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A note on the omega lemma

Sadayuki Yamamuro

A class of locally convex spaces, a B-subfamily of finite order,

is defined and the omega lemma for spaces belonging to this

family is proved.

1. Introduction

Let us denote the family of all finite-dimensional euclidean spaces by

E . Let E be a member of E and X be an open subset of E . We

denote by FU, E) , or more simply, by F , a class of topological linear

spaces FU, F) for all F ( F , whose elements are maps of X into F .

k k k
For example, when F = C , C (X, F) is the space of all C -maps of X
into F .

Let Y be an open subset of F and consider a subset F^U, Y) of

FU, Y) defined by

F,U, Y) = {f € FU, F) : /UTe Y} .

Let G be another member of E , and let

<J> : Y •* G

CO

be a C -map such that <j> o / belongs to FU, G) for every

/ € F^U, Y) . Then we can consider a map

y : F,U, Y) -y FU, C) : f -* * ° / •

The original omega lemma, proved in [1, Corollary 3.8], claims that,

when ¥ = C and X has compact closure, co. is a C -map. In this

case, F^U, y) is an open subset of the Banach space C (X, F) .
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CO

V/hen F consists of spaces whose elements are C -maps, there are

several results of similar type. Among these, the sharpest is the one due

to Omori [6, Lemma 2.1.33. However, from the viewpoint of the theory of

differentiation in locally convex spaces, the omega lemma in [2, Satz 21]

(see also 141) has the most general form.

Fischer considers the space B(X, F) of all C -maps f : X -* F such

that

| | / H k = s u p { \fM{x) | : x Z X, O £ i s / c } < - H »

for all k 2: 0 , where / (x) denotes the ith derivative of / at

x , and |•| denotes the norms in the spaces in E . With these norms

{11*11,} , 8(X, F) is a Frechet space. Fischer has shown that B * U , Y)

is an open subset of B{X, F) and

a) : B^X, Y) ->• B U , G)

OO

is a HC -map. In fact, B^iX, Y) is open with respect to the Oth norm

IHI0 on 8U, F) .
OO

The HC -smoothness, which has "been defined hy Fischer in the same

OO

paper, is equivalent in this case to the C_-smoothness in [S] for a

suitably defined calibration T . The aim of this note is to present an

omega lemma in a more general setting. We shall consider only the

F-smoothness; we refer to LSI for its definition and its properties.

Before proceeding further, we need to observe the fact that there are
' OO

locally convex spaces consisting of C -maps for which the omega lemma does

not hold or holds only for a special type of the map (j) . One of such is

the space C {X, F) of all C -maps of X into F , equipped with the

calibration consisting of

\\f\\k K = sup{ |/
U)(x) I : 0 2 i £ k, x € K]

for all k - 0 and all compact subsets K of X . In this space, which

is the biggest among spaces of C -maps, the subset C^iX, Y) is not

necessarily an open subset of C (X, F) and, therefore, it is not a

suitable domain of a smooth map. The smallest among those spaces of
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00 OO

C -maps will be the space V{X, F) of C -maps with compact supports with

the usual inductive limit topology. In this space, the smoothness of w. ,

which is regarded as a map of VAX, i) into V(X, G) , can be meaning-

fully considered only if <|> is flat, that is

<r"^(0) = 0 for all n > 0 ,

because U A ( / ) must have compact support whenever / does. An omega

lemma in this space will be given in §6.

OO

A typical example of spaces of C -maps to which a general method is

applicable is the space K{Mm}(X, F) defined by Shilov [3, p. 86] in the

following way. Let {M } be a sequence of functions

M : X •* R (the reals)
m

which take on finite or simultaneously infinite values and are continuous

where they are finite. It is assumed that

1 < MQ{x) < MAx) 2 ... .

Then the space K{M }(X, F) is the set of all C°°-maps / : X •* F suchm

that

11/11 = sup{M (x) |/| Ax) : x € x\ < *»
III yK. Ill K.

for all m ^ 0 and k ^ 0 , where

\f\Ax) = max{|/(i)U)| : 0 5 i < k} .

The topology of this space is defined by the calibration

V/hen all M (x) are equal to a constant, it obviously coincides with

B ^ , F) . Another example is the space of all rapidly decreasing C -maps.

2. 8 -subfami l ies of f i n i t e order

We start with the family 8 = B(X, E) which consists of the spaces

B(X, F) for all F E E . This family has the calibration T(B) , which

consists of countable semi-norm maps p, for k = 0, 1, 2, ... ; the
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value of Pj, at a member of B is the kth norm ll'llj. defined in the

previous section. In other words, this is a calibration with "identical

components" (see [S, Appendix]).

Now let F( F) be a set of semi-norm maps on 8 with the additional

assumption that elements of T( F) may take the value +°° on 8 . For

this r( F) , we define for each F f E a locally convex space T(X, F) by

F(X, F) = [f 6 B(X, F) : p(f) < +°° for all p i ?{¥)} ,

where p(f) denotes the value of the B(X, F)-component of p at f .

Then we can define a F(F)-family F = ¥(X, E) as the totality of all

T(X, F) for F € E .

A family F defined from 8 in this way is called a B-subfamily if

for every p € T( F) , / € T{X, F) , and F f E . This last condition

ensures that F*(X, Y) is an open subset of ¥{X, F) for every open

subset Y of F , because B^C*, y) is already ||'|l0-open in 8(A", F) .

The family x{w } in the previous section is obviously a 8-sub-

family. As we shall show in §6, a calibration can be defined for the

family V = V(X, E) so that it becomes a 8-subfamily, but the family

C (X, E) is evidently not a 8-subfamily.

An essential difference between the families K{M } and V is that
m

K{M } is of finite order in the following sense. A 8-subfamily V(X, E)

is said to be of finite order if, for any p € F(F) , there exists k 5 0 ,

which is called the order of p , such that, for each F € E ,

(2.1) p(f) > \\f\\k for a l l / £ V{X, F) ,

(2.2) for /, g £ ¥{X, F) , if

for some a. 2 0 and every x € J , then

p(f) 5 al
 2
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The family K{M } has the calibration consisting of semi-norm maps

p , for m, k = 0, 1, 2, . . . , whose components are ||*|| , defined in
Hi j K. 171 j K,

the previous section. The order of p . is obviously k . The family V

can not be of finite order.

Except for §6, we shall only be concerned with the 8-subfamilies

which are of finite order.

3 . Some i n e q u a l i t i e s

Let E, F , and G be members of E , and l e t X and Y be open
oo

subsets of E and F respectively. We take a C -map

(j> : Y •* G .

For positive integers m and n such that 1 5 n £ m , we define i?ze

Faa-di-Bruno constants $(rn, n) by ${m, l ) = $(w, m) = 1 and

B(m, n) = B(m-1, n - l ) + nB(m-l, n) .

These a r e c o e f f i c i e n t s in t h e Faa-di-Bruno formula ( see [ 7 , 1 . 8 . 3 ] ) .
oo

Then, for C -maps

/ , g • X •* Y ,

we have the following inequalities:

(3.1) |(<j> o f ) { m ) ( x ) \ £ \<$>\Jf(x)
n=l

( 3 . 2 ) |(<j> o (f+g) _ ( j , o / ) ( m ' ( a ; ) |

2 I B(ra, n ) L U ) o (f+g)-*Mof\ (X)\f\ {X)n

n=l |_ m

r=0

(3 .3) fo r

r{4>M, f, g] = 4>(n) ° (f+g) - 4>M o f - (<(>(n+1) o / )

we have
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, f,
\ / , g)\Q(x)\f\Jx)

n=2
&(m,

( n ) , / , g)\Q(x)\f\jx)n

n-2
S(m,n)H\m(f(x)+g(x)) £ Q \f\Jxf \g\m(x)

w - l , , , .

P (n) (")

In the above, we used the notation

(ifr x g)(x) = tKx)[3(x)]

for )/;:/-»• L(F, C) and g : X •* F . For this operation, the Leibnitz

formula gives the following inequality:

(3.M I* >< g\Jx) < 4"\i>\m(x)\f\m{x) .

Here we add two simple consequences of (3.1) and (3.**). We denote by

Ln{F, G) the space L[F , L[F , . . . , L(F, G) , . . . ) ) where F appears

n t imes. Let F be a 8-subfamily of f in i t e order.

(3.5) If f € F^U, y) , t^en <}.(n) o / € F(x, Ln(f, G)) .

Proof. We only need to prove the case when n = 0 . F i rs t we note

t h a t , for any k i 0 ,

yk(<S>, f) = snV\U\k[f{x)) : x i X} < ^ ,

b e c a u s e f(X) i s c o m p a c t . Hence <f> o / ? B(X, G) by ( 3 . 1 ) . Now l e t

p € I \ F ) , and l e t k b e t h e o r d e r of p . Then , by ( 3 . 1 ) and ( 2 . 2 ) , we

h a v e

B(fc, i

which shows that <f) o / belongs to

This fact implies in particular that the ft-sub families of finite
order are closed under composition. The following fact shows that the
^-subfamilies of finite order are also closed, under' products.
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(3 .6) If 41 (. t[x, L(F, G)) and g i F(X, F) , then tfi x g e T[X, G)

and, for each p £ T(F) ,

p(i|> x g) 5 k

for the order k of p .

Proof. From (3.U), we have

and, by (2.1), we have |IJJL(X) S p(ty) . Hence, by (2.2), we have the

desired inequality.

4. r-smoothness of a>.

Let F(^, E) be a B-subfamily of finite order, where X is an open

convex subset of a space E in E . Let F, G (. E , and let y be a

convex open subset of F . The assumption of convexity is required to

accommodate the mean-value theorem (see [7, 1.1.3]). Let

4> : Y -> G

b e a C - m a p . Then , b y ( 3 . 5 ) , i t i s m e a n i n g f u l t o c o n s i d e r t h e T ( F ) -

s m o o t h n e s s of (0, .

yj \00 ( yj \

, is of class Cp(p) and u>\ = w , , .

The remainder of this section is devoted to the proof of (^.l).

First, we prove that the map to. > , a candidate for the derivative of w, ,

is r(F)-continuous.

(U.2) For each f € Fj((X, y) , the linear map

^>(f) • F U , F) •+ F U , G) : g + {<!>' o f) x g

is F(F) -continuous.

Proof. Let p (. F(F) , and let k be its order. Then it follows

from (3.6) that

£ 2 p(<j>' o f)p(g)
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for every g £ F(X, F) , where p(4>' ° f) < +" by (3.5). This shows the

T(F)-continuity of W^,(/) .

The essential part of the remainder of the proof of (̂ .l) are the

following two facts, which can be derived from (3.2) and (3.3)

respectively. The fact that f(X) is a compact subset of F is an

indispensable condition here.

(it.3) Assume that g € F(X, F) , x (. X , and

lim \g |. [x ) = 0
J m n k *• n'

for some k * 0 . JTienj for any f € F^(X, Y)

lim l^(())(/+^)-a)(J)I(/)|fe(xn) = 0 .

{h.h) Let f € Fjf(x, y) , ^ € F(AT, F) , and x Z X . Assume that

lim \q \, (x ) = 0

for some k 2 0 and |<y L (x ) / 0 for all n t 1 . TTien

lim |o | 7 fx )~1\u, [f+g )-uAf)-oij,i(f)(g ) I, (x ] =0 .

Now we show that the F( F)-continuous linear map u, ;(/) is the

derivative of to, at / .

(It. 5) u. is V{T)-differentiable on ^Ax, Y) and u, ,(/) is i t s

r(F)_deriuatiue at f * *Ax, Y) .

Proof. Assume that w,((f) is not the F(F)_derivative of w, at
<P <J>

/ € F̂ fA-, y) . Then there exist p € r(F) , E > 0 , and g € F(X, j?)

such that lim p[g ) = 0 and

P [^ (/%) ^ (f) ^ • (/) [gn) ] > ep (?„)•

for all n 2 1 . Let & be the order of p . Then it follows from (2.2)

that there exist x i X such that
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Furthermore, by (2.1), we have

iim \gn\k[*n) = o ,

which is impossible by (1*.1|).

If we replace <|> by <j> , the above argument gives that to / \ is

r(F)_differentiable at each / € F^U, Y) with u , + 1 ) W a s i t s

oo

derivative. This means that to, is of class C_,r\ and

o^n'(/) = w (n)(/) for all n i l .

5. Compl e t i ona l r-smoothness of co,

We use the same notation as in the previous section. The map
to, : F^iX, X) -»• f{X, G) is completionally r( F) -continuous if, for each

p € r(F) , the following condition is satisfied: if \f } and {g } are

two p-Cauchy sequences in f^(X, Y) such that lim p [f -g ) = 0 _, then
n-xx> n n

l i m p fu). f f ) -d), fcJ 11 = 0 .

00

If u, is of class Cr(t) a n d each derivative

^ n ) : F^AT, Y) - F{X, Ln{F, C))

is completionally F( F)-continuous, then u>, is said to be of class

CCy,r\ • This notion was introduced in [9] in order to describe the

smoothness used by Omori [6] in terms of the F-differentiation.

The aim of this section is to prove the following fact.

(5-1) If <t> •• y •* G is of class CC° , then ta, is of class

OO

ccr(F) .
oo

However, since to. is already a Cp/p,-map, this is an immediate
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consequence of the following fact.

(5.2) Let <t> : Y •* G be a CC°-map. Then, for any p € r( F) , if

{/ } and \g } are p-Cauchy sequences in ^^(X, Y) , there exists a

positive constant y such that

p (UA [f ) -UA [9 )) - yp [f -9 ) •
<J> n <p^n r ^ n n

Proof. Let p £ T( F) and k be its order. From (2.2) with n = 1 ,

it suffices to show that, under the above assumptions, there exists y > 0

such that

for all x € X . But this is an immediate consequence of (3.2), if we use

the following fact.

(5-3) If {z } is a bounded sequence in Y , then

: n * X) <- u - n-

for all i i 0 .

This follows from the fact that a completionally continuous map

transforms a Cauchy sequence to a Cauchy sequence.

6 . T h e f a m i l y V(x, E )

When a B-subfamily is not of finite order, the omega lemma will take

a more complex form. As an example, we shall consider the case of the

family V(X, E) , where V(X, F) for F £ E is the space of all C°°-maps

with compact supports of X into F , equipped with the usual inductive

limit topology. The calibration T(V) for this family was given in [&]

in the following way. First, we take and fix a sequence

{K, : k = 0, 1, 2, .. .} of compact subsets of X such that K = 0 ,

K1 c K (the interior of Ky ) , and every compact subset of X is

contained in some K, . Let a = {a, } and m = {">,} be increasing

sequences of positive numbers and non-negative integers respectively, and

let us define a semi-norm map p by
o.,m
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Pa,m
{f) =

for all / € PU, F) and F € E . The calibration r(P) consists of all

these p for all such sequences a and m .

The notion of gradings of a calibration V has been introduced in

[9]- A grading of T is a sequence a = {a : n = 0, 1, 2, ...} of maps

such that

a : r •* r
n

on+±(p) 2 an(p) and oQ(p) = p

for all p € F . The notion of o-smooth maps has also been given in [9]

in order to describe the smoothness of the product operations in some
CO

groups of C -diffeomorphisms. It is easy to see that every O-smooth map

is a C\°-map in the sense of Keller [5, p. 109].

The following fact is the main result of this section. Let £, F, £,

X , and Y be as in the previous section, and assume that 0 € Y .

(6.1) For any flat C -map <j> : Y •* G , there exists a calibration

r(<[>) for V{X, E) and a grading o((J)) of r((()) such that

, Y) -> V(X, G)

is a a{<i>)-smooth map.

We reca l l the fact that the conditions that 0 € Y and <J> is f l a t ,

that i s (|> (0) = 0 'for a l l n 2 0 , are indispensable.

To prove (6 .1) , we should f i r s t determine the cal ibrat ion r(<j>) and

the grading o{<$>) . Since

is continuous and \<i>\ (0) = 0 , there i s an increasing sequence {a(w)}

of positive numbers such that

(6.2) k l («) 2 1 if |x | 5 l/a(m)

and
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where
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2g(m) S aim) ,

m

W=l

where 3(w, w) is the Faa-di-Bruno constant defined in §3. It is easy to

see that

Bim) 2 2OT"1 for a l l m > 1 .

Now we d e f i n e F(<j>) by

r(4>) =
Ot ,

T(V) : a, 2 a(m ) for all k > l} ,
K K

which is obviously a calibration for V(X, E) . The grading a = {a } is

defined by the following relations:

=J (n) '

(n)

where

( 6 . U ) fe^^

and

(6.5) rnM = {w&+«} .

As in [ 7 ] , l e t T{X, F)[p] be the space F(X, F) regarded as a semi-

normed space with respect to a semi-norm p , and l e t F (̂X, Y)[p] be the

set F*(X, Y) regarded as a subset of f{X, F)[p] . Then the map u, is

o(tj>)-smooth i f and only if, for each n 2 0 and each p € r(<J>) , the

map (^ is a Cn-map of t^U, 7) [^(p^ J ] into V(X,C)\paJ .

We s t a r t the proof of (6.1) with the following two simple fac ts .

(6.6) The map

W(f) : V^X, Y) * V(X, G)

is infinitely many time Gateaux-differentiate and, if'we denote the nth
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Gateaux-derivative of co, by w, , we have w. = u> , . .

(6.7) For each f € V^X, Y) , the map w ^ ( / ) i s a

T(§)-continuous n-linear map of V(X, F) into V(X, G) .

(6.6) is equivalent to

lim £ . Ko / \ [/""*"£ -Q) ~w /
l,~*co (|) (t) i|;

for each n 2 0 if e . •* 0 . The limit is in the sense of the usual

inductive limit topology; the left-hand side converges uniformly on the

compact set that is the union of the supports of / and g .

(6.7) is implied by the following fact, because t|j = <J) ° g has

compact support.

(6.8) Let X, Y, E , and F be as above, and let G be an arbitrary

member of E . Assume that ty Z V[x, L(F, G)) . Then, for the map

u. : V(X, F) •* V(X, G) : g >—* ̂  x g

and p € V ((j>) , we have

The proof is a simple application of the Leibnitz formula and the

mkrelation o^ 5 2 .

It follows from (6.6) and (6.7) that the map

is infinitely Gateaux-differentiable and its nth derivative is a

continuous n-linear map. If we denote the norm of this n-linear map

, then (6.8) means that
a,m

. - (M)
f ] •

Therefore, the proof of (6.1) i s completed when the following fact is
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proved.

( 6 . 9 ) Let E, F, G, X , and Y be as above. Then, for any flat C°

map <!> : Y -*• G , the map

is continuous for each n 2 0 .

Proof. Assume that On[p J [gj •+ 0 as £

and its support be contained in K, . Then

Let / €

0

(x) : s U . Vt

+ sup 0 H : x

4

The second line converges to zero as i •* °° , because

and hence the inside of the brackets { } converges to zero uniformly in

the compact set K-y \K^ for each k . As to the third line, assume that

k > kQ , x f Kk__^ , and i is large. Then, by (3.1),

"k

I
3=1

(xV

because it follows from (6.2) and (6.5) that

since

\g.(x)\ < l/a{mk+n)

and (6 .3 ) impl ies
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. ( v ^ ) 3 K ' ̂  + £ (BK- ri/ak> -2 •
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