the Weertman-type sliding law
(p and q in Equations (14a) and (14b)), with unsatisfactory
results. Finally, we succeeded in getting a good fit using
p = 2 and q = 1 and setting different K values for the accu-
mulation and ablation zones. (K is used for the former and
3K for the latter.) The results of the tuning are shown in Fig-
ure 8a, from which the best choice (misfit of E ∼ 4.1ma−1)
for the model parameters is B = 0.23MPaa1/3 and K =
0.8ma−1 Pa−1 (this K value corresponds to the accumu-
lation area; that for the ablation area would be three times as
large). The corresponding velocity field is shown in Figure 8b,
which manifests a clear improvement in the fit computa-
tion/observation as compared with that obtained with the
earlier choice of model parameters. Differences still exist, es-
pecially near the calving front, which are more pronounced
in direction than in magnitude of the velocity vector field.
For a highly crevassed terminus with substantial void

spaces, one expects a flow law describing a continuous
material to be inadequate. ‘Softening’ the material by
assigning a lower B value in the crevassed region may
partially allow for this. However, in our tuning we did not
attempt to assign different values for B at the crevassed and

non-crevassed areas, because the ‘boundary’ between them
is not well defined.
Note that the tuning of the stiffness parameter, B, has

implications for the computed crevasse depths. Crevasses
will penetrate deeper in stiffer ice, due to slower creep
closure rates. Equations (4) and (10) show that an increase
in B implies a corresponding increase in d0. However,
an increase in B also implies slower flow, and possibly a
decrease in strain rate, thus counteracting (at least partly) the
effects of the increase in B on crevasse deepening.

6. RESULTS FOR THE PREDICTED FRONT
POSITION
The field of computed velocities corresponding to the opti-
mal choice of model parameters is shown in Figure 9.We use
this field for all the computations discussed in this section.

Experiment 1
From the velocity field, we compute the surface strain rate
using Equation (5) and then the depth of the crevasses using
Equation (4). As we have no a priori knowledge of the depth
of water filling the crevasses, dw, we set it to zero and
therefore use Equation (4) instead of Equation (2). The values
of d0(x, y ) − h(x, y ) are plotted in Figure 10a. The contour
line d0 − h = 0 gives the terminus location in our three-
dimensional extension of Benn and others’ (2007a) calving
model. According to Figure 10a, Johnsons Glacier front is
located at a position behind (up-glacier from) that predicted
by the calving criterion. This could be due to our assumption
of crevasses empty of water, i.e. dw = 0. To establish
whether this is a reasonable hypothesis, we recomputed
d (x, y ) − h(x, y ) for different amounts of water filling the
crevasses, using Equation (2). The results for the case in which
dw equals, at each point, one-half of the ice thickness,H, are
shown in Figure 10b. We observe that d − h = 0 for most
of the ice front. In other words, we would need a height of
water dw = H/2 filling the crevasses near the terminus to
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Fig. 8. (a) Tuning of the free parameters of the model, B and K , for the case in which different values of K are used for the accumulation
and ablation areas. In the latter, a value of 3K was used instead of K in the sliding law. The exact location of the absolute minimum of the
misfit between computed and observed surface velocities (E ∼ 4.1ma−1) is indicated by the red dot. (b) Comparison of computed (red)
and measured (green) velocities at the glacier surface, for the choice of model parameters B = 0.23MPa a1/3 and K = 0.8ma−1 Pa−1, the
latter corresponding to the accumulation zone, and the corresponding constant taken as 3K in the ablation zone.

properly calculate, using the three-dimensional extension of
Benn and others’ (2007a) calving criterion, the location of
the presently observed calving front.

Experiment 2
In this case we compute the crevasse depth using Equation
(10) instead of Equation (4). The corresponding contour
lines of d0(x, y ) − h(x, y ) are shown in Figure 10c. The
differences between the results of experiments 1 and 2 are
quite remarkable. In the latter case, there is no need for any
water filling the crevasses. In fact, the model solution shows
that the d0−h = 0 contour line is located within the glacier
domain, meaning that the glacier should be calved along
this line. In other words, the crevasse depths are slightly
overestimated.

Experiment 3
In this experiment we consider the model-computed tensile
deviatoric stress opening the crevasse as a function of depth,
and determine the depth at which it is balanced by the
ice overburden pressure tending to close the crevasse. The
contour lines for d0(x, y )− h(x, y ) are shown in Figure 10d.
The −10m contour line lies very close to the calving front,
indicating that an additional 10m of crevasse depth near
the terminus would be required to have the glacier calving
at the presently observed front position. If we fill the frontal
crevasses with a height of water, dw, equal to one-tenth of the
ice thickness, the contribution of the water pressure, ρwgdw,
to the deepening of the crevasse makes the contour line
d − h = 0 lie very close to the observed front position, as
shown in Figure 10e. In other words, this experiment, with
such an amount of water, accurately models the presently
observed calving front position.

Experiment 4
This experiment examines the influence of yield strain
rate, ε̇CRIT, in the computation of the crevasse depth and,
consequently, in the calculation of the position of the calving

front. We used ε̇CRIT = 7.53 × 102 a−1, which is the yield
strain rate corresponding to the yield stress of 60 kPa that
Mottram and Benn (2009) found produced the best fit in
their experiment. We introduced such a yield strain rate in
the most physically plausible of the above experiments, i.e.
experiment 3, but with crevasses empty of water. The results
are shown in Figure 10f. For experiment 3, we found the
contour line d0 − h = −10m lay very close to the observed
calving front position. Adding a yield stress has the effect of
reducing the crevasse depth and, correspondingly, moving a
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Fig. 9. Model-computed velocities corresponding to the optimal
choice of model parameters. We use this velocity field to calculate
the strains.
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Fig. 10. (a) Plot of contour lines for d0(x, y )−h(x, y ) in experiment 1; contour level interval is 20m. The zero line should correspond to the
location of the calving front, but it does not. (b) Contour lines for d (x, y )−h(x, y ) in experiment 1 with a depth of water filling the crevasses
equal to half the ice thickness at each point. In this case, the zero contour line gives a good fit to the position of the calving front. (c) Contour
lines for d0(x, y ) − h(x, y ) in experiment 2. Contour level interval is 20m. (d) Plot of contour lines for d0(x, y ) − h(x, y ) in experiment 3.
(e) Contour lines for d (x, y ) − h(x, y ) in experiment 3, with a depth of water filling the crevasses equal to one-tenth of the ice thickness
at each point. (f) Contour lines for d0(x, y ) − h(x, y ) in experiment 4. (g) Plot of contour lines for d (x, y ) − h(x, y ) in experiment 4, with
a depth of water filling the crevasses equal to one-sixth of the ice thickness at each point. Contour line interval is 10m unless otherwise
stated. (h) Location of the area considered.

given d0 − h contour line farther down-glacier, so we could
not match the observed front position by varying the value
of ε̇CRIT (any value of ε̇CRIT, no matter how small, worsens
the fit). However, the idea of a critical-stress intensity factor
necessary to overcome the fracture toughness of the ice is
physically plausible, so we kept the ε̇CRIT and searched for
the amount of water filling the crevasses needed to move the
d − h = 0 contour line as close as possible to the calving
front. The required height of water, dw, was one-sixth of the
ice thickness, as shown in Figure 10g.

7. DISCUSSION
We first discuss the main hypotheses of our modelling and
then its results and implications.

7.1. Limitations of Benn and others’ (2007a) calving
criterion and its implementation
1. Themost important limitation of Benn and others’ (2007a)

calving criterion is the plane strain assumption inherent
in the use of Nye’s (1957) formula for calculating
crevasse depths. (We discussed this when we introduced

experiment 2 in section 3.3.) The key issue is that the
accuracy of the approximation is better for wider glaciers,
and probably will be best for ice sheets. For a given
glacier, the estimate will be best near the centre line.
Glaciers showing narrowing or widening of their tongues
(especially if these are sharp) will not be good candidates
for such a crevasse-depth model, because of the expected
influence of lateral (transverse to flow) compression or
extension, unless we strictly focus on the centre line.
This is probably the reason why the crevasse-depth model
behaved so poorly for Johnsons Glacier. This glacier fills a
basin that drains through a narrow calving front, implying
fast flow acceleration and transverse-to-flow compression
in the vicinity of the calving front.

2. Our second criticism does not refer to the calving
criterion itself but to the simplistic models of glacier
dynamics employed by Benn and others (2007a). They
used three different models of glacier dynamics: (1) driv-
ing stress entirely balanced by basal drag; (2) driving
stress supported by drag at the lateral margins; and
(3) resistance to flow provided by a combination of
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basal and lateral drag. Therefore, longitudinal-stress
gradients were not taken into account in the force
balance. This oversimplification strongly contrasts with
the use of a calving criterion based on the penetration
depth of crevasses developed near the calving front as
a result of the extensional-stress regime, because one
might expect longitudinal-stress gradients. However, such
models, though simplistic, are not inconsistent with the
calving criterion because the crevasses open in response
to longitudinal stresses, not longitudinal-stress gradients.
In the original model formulation, Benn and others
(2007a) assume that the driving stress is everywhere equal
to the sum of the basal and lateral drag. In such a
situation, one can have longitudinal stresses (if the driving
stress changes down-glacier) without longitudinal-stress
gradients. Nevertheless, the longitudinal-stress gradients
are important near the terminus of calving glaciers, and
their inclusion is an important feature of the present
modelling study.

7.2. The role of other calving mechanisms
Benn and others’ (2007b) analysis of the main mechanisms
responsible for calving concludes that the stretching as-
sociated with surface velocity gradients near the terminus
is the first-order mechanism for triggering calving. Other
mechanisms, such as the force imbalance at terminal ice
cliffs, the undercutting by underwater melting and the torque
arising from buoyant forces (which may be oscillatory, as
happens in the case of the variable torque due to ocean tides),
are second-order processes, superimposed on the first-order
mechanism. These contributions need to be accounted for to
get a better representation of calving, though the necessary
field data are rarely available. The relative importance of
each mechanism depends on the particular case study. For
Johnsons Glacier, considering the minute portion of the
glacier with the bed below sea level, the torque arising
from buoyant forces is certainly small. Because of the closed
embayment, waves hitting the glacier front are rather weak,
so wave erosion at sea level is small. There is, however, some
melting at the underwater part, attributed to warm waters
in the embayment due to the very shallow water depth (a
few metres). Finally, we note that the force imbalance at the
terminal ice cliff is accounted for in our model, because
the stress boundary condition set at the terminal cliff (null
stresses in the emerged part, and stresses equal to hydrostatic
pressure in the submerged part) are, by themselves, the
expression of such force imbalance.

7.3. Difficulties and weaknesses of our modelling
During the tuning of free parameters of the model, we had
difficulties in closely fitting the relatively large velocities
observed at the glacier surface near the terminus. The
very small surface slopes in this area imply, by virtue
of the Weertman-type sliding law, small sliding velocities.
We failed to substantially increase the sliding velocity by
decreasing the value of the effective pressure term in the
sliding law. Moreover, the small velocity gradients near
the terminus also implied small crevasse depths, with the
consequence that they never reached sea level, preventing
calving from occurring. We finally obtained good agreement
with observed velocities, as well as deeper crevasse depths,
by setting different values of the sliding parameter, K , for the
ablation and accumulation zones.

An evident weakness of the full-Stokes model employed
in this paper is that it uses, for reasons of computational
cost, a basal boundary condition in terms of velocities that
make use of basal shear stresses computed by balancing the
driving stress. Also our choice of the parameterization of
height of the basal water pressure, contributing to sliding,
involved a certain amount of speculation, because of the lack
of basal water-pressure measurements on Johnsons Glacier.
All of these arguments diminish the accuracy of the sliding
model employed.

7.4. Comments on the results
The results of experiment 1 show that our straightforward
three-dimensional extension of Benn and others’ (2007a)
calving criterion requires a large amount of water to fill the
crevasses near the calving front (water height about half the
ice thickness) to properly reproduce the presently observed
location of Johnsons Glacier calving front. For this particular
glacier, there are no field observations to verify whether the
assumed amount of water filling the crevasses is realistic.
Experiment 2 had markedly better results than experi-

ment 1. No water filling the crevasses was required to fit
the observed front position. We attribute this improvement
to the fact that the effective strain rate, with all of its
components, comes into play for computing the crevasse
depth. Nevertheless, this model slightly overestimated the
crevasse depth necessary for triggering calving.
The model involved in experiment 3 has a yet more

solid physical foundation than that of experiment 2. In
experiment 3, a very small amount of water (height of water
filling the crevasse about one-tenth of the ice thickness at the
point under consideration) was required to provide a good
fit to the observed calving front position. We believe that
a model using strain rate and stresses dependent on depth
provides a better approximation to real glaciers.
Introducing the effect of the yield stress rate, ε̇CRIT,

(experiment 4) did not improve the fit to the observed
front position of Johnsons Glacier. In spite of this, including
ε̇CRIT in the modelling should not be discarded, because
of its interpretation as a heuristic device to fulfil the role
of a critical stress intensity factor required to overcome the
fracture toughness of the ice.
In experiments 1, 3 and 4 we used a certain amount of

water filling the near-front crevasses in order to accurately
reproduce the observed front position of Johnsons Glacier
calving front. We thus used the water filling the crevasses as
a free parameter for tuning our model to fit the observations.
This is true of the particular application in this paper, but it is
not inherent to the use of Benn and others’ (2007a) calving
criterion, i.e. water filling the crevasses is not necessarily
used as a tuning parameter in Benn and others’ (2007a)
calving criterion. It could, instead, be an input parameter
supplied by a model of melting at the glacier surface.
Our three-dimensional extension of Benn and others’

(2007a) calving criterion, with Nye’s (1957) formula (experi-
ment 1), failed to adequately model the crevasse depths near
the calving front of Johnsons Glacier, and thus to reproduce
its current position. This, however, brings no discredit to
either criterion or formula. Simply, the basic assumption of
plane strain did not apply in our case study. Although the
models considered in experiments 2, 3 and 4 represented
clear improvements over those of experiment 1, all of them
rely on the same fundamental assumptions of Benn and
others’ (2007a) calving criterion: (1) that calving is triggered
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by the downward propagation of transverse crevasses near
the calving front resulting from the extensional stress regime
and (2) that the crevasse depth is calculated by balancing
the tensile deviatoric stress opening the crevasse with the
ice overburden pressure tending to close it. The differences
between the models presented here are more in the details of
the particular methods than in the underlying physical ideas.
An interesting and appealing feature of the modelling

results shown here is that they produce a ‘calving bay’ at
the glacier front. Intuitively, this appears to be the result of
pure extensional strain near the glacier centre line and simple
shear at the glacier margins, with associated rotation of the
principal strain axes. This provides an additional source of
model validation.

7.5. The role of water as a mechanism favouring
calving
Benn and others’ (2007a) calving criterion allows the effect
on crevasse deepening of water filling the crevasses to
be included. To our knowledge, there are few reported
observations of water-filled crevasses near the front of
tidewater glaciers (e.g. Mottram and Benn, 2009). In contrast,
there are well-known examples of ice shelves where water
filling the crevasses was indeed a contributing factor to the
crevasse deepening and subsequent calving. The collapse of
the northern part of Larsen B ice shelf, Antarctica, in 2002
is a clear example; in this case, however, other factors also
contributed to its disintegration, such as ice-shelf thinning by
bottom melting due to warming ocean waters (Shepherd and
others, 2003).
Even if there is no water filling the crevasses, we

hypothesize that the effect of surface water on triggering
calving can still be important. During the melt season, it is
clear that surface meltwater drains into the crevasses. If there
is a good hydraulic connection between the crevasse and the
glacier bed, such water will not remain in the crevasse but
will penetrate to the glacier bed. However, on its way to
the bed this water can contribute to crevasse widening and
deepening bymelting the crevasse walls and by enlarging the
conduits to the bed. No matter whether this flow is mainly
accomplished through conduits or fractures, it will certainly
contribute to the weakening of the material as a whole and,
consequently, favour the occurrence of calving. Of course,
the state of the englacial drainage system will play a role
in the effectiveness of such mechanisms. For instance, we
can think of situations where a very active drainage system
allows water to drain to the bed, and eventually the ocean,
from very shallow depths within the ice, without supplying
any important amount of water to the near-front crevasses.
There are also regions, such as many Antarctic ice shelves,
where there is no evidence of a free hydraulic connection
between fractures and the ocean. In fact, hot-water drilling
often indicates just the opposite, as a connection with the
ocean is not made until the drill penetrates near the ice-shelf
bed or into the marine ice layer.
In light of the above arguments, investigation of the

contribution of water to the triggering of calving is a research
subject that deserves further attention.

7.6. Polythermal structure of Johnsons Glacier
The value of the stiffness parameter that best fitted the
computed and observed velocities was B = 0.23MPaa1/3.
This is close to the value obtained for the neighbouring
(but ending on land) Hurd Glacier (0.22MPaa1/3; Otero,

2008), for which ground-penetrating radar measurements
and geomorphological evidence suggest a polythermal
structure (Navarro and others, 2009). It is also quite similar
to, though slightly higher than, the value of 0.20MPa a1/3

for Storglaciären, Sweden (Hanson, 1995), which is also
known to be polythermal. The higher stiffness of Johnsons
Glacier could be interpreted as indicative of a larger relative
amount of cold ice. To give a rough idea of the degree of
variation of B with temperature, two examples extracted
from Paterson (1994) are: B = 0.167MPa a1/3 at 0◦C;
and B = 0.236MPaa1/3 at −2◦C. This subject is of
interest because the South Shetland Islands glaciers have
commonly been assumed to be temperate (e.g. Qin and
others, 1994; Furdada and others, 1999; Benjumea and
others, 2003), while more recent work (Molina and others,
2007; Navarro and others, 2009) has suggested that at
least some Hurd Peninsula glaciers ending on land are
polythermal. Our results suggest that the tidewater Johnsons
Glacier could also be polythermal. In addition to its dynamic
implications, the polythermal structure has an impact on
the glacier sensitivity to climate changes. Temperate glaciers
are especially sensitive to climate changes, as almost
all heat supplied is used for melting. If, however, the
glaciers are polythermal, heat is first used to raise the
temperature to the melting point. Comparing the specific
heat capacity with the latent heat of fusion (e.g. Paterson,
1994, p. 205, table 10.1) shows that this effect is only
marginal, because the energy needed to melt a given
amount of ice at the pressure-melting point is ∼150 times
the energy needed to raise the temperature of the same
amount of ice by 1◦C. However, other effects, such as
the insulating effect of the cold ice layer, should be taken
into account. As discussed by Blatter and Hutter (1991),
the temperature gradient through the cold ice layer is
a dominant control on the capability to transport away
from the cold/temperate transition surface the latent heat
released when the top of the temperate layer freezes, which
has important implications on the hydrothermal regime of
polythermal glaciers.
In any case, the cold layer of these glaciers would

have temperatures slightly below the melting point, so the
assumption of isothermal ice mass made in our modelling is
reasonable.

8. CONCLUSIONS AND OUTLOOK
We draw the following main conclusions from this study:

1. Benn and others’ (2007a) calving criterion is well
founded in physical principles and is easy to implement.
Being based on the crevasse penetration depth, computed
directly from the strain-rate field derived from the velocity
field, it has a direct link with glacier dynamics which
allows its use in prognostic models.

2. Our three-dimensional extension of Benn and others’
(2007a) calving criterion, combined with the use of a full-
Stokes model of ice dynamics, was able to reproduce the
presently observed position of Johnsons Glacier calving
front only if a large amount of water filling the near-
front crevasses is hypothesized. We attribute the failure
to reproduce the observed front position to the fact that
the hypothesis of plane strain inherent in Nye’s (1957)
formula is not fulfilled for Johnsons Glacier.
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3. Using a modified criterion for crevasse depth, which
computes the deviatoric longitudinal stress tending to
open the crevasse using the full-stress solution, we
substantially improved the results, to the point of avoiding
the need to introduce water into the crevasses for the
model to fit the observed front position. Nevertheless,
this model slightly overestimated the crevasse depth
necessary for triggering calving.

4. The model that considers the tensile deviatoric stress
opening the crevasse as a function of depth, and
computes the crevasse depth by finding the depth at
which this stress exactly balances the ice overburden
pressure tending to close the crevasse, is the most
physically plausible model and provides a good fit to
observations if a small amount of water filling the near-
front crevasses is hypothesized.

5. Introducing a yield strain rate does not improve, for
Johnsons Glacier, the fit between model computations
and observations, unless we assume a certain (but
reasonable) amount of water filling the crevasses. The
existence of such a yield strain rate is physically plausible
as a mechanism to overcome the fracture toughness of
the ice.

6. Our main difficulties in model implementation were
related to the Weertman-type sliding law. The practical
difficulties concerned estimating the height of the basal
water column for a glacier lacking field measurements of
basal water pressure.

In future work, we intend to apply our model to a glacier
with a good record of front position changes, which is not
available for Johnsons Glacier. The main weakness of the
present implementation of the full-Stokes model lies in its
inadequate representation of the basal boundary condition;
further applications should improve this aspect.
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