A CHARACTERIZATION
 OF THE FINITE SIMPLE GROUP $L_{4}(3)$

KOK-WEE PHAN

(Received 24 April 1967)

In this paper we aim to give a characterization of the finite simple group $L_{4}(3)$ (i.e. $\operatorname{PSL}(4,3)$) by the structure of the centralizer of an involution contained in the centre of its Sylow 2-subgroup. More precisely, we shall prove the following result.

Theorem. Let t_{0} be an involution contained in the centre of a Sylow 2-subgroup of $L_{4}(3)$. Denote by H_{0} the centralizer of t_{0} in $L_{4}(3)$.

Let G be a finite group of even order with the following properties:
(a) G has no subgroup of index 2, and
(b) G has an involution t such that the centralizer $C_{G}(t)=H$ of t in G is isomorphic to H_{0}.

Then G is isomorphic to $L_{4}(3)$.
The following notations are used.
$N_{X}(Y): \quad$ the normalizer of Y in the group X.
$C_{X}(Y)$: the centralizer of Y in the group X.
$\{\cdots \mid \cdots\}$: the set of elements \cdots such that \cdots.
$\langle\cdots \mid \cdots\rangle$: the group generated by \cdots such that \cdots.
$[x, y]: \quad x^{-1} y^{-1} x y$
$Y^{x}: \quad x^{-1} Y x$
$[X: Y]: \quad$ the index of a subgroup Y in X.
$|X|: \quad$ the order of X.
$0(X)$: the maximal odd-order normal subgroup of X.
$x \sim y(X): \quad x$ is conjugate to y in the group X.
Y char $X: \quad Y$ is a characteristic subgroup of X.

1. Some properties of $\boldsymbol{H}_{\mathbf{0}}$

Let F_{3} be the finite field of 3 elements and V be a 4-dimensional vector space over F_{3}. Take

$$
t_{0}^{\prime}=\left(\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

which is an involution in $S L(4,3)$. (Here we identify the linear transformations in $S L(4,3)$ with the corresponding matrices in term of a fixed basis.) The centre of $S L(4,3)$ is generated by

$$
c=\left(\begin{array}{cccc}
-1 & & & \\
& -1 & & \\
& & -1 & \\
& & & -1
\end{array}\right)
$$

and is of order 2. Then a matrix $\left(\alpha_{i j}\right)$ in $S L(4,3)$ satisfies $\left(\alpha_{i j}\right) t_{0}^{\prime}=t_{0}^{\prime}\left(\alpha_{i j}\right) \cdot c^{r}$ ($r=0,1$) if and only if $\left(\alpha_{i j}\right)$ has the form

$$
\left(\alpha_{i j}\right)=\left(\begin{array}{ll}
A & \\
& B
\end{array}\right) \quad \text { or } \quad\left(\alpha_{i j}\right)=\left(\begin{array}{ll}
& A \\
B &
\end{array}\right)
$$

where (A) and (B) are 2×2 matrices over F_{3} such that $\operatorname{det}(A)=\operatorname{det}(B) \neq 0$.
Denote by H_{0}^{\prime}, the group of matrices in $S L(4,3)$ which commute projectively with t_{0}^{\prime} i.e. which satisfy the relation $\left(\alpha_{i j}\right) t_{0}^{\prime}=t_{0}^{\prime}\left(\alpha_{i j}\right) c^{r}(r=0,1)$. We have

$$
u^{\prime}=\left(\begin{array}{cccc}
& & 1 & 0 \\
& & 0 & 1 \\
1 & 0 & & \\
0 & 1 & &
\end{array}\right), \quad v^{\prime}=\left(\begin{array}{llll}
1 & & & \\
& -1 & & \\
& & 1 & \\
& & & -1
\end{array}\right)
$$

belong to H_{0}^{\prime} and generate a four-group F_{0}^{\prime}. Moreover, we get

$$
u^{\prime} \cdot\left(\begin{array}{ll}
A & \\
& B
\end{array}\right)=\left(\begin{array}{ll}
& B \\
A &
\end{array}\right)
$$

Denote by L_{0}^{\prime}, the group of all matrices in $S L(4,3)$ of the form

$$
\left(\begin{array}{ll}
A & \\
& B
\end{array}\right)
$$

where (A) and (B) belong to $S L(2,3)$. Clearly then $H_{0}^{\prime}=F_{0}^{\prime} \cdot L_{0}^{\prime}$ and $F_{0}^{\prime} \cap L_{0}^{\prime}=1$. Let L_{1}^{\prime} be the subgroup of L_{0}^{\prime} of the form

$$
\left(\begin{array}{lll}
A & & \\
& 1 & \\
& & 1
\end{array}\right)
$$

where $(A) \in S L(2,3)$. Hence $L_{1}^{\prime} \cong S L(2,3)$. Put $L_{2}^{\prime}=u^{\prime} L_{1}^{\prime} u^{\prime}$. Therefore $L_{0}^{\prime}=L_{1}^{\prime} \times L_{2}^{\prime}$.

Now L_{1}^{\prime} is generated by the following elements
$a_{1}^{\prime}=\left(\begin{array}{rrrr}0 & -1 & & \\ 1 & 0 & & \\ & & 1 & 0 \\ & & 0 & 1\end{array}\right) ; \quad b_{1}^{\prime}=\left(\begin{array}{rrrr}1 & 1 & & \\ 1 & -1 & & \\ & & 1 & 0 \\ & & 0 & 1\end{array}\right) \quad$ and $\quad \sigma_{1}^{\prime}=\left(\begin{array}{rrrr}-1 & 1 & & \\ 0 & -1 & & \\ & & 1 & 0 \\ & & 0 & 1\end{array}\right)$.
Put $a_{2}^{\prime}=u^{\prime} a_{1}^{\prime} u^{\prime}, b_{2}^{\prime}=u^{\prime} b_{1}^{\prime} u^{\prime}, \sigma_{2}^{\prime}=u^{\prime} \sigma_{1}^{\prime} u^{\prime}$. Let $H_{0}=H_{0}^{\prime} \mid\langle c\rangle$, and in the natural homomorphism of H_{0}^{\prime} onto H_{0}, let the images of $t_{0}^{\prime}, u^{\prime}, v^{\prime}, F_{0}^{\prime}, L_{0}^{\prime}$, $a_{i}^{\prime}, b_{i}^{\prime}, \sigma_{i}^{\prime}, L_{i}^{\prime}$ be $t_{0}, u, v, F_{0}, L_{0}, a_{i}, b_{i}, \sigma_{i}, L_{i}$ respectively $(i=1,2)$. Then we get the following relations:
$H_{0}=F_{0} \cdot L_{0}$
$F_{0}=\langle u, v\rangle$ is a four-group
$L_{0}=L_{1} \cdot L_{2}$ where $L_{1} \cap L_{2}=\langle t\rangle$, and $\left[L_{1}, L_{2}\right]=1$
(i.e. L_{1}, L_{2} commute elementwise).
$L_{i}=\left\langle a_{i}, b_{i}, \sigma_{i} \mid a_{i}^{2}=b_{i}^{2}=t_{0}, b_{i}^{-1} a_{i} b_{i}=a_{i}^{-1}, \sigma_{i}^{-1} a_{i} \sigma_{i}=b_{i}, \sigma_{i}^{-1} b_{i} \sigma_{i}=a_{i} b_{i}\right\rangle$ $v a_{i} v=a_{i}^{-1}, v b_{i} v=b_{i} a_{i}, v \sigma_{i} v=\sigma_{i}^{-1}$.

The structure of H_{0} is completely determined and it is now easy to compute the following results of H_{0}.
(1.1) Every element of H_{0} can be written uniquely in the form $a_{1}^{i} b_{1}^{j} \sigma_{1}^{k} t_{1}^{l} t_{2}^{m} \sigma^{n} u^{p} v^{q} \quad$ where $t_{1}=a_{1} a_{2} ; \quad t_{2}=b_{1} b_{2} ; \quad \sigma=\sigma_{1} \sigma_{2} ; \quad i=0,1,2,3$; $j=0,1 ; k=0,1,2 ; l=0,1 ; m=0,1 ; n=0,1,2 ; p=0,1 ; q=0,1$.

$$
\left|H_{0}\right|=2^{7} \cdot 3^{2}
$$

(1.2) The group $Q=\left\langle a_{1}, b_{1}, a_{2}, b_{2}\right\rangle F_{0}$ is a Sylow 2-subgroup of $L_{4}(3)$ and of $H_{0} . Z(Q)=\left\langle t_{0}\right\rangle$.
(1.3) The group $T=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ is a Sylow 3-subgroup of H_{0} and is elementary abelian of order 9 . We have $C_{H_{0}}(T)=\left\langle t_{0}\right\rangle \times T$, and $N_{H_{0}}\langle T\rangle=\langle t, u, v\rangle \cdot T$.
(1.4) There are seven classes of involutions in H_{0} with representatives $t_{0}, t_{1}, u, t_{0} u, u v, t_{0} u v$ and v.
(1.5) The centralizer of t_{1} in $H_{0}, C_{H_{0}}\left(t_{1}\right)=A=\left\langle a_{1}, a_{2}, b_{1} b_{2}, u, v\right\rangle$ is a non-abelian group of order 64 with $Z(A)=A^{\prime}=\left\langle t_{0}, t_{1}\right\rangle$ where A^{\prime} denotes the commutator group of A. The group A contains precisely fcur elementary abelian groups of order 16 , namely $E_{1}=\left\langle t_{0}, t_{1}, t_{2}, u\right\rangle$, $E_{2}=\left\langle t_{0}, t_{1}, t_{3}, u v\right\rangle\left(t_{3}=a_{1} t_{2}\right) ; K_{1}=\left\langle t_{0}, t_{1}, u, v\right\rangle$ and $K_{2}=\left\langle t_{0}, t_{1}, a_{1} v, t_{2} u\right\rangle$.
(1.6) The centralizer of u in H_{0},

$$
C_{H_{0}}(u)=U=\left\langle t_{0}, t_{1}, t_{2}, u, v\right\rangle \cdot\langle\sigma\rangle
$$

We have $C_{H_{0}}(u)=C_{H_{0}}\left(t_{0} u\right)$. A Sylow 2-subgroup of U is

$$
\left\langle t_{0}, t_{1}, t_{2}, u, v\right\rangle=E_{1} \cdot K_{1}
$$

and has as its centre the group $\left\langle t_{0}, t_{1}, u\right\rangle$.
(1.7) The centralizer of $u v$ in H_{0},

$$
C_{H_{0}}(u v)=W=\left\langle t_{0}, t_{1}, t_{3}, u, v\right\rangle \cdot\langle\rho\rangle \quad\left(\rho=\sigma_{1}^{-1} \sigma_{2}\right) .
$$

We have $C_{H_{0}}(u v)=C_{H_{0}}\left(t_{0} u v\right)$. A Sylow 2-subgroup of W is $\left\langle t_{0}, t_{1}, t_{3}, u, v\right\rangle$ with its centre equals to $\left\langle t_{0}, t_{1}, u v\right\rangle$.
(1.8) The centralizer of v in H_{0} is $K_{1}=\left\langle t_{0}, t_{1}, u, v\right\rangle$.
(1.9) We have $C_{G}\left(E_{i}\right)=E_{i}$ and $N_{H_{0}}\left(E_{i}\right) / E_{i} \cong S_{4}$, the symmetric group in 4 letters. So a Sylow 2-subgroup of $N_{H_{0}}\left(E_{i}\right) / E_{i}$ is dihedral of order 8. $(i=1,2)$.
(1.10) There are precisely two normal elementary abelian groups of order 16 in Q, namely E_{1} and E_{2}. There is one and only one normal subgroup of order 32 in Q containing E_{i}. These are $\left\langle a_{1}, a_{2}, t_{2}, u\right\rangle \geqq E_{1}$ with its centre equals to $\left\langle t_{0}, t_{1}\right\rangle$ and $\left\langle a_{1}, a_{2}, t_{3}, u v\right\rangle \geqq E_{2}$ with its centre equals to $\left\langle t_{0}, t_{1}\right\rangle$.

2. Conjugacy of involutions

Throughout the rest of this paper, we shall suppose that G is a finite group of even order with properties (a) and (b). Since $C_{G}(t)=H$ is isomorphic to H_{0}, we identify H with H_{0}. Then $t=t_{0}$.

First we note the obvious fact that the group Q is a Sylow 2-subgroup of G, since by (1.2) $Z(Q)=\langle t\rangle$, a cyclic group of order 2 .
(2.1) Lemma. The involution t_{1} is not conjugate to t in G.

Proof. By way of contradiction, suppose that t_{1} is conjugate to t in G. We have $A=C_{H}\left(t_{1}\right)$. Let T be a Sylow 2-subgroup of $C_{G}\left(t_{1}\right)$ containing A. By our assumption [T:A] $=2$ and so $A \triangleleft T$. Let x be an element in $T-A$. Consider $x^{-1} E_{1} x \subseteq A$. We know that there are precisely four distinct elementary abelian groups of order 16 in A namely $E_{1}, E_{2}, K_{1}, K_{2}$ where $K_{2}=K_{1}^{b_{2}}$. Now if $E_{1}^{x}=E_{1}$, we get $E_{1} \triangleleft\langle A, x\rangle=T$. If x does not normalize $E_{1}, x^{-1} E_{1} x \neq E_{2}$ since otherwise we would have two normal subgroups E_{1} and E_{2} of Q conjugate in G but not in $N_{G}(Q) \subseteq H$, a contradiction to a theorem of Burnside [4, p. 203]. So $x^{-1} E_{1} x=K_{1}$ or K_{2}. Therefore $x^{-1} E_{2} x=E_{2}$, in which case we get $E_{2} \triangleleft T$. Hence we have either E_{1} or E_{2} normal in T.

Suppose that $E_{1} \triangleleft T$. Since $N_{G}\left(E_{1}\right) \supseteqq\langle Q, T\rangle$, we get $N_{G}\left(E_{1}\right) \nsubseteq H$. We have by (1.9) $C_{G}\left(E_{1}\right)=E_{1}$, and so $\mathscr{S}=N_{G}\left(E_{1}\right) / E_{1}$ is isomorphic
to a subgroup of $G L(4,2) \cong A_{8}$. A Sylow 2-subgroup $\bar{Q}=Q / E_{1}$ of \mathscr{S} is dihedral of order 8. Consider $C_{\mathscr{P}}\left(a_{1} E_{1}\right) \supseteq \bar{Q}$. By way of contradiction, suppose $Z\left(T / E_{1}\right)=Z(\bar{T})=\left\langle v E_{1}\right\rangle$ or $\left\langle a_{1} v E_{1}\right\rangle$. Then either $\left\langle E_{1}, v\right\rangle$ or $\left\langle E_{1}, a_{1} v\right\rangle$ is normal in T. Since $Z\left(\left\langle E_{1}, v\right\rangle\right)=\left\langle t, t_{1}, u\right\rangle$ and

$$
Z\left(\left\langle E_{1}, a_{1} v\right\rangle\right)=\left\langle t, t_{1}, t_{2} u\right\rangle
$$

both of order 8 , hence a contradiction to (1.10). Therefore

$$
\langle\bar{Q}, \bar{T}\rangle \cong C_{\mathscr{\varphi}}\left(a_{1} E_{1}\right) .
$$

From the structure of A_{8}, the centralizer of any involution in A_{8} has order $2^{6} \cdot 3$ or $2^{5} \cdot 3$, we get $\left|C_{\mathscr{g}}\left(a_{1} E_{1}\right)\right|=2^{3} \cdot 3$ and hence $C_{\mathscr{Y}}\left(a_{1} E_{1}\right)$ has an abelian 2 -complement. The conditions of Gorenstein-Walter's theorem [3] are satisfied by the group \mathscr{S} and so we get the following possibilities for \mathscr{S}.
(i) $\mathscr{S}\left|\mathscr{M} \cong \operatorname{PSL}(2, q) ; q \pm 1=\left|C_{\mathscr{S}}\left(a_{1} E_{1}\right) \mathscr{M}\right| \mathscr{M}\right|$
(ii) $\mathscr{S}\left|\mathscr{M} \cong P G L(2, q) ; q \pm 1=\frac{1}{2}\right| C_{\mathscr{\varphi}}\left(a_{1} E_{1}\right) \mathscr{M}|\mathscr{M}|$
(iii) $\mathscr{S} \mid \mathscr{M} \cong \bar{Q}$ or
(iv) $\mathscr{S} \mid \mathscr{M} \cong A_{7}$
where in all cases $\mathscr{M}=0(\mathscr{S})$.
Suppose that $|\mathscr{M}| \neq 1$. Consider the action of the four group $\mathscr{V}=\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle$ on \mathscr{M}. Since $a_{1} E_{1}, b_{1} E_{1}, a_{1} b_{1} E_{1}$ are conjugate in \mathscr{S}, we get that $|\mathscr{M}|=3^{3}$ or 3 . Since $\left|A_{8}\right|=2^{6 \cdot} \cdot 3^{2} \cdot 5 \cdot 7$, we must have $|\mathscr{M}|=3$ therefore $\mathscr{V} \cdot \mathscr{M}=\mathscr{V} \times \mathscr{M}$. Now we look at

$$
N_{\mathscr{Y}}(\mathscr{V})=N_{G}\left\langle a_{1}, b_{1}, E_{1}\right\rangle \cap N_{G}\left(E_{1}\right) / E_{1} .
$$

Since $\langle t\rangle=Z\left\langle a_{1}, b_{1}, E_{1}\right\rangle$, we have $N_{G}\left\langle a_{1}, b_{1}, E_{1}\right\rangle \subseteq H$. Thus

$$
N_{G}\left\langle E_{1}, a_{1}, b_{1}\right\rangle \mid E_{1} \cong A_{4},
$$

a contradiction to $\mathscr{V} \cdot \mathscr{M}=\mathscr{V} \times \mathscr{M}$. Hence $\mathscr{M}=1$. Clearly then (i), (ii) and (iii) cannot arise.

Thus we are in case (iv). The non-trivial elements of E_{1} separate into 4 sets of involutions namely $\{t\} ;\left\{u, t t_{1} u, t t_{2} u, t t_{1} t_{2} u\right\}$; $\left\{t u, t_{1} u, t_{2} u, t_{1} t_{2} u\right\}$ and $\left\{t_{1}, t_{2}, t_{1} t_{2}, t t_{1}, t t_{2}, t t_{1} t_{2}\right\}$, each of these sets lie in a different conjugate class of H. Let $\mu \in N_{G}\left(E_{1}\right)$ be an element of order 5 . Since $C_{G}\left(E_{1}\right)=E_{1}$, we get that μ acts fixed-point-free on E_{1}. Together with the fact that $t_{1} \sim t(G)$, we conclude that all involutions are conjugate in G. Now let $\lambda \in N_{G}\left(E_{1}\right)$ be an element of order 7 in G. Since all involutions of E_{1} are conjugate to t and because $7 \dagger|H|$, we get that λ acts fixed-point-free on E_{1}, a contradiction since $7 \nmid\left(\left|E_{1}\right|-1\right)$. Thus we have shown that $E_{1} \nVdash T$.

By exactly the same reasoning, we get a contradiction if $E_{2} \triangleleft T$. Hence t_{1} is not conjugate to t in G. The proof is complete.
(2.2) Lemma. The elementary abelian groups E_{1}, E_{2}, K_{1} are not conjugate to one another in G.

Proof. We have shown that E_{1} is not conjugate to E_{2} in G. Suppose, by way of contradiction, E_{1} is conjugate to K_{1} in G. Since 2^{7} divides the order of $N_{G}\left(E_{1}\right)$, and by our assumption, we get a Sylow 2 -subgroup of $N_{G}\left(K_{1}\right)$ is of order 2^{7}. There exists a 2 -group in $N_{G}\left(K_{1}\right)$ containing A such that $[T: A]=2$. Now $Z(A)=\left\langle t, t_{1}\right\rangle$ is characteristic in A and so normal in T. Since $N_{G}(Z(A)) \cap H=Q$ and $K_{1} \nleftarrow Q$, therefore we obtain $T \nsubseteq H$. Let $x \in T-A$. Then $x^{-1} t x \in\left\{t_{1}, t t_{1}\right\}$, a contradiction to (2.1). Similarly we can show that E_{2} is not conjugate to K_{1} in G. The proof is finished.
(2.3) Lemma. If 64 divides the order of $C_{G}(u)$ then u and tu do not lie in the same conjugate class in G.

Proof. Let $T \cong C_{G}(u)$ be a group of order 64 containing

$$
U=\left\langle t, t_{1}, t_{2}, u, v\right\rangle
$$

and let $x \in T-U$. Then x normalizes $Z(U)=\left\langle t, t_{1}, u\right\rangle$. By (2.1),

$$
x^{-1} t x \in\left\{t t_{1} u, t_{1} u, t u\right\} .
$$

We shall consider each possibility in turn. If $x^{-1} t x=t t_{1} u$, then $x^{-1} t u x=t t_{1}$. The proof is finished since $t t_{1} u \sim u(H)$ and $t t_{1} \sim t_{1}(H)$. Next if $x^{-1} t x=t_{1} u$, then we get $x^{-1} t u x=t_{1}$ and so $t \sim t_{1}(G)$ since $t_{1} u \sim t u(H)$, a contradiction to (2.1). Lastly if $x^{-1} t x=t u$, then we have $x^{-1} t_{1} x \in\left\{t_{1}, t t_{1}, t t_{1} u\right\}$. Now if $x^{-1} t_{1} x=t_{1}$, then $x^{-1} t t_{1} x=t t_{1} u \sim u(H)$ and so lemma is proved. The case $x^{-1} t_{1} x=t t_{1}$ is not possible, since this would imply

$$
x^{-1} t x=x^{-1} t_{1} \cdot t t_{1} x=t t_{1} \cdot t_{1}=t
$$

(Here we use the fact $x^{2} \in U$). Finally if $x^{-1} t_{1} x=t t_{1} u$, there is nothing to prove. The proof of this lemma is complete.
(2.4) Lemma. If 64 divides the order of $C_{G}(u v)$, then $u v$, tuv do not lie in the same conjugate class in G.

Proof. As in (2.3).
(2.5) Lemma. If u is conjugate to t in G, then tu is conjugate to t_{1} in G. Moreover, we have $N_{G}\left(E_{1}\right) / E_{1} \cong S_{5}$, the symmetric group in 5 letters.

Proof. The first part of this lemma is obvious from (2.3).
Consider $N_{G}\left(E_{1}\right)$. We have $N_{H}\left(E_{1}\right)=Q \cdot\langle\sigma\rangle$ and $N_{H}\left(E_{1}\right) / E_{1} \cong S_{4}$. Let T be a Sylow 2 -subgroup of $C_{G}(u)$ containing $\underline{U}=\left\langle t, t_{1}, t_{2}, u, v\right\rangle$. There exists $x \in T-\underline{U}$ with $x \in N_{G}(\underline{U})$ and so $x^{-1} E_{1} x \subseteq \underline{U}$. By (1.6) and (2.2), we get $x^{-1} E_{1} x=E_{1}$. Hence $N_{G}\left(E_{1}\right) \neq H$.

A Sylow 2-subgroup of $\mathscr{S}=N_{G}\left(E_{1}\right) / E_{1}$ is dihedral of order 8. Suppose by way of contradiction that, \bar{Q} has one class of involution in \mathscr{S}. Then there exists an element $g \in N_{G}\left(E_{1}\right)$ such that $g^{-1}\left\langle E_{1}, a_{1}\right\rangle g=\left\langle E_{1}, v\right\rangle$, which is a contradiction since $Z\left(\left\langle E_{1}, a_{1}\right\rangle\right)=\left\langle t, t_{1}\right\rangle$ whereas

$$
Z\left(\left\langle E_{1}, v\right\rangle\right)=\left\langle t, t_{1}, u\right\rangle .
$$

Since we have $C_{G}\left(E_{1}\right)=E_{1}, \mathscr{S}$ is isomorphic to a subgroup of A_{8}. Suppose that $0(\mathscr{P})=\mathscr{M} \neq \mathbf{1}$. Then consider the action of the four group $\vartheta=\left\langle a_{1} E_{1}, b_{1} E_{1}\right\rangle$ on \mathscr{M}. Using the facts that involutions of ϑ are conjugate in \mathscr{S} and that the centralizer of any involution in A_{8} has order $2^{6} \cdot 3$ or $2^{5} \cdot 3$, we get by Brauer-Wielandt [10], $|\cdot \mathscr{M}|=27$ or 3 . Since $27 \dagger\left|A_{8}\right|$, we must have $|\mathscr{M}|=3$, and so $\boldsymbol{\vartheta} \cdot \boldsymbol{M}=\boldsymbol{\vartheta} \times \mathscr{M}$. We look at $N_{\mathscr{\mathscr { C }}}(\vartheta)=N_{G}\left(\left\langle E_{1}, a_{1}, b_{1}\right\rangle\right) \cap N_{G}\left(E_{1}\right) / E_{1}$. Since $\langle t\rangle=Z\left(\left\langle E_{1}, a_{1}, b_{1}\right\rangle\right)$; we get $N_{G}\left(\left\langle E_{1}, a_{1}, b_{1}\right\rangle\right) \subseteq H$. Hence $N_{G}\left(\left\langle E_{1}, a_{1}, b_{1}\right\rangle\right) / E_{1} \cong A_{4}$, a contradiction to $\vartheta \cdot \mathscr{M}=\vartheta \times \mathscr{M}$. Thus we have shown $0(\mathscr{S})=1$.

By our earlier remark, we must have $\left|C_{\mathscr{\varphi}}\left(a_{1} E_{1}\right)\right|=2^{3} \cdot 3$ or 2^{3}. Hence we may now apply Gorenstein-Walter's theorem [3] to get $\mathscr{P} \cong P G L(2,11)$; $P G L(2,13) ; \operatorname{PGL}(2,3)$ or $P G L(2,5)$. The first two cases cannot arise since 11 and 13 do not divide $\left|A_{8}\right| . \mathscr{S} \cong \operatorname{PGL}(2,3) \cong S_{4}$ would contradict the fact that $N_{G}\left(E_{1}\right) \not \ddagger H$. Therefore we obtain $\mathscr{S} \cong P G L(2,5) \cong S_{5}$. The proof is finished.
(2.6) Lemma. If uv is conjugate to t in G, then tuv is conjugate to t_{1} in G. Moreover we have $N_{G}\left(E_{2}\right) / E_{2} \cong S_{5}$, the symmetric group in 5 letters.

Proof. As in (2.5).
(2.7) Lemma. If u is conjugate to t in G, the group $Y_{1}=N_{G}\left(E_{1}\right) \cap C_{G}(t u)$ has the following structure. $Y_{1}=\left\langle E_{1}, v, z\right\rangle \cdot\langle\sigma\rangle$ such that $z^{2}=1 ; z t z=u$; $z t_{1} z=t_{1} ; z t_{2} z=t_{2} ; z \sigma z=\sigma ;$ and $z v z=v$ or $t u v$.

Proof. By (2.5), we see there exists an element $\mu \in N_{G}\left(E_{1}\right)$ of order 5 acting fixed-point-free on E_{1} and so it follows that t_{1} is conjugate to tu in $N_{G}\left(E_{1}\right)$. Now $A \cong N_{G}\left(E_{1}\right) \cap C_{G}\left(t_{1}\right)$ and A is a Sylow 2 -subgroup of $C_{G}\left(t_{1}\right)$, for otherwise, we would have t_{1} in the centre of a group of order 2^{7}, a contradiction to (2.1). We get that 2^{6} divides $\left|N_{G}\left(E_{1}\right) \cap C_{G}(t u)\right|$. We know that $\sigma \in N_{G}\left(E_{1}\right) \cap C_{G}(t u)=Y_{1}$ and $\mu \notin Y_{1}$. Hence $\left|Y_{1}\right|=2^{6} \cdot 3$ and therefore $Y_{1}=\tilde{A} \cdot\langle\sigma\rangle$ with $\tilde{A} \cong A$.

We have the group $C_{G}(t u) \cap H=U$ a subgroup of index 2 in Y_{1}. The group $\left\langle t_{1}, t_{2}\right\rangle\langle\sigma\rangle$ is the smallest normal subgroup of $C_{G}(t u) \cap H$ with 2 -factor group. Hence $\left\langle t_{1}, t_{2}\right\rangle\langle\sigma\rangle$ char $C_{H}(t u)$ and it follows that it is normal in Y_{1}. Let T be a Sylow 2-subgroup of Y_{1} containing $\underline{U}=\left\langle E_{1}, v\right\rangle$ and let $z \in T-\underline{U}$. We know from the isomorphism of T and A, that $Z(T)$ is a four-group. Obviously $t u \in Z(T)$. Since $\left\langle t_{1}, t_{2}\right\rangle \operatorname{char}\left\langle t_{1}, t_{2}\right\rangle\langle\sigma\rangle$ and so
$\left\langle t_{1}, t_{2}\right\rangle \triangleleft T$. Hence $\left\langle t_{1}, t_{2}\right\rangle$ has non-trivial intersection with $Z(T)$. So $1 \neq\left\langle t_{1}, t_{2}\right\rangle \cap Z(T) \subseteq\left\langle t_{1}, t_{2}\right\rangle \cap Z(\underline{U})=\left\langle t_{1}\right\rangle$. Thus $Z(T)=\left\langle t u, t_{1}\right\rangle$.

From the fact $\left\langle t_{1}, t_{2}\right\rangle\langle\sigma\rangle$ is normal in Y_{1}, it follows that

$$
z^{-1} \sigma z \in\left\langle t_{1}, t_{2}\right\rangle\langle\sigma\rangle
$$

Replacing z by $z v$ if necessary, we can suppose that $z^{-1} \sigma z=\sigma \cdot x$, where $x \in\left\langle t_{1}, t_{2}\right\rangle$. Again replacing z by $z t_{1}, z t_{2}$ or $z t_{1} t_{2}$ if necessary, we get $z^{-1} \sigma z=\sigma$. We have $\left\langle t_{1}, t_{2}\right\rangle \triangleleft Y_{1}$ and so it follows $z^{-1} t_{2} z=t_{2}$ or $t_{1} t_{2}$. Comparing the action of $z^{-1} t_{2} z$ on σ by conjugation with those of $t_{2}, t_{1} t_{2}$, we conclude that $z^{-1} t_{2} z=t_{2}$.

Next we want to determine the action of z on $\langle t, u\rangle$. We have $Z(\underline{U})=\left\langle t, t_{1}, u\right\rangle \operatorname{char} \underline{U}$ and therefore $\left\langle t, t_{1}, u\right\rangle \triangleleft T$. In $\left\langle t, t_{1}, u\right\rangle$ by (2.5), the only elements conjugate to t in Y_{1} are $t t_{1} u$ and u. It follows that $z^{-1} t z=u ; z^{-1} u z=t\left(z^{2} \in H\right)$. Because $\left\langle E_{1}, v\right\rangle \triangleleft T$, we get $z^{-1} v z=v s$ for some $s \in E_{1}$. From the fact $\left(z^{-1} v z\right) \sigma\left(z^{-1} v z\right)=\sigma^{-1}$, we see that

$$
s \in E_{1} \cap C_{G}(\sigma)=\langle t, u\rangle
$$

If $z^{-1} v z=t v$, then $\left(z^{2}\right)^{-1} v z^{2}=t u v$, a contradiction since v and $t u v$ are not conjugate in H. Similarly, $z^{-1} v z=u v$ is impossible. Thus $z^{-1} v z=v$ or tuv.

From the structure of A, we know that z has order at most 4 and all elements of order 4 have their squares lying in $Z(A)$. So we have $z^{2} \in Z(T)$ and from the fact $z \in C_{G}(\sigma)$, we obtain either $z^{2}=1$ or $z^{2}=t u$, in which case replacing z by $z u$, we have $(z u)^{2}=1$. Hence all the statements of the lemma are completely proved.

We note also that each successive replacing of z does not affect the earlier conclusions. The proof of this lemma is finished.
(2.8) Lemma. If $u v$ is conjugate to t in G, then we have

$$
Y_{2}=C_{G}(u v) \cap N_{G}\left(E_{2}\right)=\left\langle E_{2}, v, z^{\prime}\right\rangle\langle\rho\rangle \quad\left(\rho=\sigma_{1}^{-1} \sigma_{2}\right)
$$

such that $\left(z^{\prime}\right)^{2}=1 ; z^{\prime} t z^{\prime}=u v ; z^{\prime} t t_{1} z^{\prime}=t t_{1}, z^{\prime} t t_{3} z^{\prime}=t t_{3} ; z^{\prime} v z^{\prime}=v$ or $t u$; $z^{\prime} \rho z^{\prime}=\rho$.

Proof. As in (2.7).
(2.9) Lemma. The group G is not 2 -normal.

Proof. Suppose by way of contradiction, that G is 2 -normal. Since $\langle t\rangle$ is the centre of a Sylow 2-subgroup Q of G. It follows from Hall-Grün's theorem [4, p. 216], the greatest 2-factor group of G is isomorphic to that of $N_{G}(Z(Q))=H$ i.e. isomorphic to H / L which is a four-group. But this contradicts condition (a). Hence G is not 2-normal.
(2.10) Lemma. The involution t is conjugate to an involution in $\{u, v, u v\}$.

Proof. By (2.9), G is not 2-normal, hence there exists an element x in G such that $\tau \in Q \cap x^{-1} Q x$, but $\langle t\rangle$ is not the centre of $x^{-1} Q x$. The centre of $x^{-1} Q x$ is $\left\langle x^{-1} t x\right\rangle$ and thus $x^{-1} t x \neq t$. On the other hand, $t \in x^{-1} Q x$ and so t and $x^{-1} t x$ commute. Therefore $x^{-1} t x \in H$. Without loss of generality, we may assume that $x^{-1} t x \in\{u, t u, v, u v, t u v\}$ (since $x^{-1} t x \neq t_{1}$ by (2.1)). Interchanging u by $t u$; v by $t v$, if necessary, we may and shall suppose $x^{-1} t x$ is an element in $\{u, v, u v\}$.

To prove the next lemma, the following unpublished result of Thompson is indispensable.

Lemma A (Thompson) [7]. Suppose (83 is a finite group of even order which has no subgroup of index 2. Let \mathscr{S}_{2} be a Sylow 2 -subgroup of (5) and let \mathscr{M} be a maximal subgroup of \mathscr{S}_{2}. Then for each involution I of \mathfrak{G}, there is an element B of \mathscr{B}_{5} such that $B^{-1} I B \in \mathscr{M}$.
(2.11) Lemma. The group G has precisely two conjugate classes of involutions \mathscr{K}_{1} and \mathscr{K}_{2} with the representatives t and tu respectively: $\mathscr{K}_{1} \cap H$ is the union of 4 conjugate classes of involutions of H with representatives t, u, $v, u v ; \mathscr{K}_{2} \cap H$ is the union of $\mathbf{3}$ conjugate classes of H with representatives $t_{1}, t u, t u v$.

Proof. By (2.10), there exists an element x in G, such that

$$
x^{-1} t x \in\{u, u v, v\} .
$$

Suppose that $x^{-1} t x=u$. We have $M=\left\langle a_{1}, a_{2}, b_{1}, b_{2}, u\right\rangle$ is a maximal subgroup of Q, a Sylow 2-subgroup of G. By (2.1); (2.4), the involutions of M lie in two conjugate classes in G with representatives t and $t u$. By lemma A, we see that involutions $u v, u v t$ and v are conjugate to some involutions in M. By (2.4), $u v, t u v$ lie in different conjugate classes of G. Hence, interchanging v by $v t$ if necessary, we may suppose $u v$ is conjugate to t in G and so $t u v$ is conjugate to $t u$ in G. To decide whether v is conjugate to t or $t u$, we use (2.7) and (2.8) and get the following possibilities.
(i) $z v z=v$ and $z^{\prime} v z^{\prime}=t u$. Then we have $z t v z=u v$, a contradiction, since $t u$ and $u v$ lie in two different conjugate classes of G.
(ii) $z v z=t u v$ and $z^{\prime} v z=v$. Then we have $z^{\prime} v t z^{\prime}=u$, a contradiction as in (i).
(iii) $z v z=t u v$, and $z^{\prime} v z^{\prime}=t u$. Then by (1.8)

$$
\left|C_{G}(v) \cap C_{G}(t)\right|=\left|C_{G}(t u v) \cap C(u)\right|=2^{4},
$$

but when $z^{\prime} \in C_{G}(u)$ and therefore $\left\langle z^{\prime}, t, u, v, t_{1}\right\rangle \in C_{G}(u) \cap C_{G}(t u v)$, a contradiction.

Thus we are in the last case (iv) where $z v z=v$, and $z^{\prime} v z^{\prime}=v$. Then $z z^{\prime} t z^{\prime} z=t v$ proving all the statements of this lemma.

Suppose $x^{-1} t x=u v$. We take as a maximal subgroup of Q, the group $\left\langle a_{1}, a_{2}, b_{1}, b_{2}, u v\right\rangle$ and apply the same proof as in previous cases.

Finally if $x^{-1} t x=v$. We have the group $\left\langle a_{1}, a_{2}, b_{1}, b_{2}, v\right\rangle$ is a maximal subgroup of Q. By lemma A again, interchanging u by $t u$ and/or v by $t v$ if necessary, we get the same conclusions.

Since by (2.10), one of these cases must happen, we have proved our lemma.

3. The centralizer of an involution in \mathscr{K}_{2}

We begin with a preliminary result. The notation in this proof is independent of the rest of the paper.

Proposition 1. Let G be a finite group of even order with the following properties:
(1) The centralizer $C(\alpha)$ in G of an involution α contained in the centre of a Sylow 2-subgroup of G is $\langle\alpha, \beta\rangle \times F$ where $\langle\alpha, \beta\rangle$ is a four group and F is isomorphic to S_{4} (the symmetric group in 4 letters).
(2) If S is a Sylow 2 -subgroup of G then $C\left(S^{\prime}\right)=S$ where S^{\prime} denotes the commutator group of S.
(3) The involutions $\alpha, \beta, \alpha \beta$ are not conjugate to each other in G.

Then either $G=C(\alpha)$ or G is isomorphic to the direct product of a group of order 2 and D where $D \cong S_{6}$.

Proof. Put $F=V \cdot\langle\rho\rangle \cdot\langle\tau\rangle$ where $V=\left\langle\tau_{1}, \tau_{2}\right\rangle$ is a four-group. We have $\rho^{-1} \tau_{1} \rho=\tau_{2} ; \rho^{-1} \tau_{2} \rho=\tau_{1} \tau_{2}, \tau \tau_{1} \tau=\tau_{1} ; \tau \tau_{2} \tau=\tau_{1} \tau_{2} ; \tau \rho \tau=\rho^{-1}$ and $\tau^{2}=\rho^{3}=1$. Obviously $S=\langle\alpha, \beta\rangle \times(V\langle\tau\rangle)$ is a Sylow 2 -subgroup of $G . V\langle\tau\rangle$ is dihedral of order 8 and we have $S^{\prime}=\left\langle\tau_{1}\right\rangle$. Hence by (2), $C\left(\tau_{1}\right)=S$. Finally $Z(S)=\left\langle\alpha, \beta, \tau_{1}\right\rangle$ is elementary of order 8.
(i) Non-trivial elements of $Z(S)$ lie in 7 distinct conjugate classes of G.

By way of contradiction, suppose there are 2 involutions in $Z(S)$ conjugate to each other in G. Then by a transfer theorem of Burnside [4], they are conjugate in $N(Z(S))$. We must have $N(Z(S))>S$. Since $C(Z(S)) \subseteq C\left(\tau_{1}\right)=S$, we get $N(Z(S)) / S$ is isomorphic to a subgroup of $G L(3,2)$. Clearly $7 \dagger|N(Z(S))|$, otherwise there exists an element of order 7 in $N(Z(S))$ which acts fixed-point-free on $Z(S)$. This requires, in particular, that $\alpha, \beta, \alpha \beta$ lie in one conjugate class of G, contradicting condition (3). Therefore the order of $N(Z(S))$ is $2^{5} \cdot 3$. Let $\lambda \in N(Z(S))$ and $O(\lambda)=3$. We want to determine the orbits of λ on $Z(S)$. By condition (3), the elements $\alpha, \beta, \alpha \beta$ lie in 3 distinct orbits, a contradiction to the fact $|Z(S)|=8$.
(ii) The focal group S^{*} of S in G contains V.

This is obvious since $\rho^{-1} \tau_{1} \rho=\tau_{2}$ and $\rho^{-1} \tau_{2} \rho=\tau_{1} \tau_{2}$.
(iii) The case $S^{*}=S$ is not possible.

By way of contradiction, suppose that $S=S^{*}$. This means that G has no subgroup of index 2 . Consider the group $\langle\beta\rangle \times(V\langle\tau\rangle)$. It is maximal subgroup of S and has at most 5 conjugate classes of involutions with representatives $\tau_{1}, \tau, \beta, \beta \tau_{1}$ and $\beta \tau$. By lemma A , we get that G has at most 5 conjugate classes of involutions. This is a contradiction since by (i), we know that G has at least 7 classes of involutions.
(iv) The case $\left|S^{*}\right|=16$ is not possible.

Suppose on the contrary, we have the order of S^{*}, the focal group of S in G, is 16 . This means that G has a subgroup of index 2 but has no subgroup of index 4. Let M be a subgroup of G of index 2. By D. G. Higman [5], we have $S \cap M=S^{*}$ and S^{*} is a Sylow 2 -subgroup of M. We have two cases to consider. If $\langle\alpha, \beta\rangle \cong S^{*}$, then by (ii), we have $S^{*}=\langle\alpha, \beta\rangle \times V$. Then $\langle\alpha\rangle \times V$ is a maximal subgroup of S^{*} and has at most 3 classes of involutions with representative $\tau_{1}, \alpha, \alpha \tau_{1}$ (we use the fact $\rho \in M$). So by lemma A, M has at most 3 classes of involutions in contradiction to (i) since $Z(S) \subseteq M$. Next suppose that $S^{*} \cap\langle\alpha, \beta\rangle$ is of order 2 . We have $S^{*}=V\left(\langle\alpha, \beta, \tau\rangle \cap S^{*}\right)$. There exists an element $\tau^{\prime} \in S^{*} \cap\langle\alpha, \beta, \tau\rangle$ such that $V\left\langle\tau^{\prime}\right\rangle$ is a dihedral and has at most 2 conjugate classes in M. Also $V\left\langle\tau^{\prime}\right\rangle$ is a maximal subgroup of S^{*} and hence by Thompson, we obtain that M has at most 2 conjugate classes of involution, a contradiction to the fact that $Z(S) \cap S^{*}$ is of order 4 and by (ii) its involutions lie in 3 distinct conjugate classes of G.
(v) If $V=S^{*}$, then we have $G=C(\alpha)=\langle\alpha, \beta\rangle \times F$.

We have in this case a normal subgroup M of index 8 in G such that $M \cap S=V$. Because $\rho \in M$ and $V\langle\rho\rangle \cong A_{4}$, all involutions of V are conjugate in M and a Sylow 2 -subgroup of M is a four group. Also we have $C_{M}\left(\tau_{1}\right)=S \cap M=V$. By a result of Suzuki [9,] we have either $V \triangleleft M$ or $M \cong A_{5}$. If $V \triangleleft M$, then $M=V\langle\rho\rangle$ (since $C_{M}(V)=V$). Therefore $G=S \cdot M=C(\alpha)=\langle\alpha, \beta\rangle \times F$. If $M \cong A_{5}$, because the automorphism group of A_{5} is S_{5}, it follows that $C(M) \neq 1$. Clearly $C(M) \cap M=1$. From the fact $\tau \notin C(M)$, we obtain that $|C(M)|=4$. Now

$$
C(M) \cong C(V)=\langle\alpha, \beta\rangle \times V,
$$

so

$$
C(M) \subseteq\langle\alpha, \beta\rangle \times V-V \quad(\because C(M) \cap M=1)
$$

Let $C(M)=\left\langle z_{1}, z_{2}\right\rangle$, a four group. It follows that $z_{1}=\alpha v_{1} ; z_{2}=\beta v_{2}$ where $v_{1}, v_{2} \in V$. Since $\alpha, z_{1}, \beta, z_{2}$ centralize ρ; we get v_{1}, v_{2} commute with ρ.

By the structure of $A_{4}, v_{1}=v_{2}=1$. Thus we get $C(M)=\langle\alpha, \beta\rangle$ and therefore contradicts condition (1).
(vi) If the order S^{*} is 8 , then G is a product of a group of order 2 with a subgroup of G isomorphic to S_{6}.

Since $\left|S^{*}\right|=8$, it means that G has a normal subgroup M of index 4 in G and G has no subgroup of index 8 (Here we use the fact $V \subseteq S^{*}$ and S / V is abelian). We have $S \cap M=S^{*}$ and V is a maximal subgroup of S^{*}. Since $\rho \in M$, involutions in V are conjugate in G and so by lemma A, M has only one class of involutions. By (i), we must have $S^{*} \cap\langle\alpha, \beta\rangle=1$. Therefore $S^{*} \subseteq\langle\alpha, \beta\rangle \times(V\langle\tau\rangle)-\langle\alpha, \beta\rangle$ and so is dihedral of order 8 . Now τ_{1} is in the centre of S^{*} and we have $C_{M}\left(\tau_{1}\right)=S \cap M=S^{*}$.

Let $0(M)$ be the largest normal odd order subgroup of $M . V$ acts on $C(M)$ and since all involutions of V are conjugate in M, we get

$$
\left|C_{0(M)}\left(\tau_{1}\right)\right|=\left|C_{0(M)}\left(\tau_{2}\right)\right|=\left|C_{0(M)}\left(\tau_{1} \tau_{2}\right)\right|=1
$$

because $C\left(\tau_{1}\right)$ is a 2-group. By Brauer-Wielandt's result [10], $0(M)=1$.
Application of Gorenstein-Walter's theorem [3], produces the result: $M \cong P S L(2, q) \quad q \pm \mathbf{1}=\left|C_{M}\left(\tau_{1}\right)\right|$ or $M \cong A_{7}$. The second case cannot happen since the centralizer of an involution in A_{7} is divisible by 3 . Therefore $M \cong \operatorname{PSL}(2,7)$ or $\operatorname{PSL}(2,9)$. Since the automorphism group of $\operatorname{PSL}(2,7)$ is $P G L(2,7)$, we get $C(M) \neq 1$. So we have either $G=\langle\alpha, \beta\rangle \times M$ or G contains a subgroup iscmorphic to $\operatorname{PGL}(2,7)$. The first possibility cannot arise since it contradicts condition (1). The second possibility is ruled out by the fact that a Sylow 2 -subgroup of $P G L(2,7)$ is dihedral of order 16 and so contains an element of order 8 , in contradiction to the structure of S.

We are left with the case $M \cong \operatorname{PSL}(2,9) \cong A_{\mathbf{6}}$. Since $\operatorname{PGL}(2,9)$ contains elements of order 8 , we conclude that G does not contain a subgroup isomorphic to $\operatorname{PGL}(2,9)$. Also $C(M)$ cannot have order 4, because by similar argument as in (v), G would be equal to $\langle\alpha, \beta\rangle \times M$, a contradiction to condition (1). It follows that $C(M)$ is of order 2 and $C(M) \cap M=1$ and $\alpha \notin C(M)$. Let $C(M)=\langle z\rangle$. From the fact $C(M) \subseteq C(V)=\langle\alpha, \beta\rangle \times V$ and $C(M) \cap M=1$, we get $C(M) \subseteq\langle\alpha, \beta\rangle V-V$. Hence $C(M)=\langle h \cdot v\rangle$ where $h \in\langle\alpha, \beta\rangle, v \in V$. Since $h v$ and h commute with ρ, we get $v=1$. Therefore $h=\beta$ or $\alpha \beta$.

Now the automorphism group \mathscr{A} of $\operatorname{PSL}(2,9)$ has the property \mathscr{A} / A_{6} is a four-group. \mathscr{A} is an extension of $\operatorname{PGL}(2,9)$ by the field automorphism f of order 2 . Now $\operatorname{PGL}(2,9)$ is the group of all non-singular 2×2 matrices $\left(\alpha_{i j}\right)$ with $\alpha_{i j} \in G F(9)$ considered modulo the group of all 2×2 scalar matrices and we have $f\left(\alpha_{i j}\right) f=\left(\alpha_{i j}^{3}\right)$. Let ζ be a generator of the multiplicative group of $G F(9)$. Then $\zeta^{4}=-1$. Put

$$
a=\left(\begin{array}{ll}
\zeta & 0 \\
0 & \zeta^{-1}
\end{array}\right) ; \quad b=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) ; \quad c=\left(\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right) f
$$

We verify that $a^{4}=1=b^{2}, b^{-1} a b=a^{-1}, c^{-1} a c=a^{-1} ; c^{-1} b c=a^{-1} b$; $c^{2}=a^{2}$. Since $\langle a, b\rangle$ is a Sylow 2-subgroup of $\operatorname{PSL}(2,9)$, it follows $\langle a, b, c\rangle$ is a Sylow 2 -subgroup of $\langle P S L(2,9), c\rangle$. We shall produce an element of $\langle P S L(2,9), c\rangle$ which is of order 8 . We note that

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & \zeta
\end{array}\right) \in P G L(2,9)-P S L(2,9)
$$

and $(c b)^{2}=c^{2} c^{-1} b c b=a^{2} a^{-1} b b=a$, so is of order 8 .
Now $\langle\alpha\rangle M$ is isomorphic to a subgroup of index 2 of \mathscr{A} containing $P S L(2,9)$. There are 3 such subgroups namely $\operatorname{PGL}(2,9) ;\langle P S L(2,9), c\rangle$ and $\langle P S L(2,9), f\rangle$. We have shown that the first two cases cannot arise, so we have $\langle\alpha\rangle M \cong\langle P S L(2,9), f\rangle$. It is well known that $\operatorname{PSL}(2,9)$ is isomorphic to A_{6}. Hence S_{6} is isomorphic to a subgroup of index 2 in \mathscr{A}. We check that S_{6} has no element of order 8. It follows

$$
S_{6} \cong\langle P S L(2,9), f\rangle \cong\langle\alpha\rangle M
$$

Therefore $G=C(M) \times(\langle\alpha\rangle M)$.
The proof of this lemma is now complete.
We can now begin the determination of the structure of $C_{G}(t u)$. Consider the factor group $C_{G}(t u) /\langle t u\rangle=\bar{C}$. We note that $\langle t, u\rangle \mid\langle t u\rangle$ is in the centre of a Sylow 2-subgroup $\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle \mid\langle t u\rangle$ of \bar{C}. Since $t u$ is conjugate neither to t nor to u, we have $N_{G}\langle t, u\rangle \subseteq C_{G}(t u)$. Hence we obtain $N_{G}\langle t, u\rangle=\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle\langle\sigma\rangle=Y_{1}$. Hence we get the centralizer of $\langle t, u\rangle \mid\langle t u\rangle$ in \bar{C} is

$$
(\langle z, t, u\rangle \mid\langle t u\rangle) \times\left(\left\langle v, t_{1}, t_{2}, \sigma\right\rangle\langle t u\rangle \mid\langle t u\rangle\right)
$$

where $\langle z, t, u\rangle \mid\langle t u\rangle$ is a four-group and $\left\langle v, t_{1}, t_{2}, \sigma\right\rangle\langle t u\rangle \mid\langle u\rangle$ is isomorphic to S_{4} and so the group \bar{C} satisfies condition (1) of the proposition.

To check that condition (2) of the proposition is alsc fulfilled by the group \bar{C}, we look at $C_{G}\left(t_{1}\right) /\left\langle t_{1}\right\rangle$. Now $\left\langle a_{1}, a_{2}, t_{2}, u, v\right\rangle /\left\langle t_{1}\right\rangle$ is a Sylow 2-subgroup of $C_{G}\left(t_{1}\right) \mid\left\langle t_{1}\right\rangle$ and $\left\langle t, t_{1}\right\rangle \mid\left\langle t_{1}\right\rangle$ is its commutator group. The group $N_{G}\left\langle t, t_{1}\right\rangle$ is contained in H, since t is not conjugate to t_{1} or $t t_{1}$. It follows that $N_{G}\left\langle t, t_{1}\right\rangle \cap C_{G}\left(t_{1}\right)=A$. Since t_{1} is conjugate to $t u$ in G, it follows that the centralizer of the commutator group $\left\langle t_{1}, t u\right\rangle \mid\langle t u\rangle$ of $\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle \mid\langle t u\rangle$ in \bar{C} is $\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle \mid\langle t u\rangle$.

Next we want to show that $\langle z, t u\rangle|\langle t u\rangle ;\langle t, u\rangle|\langle t u\rangle$ and $\langle z t\rangle \mid\langle t u\rangle$ are not conjugate to each other in \bar{C}. It is clear that $\langle z t\rangle \mid\langle t u\rangle$ is not conjugate to $\langle z, t u\rangle \mid\langle t u\rangle$ or $\langle t, u\rangle \mid\langle t u\rangle$ since $\langle z t\rangle$ is cyclic whereas $\langle z, t u\rangle$ and $\langle t, u\rangle$ are four groups. Both $\langle t, u\rangle$ and $\langle z, t u\rangle$ are normal in $\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle$.

If $\langle t, u\rangle \mid\langle t u\rangle$ were conjugate in \bar{C} to $\langle z, t u\rangle \mid\langle t u\rangle$, by a transfer theorem of Burnside [4], they would be conjugate in

$$
N_{C}\left(\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle \mid\langle t u\rangle\right) \subseteq N_{\delta}\left(\left\langle t u, t_{1}\right\rangle \mid\langle t u\rangle\right)=\left\langle z, u, v, t, t_{1}, t_{2}\right\rangle \mid\langle t u\rangle,
$$

a contradiction.
Applying Proposition 1 on the group \bar{C}, we get either $C_{G}(t u)=Y_{1}$ or \bar{C} is the direct product of a group of order 2 by a subgroup which is isomorphic to S_{6}. The case $C_{G}(t u)=Y_{1}$ is not possible since we have by (2.8) and (2.11), an element

$$
z^{\prime} \in C_{G}(t u)-Y_{1} .
$$

We shall now take a close look at the remaining case. Let \tilde{D} be the complete inverse image in $C_{G}(t u)$ of the subgroup of \bar{C} which is isomorphic to S_{6}. From the proof of Proposition 1, we see that $\left\langle t, u, t_{1}, t_{2}\right\rangle \subseteq \tilde{D}$. Since $\langle z, t, u\rangle \nsubseteq \tilde{D}$, we have either $\left\langle t, u, t_{1}, t_{2}, z v\right\rangle$ or $\left\langle t, u, t_{1}, t_{2}, v\right\rangle$ is a Sylow 2 -subgroup of \tilde{D}. Suppose that $\left\langle t, u, t_{1}, t_{2}, z v\right\rangle \subseteq \tilde{D}$. Let $\tilde{\boldsymbol{D}}$ be the subgroup of \tilde{D} such that $\tilde{\boldsymbol{D}} /\langle t u\rangle \cong A_{6}$. We know that $t_{1} \in \tilde{\boldsymbol{D}}$ and

$$
\langle t, u\rangle|\langle t u\rangle \in \tilde{D}|\langle t u\rangle-\tilde{\boldsymbol{D}} \mid\langle t u\rangle .
$$

Hence $z v t^{r}\left(r=0\right.$, or 1) is conjugate to t_{1} modulo $\langle t u\rangle$. Hence there exists an element $g \in \tilde{D}$ such that $g^{-1} z v t^{r} g=t_{1} \cdot h$ where $h \in\langle t u\rangle$ and so $g^{-1} z v t^{r} \cdot t u g=t_{1} \cdot h \cdot t u$. From (2.7), zvtr is conjugate to $z v t^{r} \cdot t u$. It follows then t_{1} is conjugate to $t t_{1} u$, a contradiction to (2.11). Therefore

$$
\left\langle t, u, t_{1}, t_{2}, v\right\rangle \cong \tilde{D} .
$$

We check that $\left\langle t, u, t_{1}, t_{2}, v\right\rangle$ splits over $\langle t u\rangle$. So by a theorem of Gaschütz, [4, p. 246], \tilde{D} splits over $\langle t u\rangle$. Hence there is a subgroup D of \tilde{D} isomorphic to S_{6} such that $\tilde{D}=\langle t u\rangle \times D$, and we may suppose that $t \in D$. Let $\underset{\sim}{D}$ be the subgroup of D such that $\underset{\sim}{D} \cong A_{6}$. By the structure of A_{6} all involutions in A_{6} are conjugate in A_{6}. In $\left\langle t, u, t_{1}, t_{2}, v\right\rangle$, we observe that elements of order 4 have their squares equal to t_{1}. Therefore we conclude that all involutions in $\underset{\sim}{D}$ lie in \mathscr{K}_{2} (in the notation of (2.11)). These facts imply that a Sylow 2-subgroup of D is $\left\langle t t_{2} u v, t u v\right\rangle$.

We have by Proposition 1 that

$$
C_{G}(t u)=(\langle z t\rangle \times \underset{\sim}{D})\langle t\rangle \quad \text { or } \quad(\langle z, t u\rangle \times \underset{\sim}{D})\langle t\rangle
$$

where in both cases, we have $\underset{\sim}{D}\langle t\rangle=D \cong S_{6}$. Suppose that

$$
C_{G}(t u)=(\langle z, t u\rangle \times \underset{\sim}{D})\langle t\rangle .
$$

Clearly $z \in \mathscr{K}_{2}$ and $\langle z, t u\rangle \times \underset{\sim}{D}$ is a subgroup of index 2 in $C_{G}(z)$. We want to determine $C_{G}(z) \cap C_{G}(v)$. Suppose there is an element

$$
g \in C_{G}(z)-(\langle z, t u\rangle \times \underset{\sim}{D})
$$

and g centralizes v. Now

$$
\langle z, t u\rangle=Z(\langle z, t u\rangle \times \underset{\sim}{D})
$$

and therefore $\langle z, t u\rangle \triangleleft C_{G}(z)$. Thus $g^{-1} t u g=z t u \quad\left(g \notin C_{G}(t u)\right)$. So $g^{-1} t u v g=z t u v$. But we have $\underset{\sim}{D}=(\langle z, t u\rangle \times \underset{\sim}{D})^{\prime} \operatorname{char} C_{G}(z)$. Therefore $g^{-1} D g=\underset{\sim}{D}$ giving $g^{-1} t u v g \subseteq \underset{\sim}{D}$ a contradiction. Hence we have shown that

$$
C_{G}(z) \cap C_{G}(v) \cong\langle z, t u\rangle \times D .
$$

Using the fact $t w v \in \underset{\sim}{D}$ and centralizer of an involution in A_{6} has order 8, we conclude that $C_{G}(z) \cap C_{G}(v)$ has order 32 , in contradiction to the fact that $C_{G}(x) \cap C(t)$ with $x \in \mathscr{K}_{2} \cap C_{G}(t)$ has order 2^{6} or $32 \cdot 3$. Thus we have finally proved that $C_{G}(t u)=(\langle z t\rangle \times \underset{\sim}{D})\langle t\rangle$.
(3.1) Lemma. The centralizer $C_{G}(t u)$ of tu in G has the following structure:

$$
C_{G}(t u)=(\langle z t\rangle \times D)\langle t\rangle \quad \text { where } \quad\langle D\rangle\langle t\rangle=D \cong S_{6} \text {. }
$$

(3.2) Lemma. The group G is simple.

Proof. Suppose that $0(G) \neq 1$. Act on $0(G)$ by the four group $\langle v, t\rangle$. We know that $C_{G}(x)$ has no odd-order normal subgroup by the structure of H, for all $x \in \mathscr{K}_{1},\langle t, v\rangle$ acts fixed-point-free on $0(G)$, a contradiction to a theorem of Burnside. We have therefore proved that G has no nontrivial odd order normal subgroup.

Suppose that G has a proper normal subgroup N with odd factor-group G / N. Then Q being a Sylow 2-subgroup of G is contained in N. The Frattini argument gives $G=N \cdot N_{G}(Q)$. But $N_{G}(Q)=Q$ and hence $G=N \cdot Q=N$, a contradiction. Thus G has no proper normal subgroup with odd factor group.

Next suppose that G has a proper non-trivial normal subgroup M such that $|M|$ and $|G: M|$ are both even. Suppose that $\mathscr{K}_{1} \cap M$ is not empty. Then $\mathscr{K}_{1} \subseteq M$ and in particular t and u are in M. Hence $t u \subseteq M$. So $\mathscr{K}_{2} \cap M \neq \phi$ giving $\mathscr{K}_{2} \subseteq M$. Thus all involutions of G are contained in M. It follows that Q, being generated by its involutions is in M, a contradiction. This gives $\mathscr{K}_{1} \cap M=\phi$. Therefore $\mathscr{K}_{2} \cap M \neq \phi$ and so $t_{1}, t_{1} \in M$. This implies that $t \in M$, a contradiction. Hence the proof is now complete.

4. Structures of a Sylow 3-subgroup of \boldsymbol{G} and its normalizer in G

In § 3, we have $C_{G}(t u)=(\langle z t\rangle \times \underset{\sim}{)}\langle\langle t\rangle$. A Sylow 3-subgroup of $\underset{\sim}{D}$ is elementary abelian of order 9 , and is self-centralizing in D. Therefore Sylow 3 -subgroups of $\underset{\sim}{D}$ are independent (i.e. two distinct Sylow 3 -subgroups of $\underset{\sim}{D}$ intersect in the identity only). Let T_{1} be the unique Sylow 3 -subgroup of $\underset{\sim}{D}$
containing $\langle\sigma\rangle \subseteq C_{G}(t u)$. Therefore $T_{1}=C_{G}(\sigma) \cap C_{G}(t u)$. Since $\langle t, u v\rangle$ normalizes $\langle\sigma\rangle$, it normalizes $C_{G}(\sigma) \cap C_{G}(u)=T_{1}$. Thus we have

$$
\langle z t\rangle \times\langle t, u v\rangle \subseteq N_{G}\left(T_{1}\right) \cap C_{G}(t u)
$$

From the structure of S_{6}, we know that the normalizer in S_{6} of a Sylow 3-subgroup of S_{6} is a splitting extension of the Sylow 3-subgroup by a dihedral group of order 8 (e.g. $\langle(123),(456)\rangle$ is a Sylow 3 -subgroup of S_{6} and

$$
N_{S_{6}}(\langle(123),(456)\rangle)=\langle(1524)(36),(12)\rangle \cdot\langle(123),(456)\rangle
$$

Therefore we get

$$
N_{G}\left(T_{1}\right) \cap C(t u)=(\langle z t\rangle \cdot\langle a, t\rangle) T_{1}
$$

where $a^{2}=t u v, t a t=a^{-1}, a^{-1} z t a=z t$. Clearly $C_{G}\left(T_{1}\right) \cap C_{G}(t u)=\langle z t\rangle \times T_{1}$ and $C_{G}\left(T_{1}\right) \triangleleft N_{G}\left(T_{1}\right)$. Let $U \supseteqq\langle z t\rangle$ be a Sylow 2-subgroup of $C_{G}\left(T_{1}\right)$. If $U \supset\langle z t\rangle$, then $\left|C_{G}\left(T_{1}\right) \cap C_{G}(t u)\right|$ would be divisible by 8 , which contradicts the structure of $C_{G}(t u)$. It follows a Sylow 2-subgroup of $C_{G}\left(T_{1}\right)$ is cyclic of order 4 . By a result of Burnside, $C_{G}\left(T_{1}\right)$ has a normal 2-complement $M_{1} \supseteqq T_{1}$. The Frattini argument gives

$$
\begin{aligned}
N_{G}\left(T_{1}\right) & =\left(N_{G}(z t) \cap N_{G}\left(T_{1}\right)\right) C_{G}\left(T_{1}\right) \subseteq\left(C_{G}(t u) \cap N_{G}\left(T_{1}\right)\right) C_{G}\left(T_{1}\right) \\
& =\langle z t\rangle \cdot\langle a, t\rangle M_{1}
\end{aligned}
$$

Thus

$$
N_{G}\left(T_{1}\right)=(\langle z t\rangle \cdot\langle a, t\rangle) M_{1}
$$

Since M_{1} char $C_{G}\left(T_{1}\right)$ we get $M_{1} \triangleleft N_{G}\left(T_{1}\right)$, and so $\langle v, t\rangle \subseteq N_{G}\left(T_{1}\right)$ acts on M_{1}. Because $\{v, v t, t\} \subseteq \mathscr{K}_{1}$, by a result of Brauer-Wielandt [10], M_{1} is a 3-group.

Now $\langle t, u\rangle$ also acts on M_{1}. We have $C_{M_{1}}(t u)=T_{1} ; C_{M_{1}}\langle t, u\rangle=\langle\sigma\rangle$. Hence $\left|M_{1}\right|=\left|C_{M_{1}}(t) \| C_{M_{1}}(u)\right|$. Because t and u are conjugate in $N_{G}\left(T_{1}\right)$, we get $\left|C_{M_{1}}(t)\right|=\left|C_{M_{1}}(u)\right|$. Hence $\left|M_{1}\right|=3^{2}$ or 3^{4}. We shall show that $\left|M_{1}\right|=3^{2}$ is not possible.

Let $T=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \subseteq H=C_{G}(t)$. Then

$$
C_{G}(t) \cap\left\langle\sigma_{1}, \sigma_{2}\right\rangle=\langle t\rangle \times T \quad \text { and } \quad N_{G}(T) \cap H=\langle t, u, v\rangle \cdot T
$$

Now $\langle t\rangle$ is a Sylow 2-subgroup of $C_{G}(T)$ and therefore by a result of Burnside, $C_{G}(T)$ has a normal 2-complement M and $C_{G}(T)=\langle t\rangle \cdot M$. We have $C_{G}(T) \triangleleft N_{G}(T)$ and so by the Frattini argument,

$$
N_{G}(T)=\left(C_{G}(t) \cap N_{G}(T)\right) \cdot C_{G}(T)=\langle t, u, v\rangle M .
$$

Since $M \operatorname{char} C_{G}(T)$, we have $M \triangleleft N_{G}(T)$. Therefore $\langle v, t\rangle$ acts on M and hence M is a 3 -group. By way of contradiction, suppose $\left|M_{1}\right|=3^{2}$, then T_{1} is a Sylow 3 -subgroup of G and so is T. But $C_{G}(T)$ has a different structure
from that of $C_{G}\left(T_{1}\right)$, a contradiction to Sylow's theorem. Hence we must have $\left|M_{1}\right|=81$.

We want to show that M_{1} is abelian. We have

$$
N_{G}\left(T_{1}\right)=(\langle z t\rangle \cdot\langle a, t\rangle) M_{1} .
$$

By the structure of S_{6}, there exists an element $\lambda \in T_{1}$, inverted by t and a^{2}. Therefore $\lambda \in C_{G}(u v) \cap C_{G}(t u)$. Consider the action of the four-group $\langle u v, v t\rangle$ on M_{1}. We have $C_{M_{1}}(\langle u v, v t\rangle)=\langle\lambda\rangle$. Therefore

$$
\left|C_{M_{1}}(u v)\right|=\left|C_{M_{1}}(v t)\right|=3^{2} .
$$

Next consider the action of $\langle v, t\rangle$ on M_{1}. We have $C_{M_{1}}\langle t, v\rangle=1$. Therefore

$$
\left|M_{1}\right|=\left|C_{M_{1}}(t)\right|\left|C_{M_{1}}(v t)\right|\left|C_{M_{1}}(v)\right|
$$

giving $C_{M_{1}}(v)=1$. Thus the involution v acts fixed-point-free on M_{1}. By a result of Zassenhaus, M_{1} is abelian. By a result of Gorenstein-Walter [3], $M_{1}=C_{G}(t) C_{G}(v t)$. Showing that M_{1} is elementary abelian of order 81 .

We shall next take a closer look at M_{1}. Since

$$
a z \in N_{G}\left(T_{1}\right) \quad \text { and } \quad(a z)^{-1} t(a z)=v t,
$$

we get

$$
C_{M_{1}}(v t)=(a z)^{-1} C_{M_{1}}(t)(a z) .
$$

Because $\sigma \in C_{M_{1}}(t)$, and there is an unique subgroup of order 9 in $C_{G}(\sigma) \cap H$ namely $T=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$, we get $C_{M_{1}}(t)=T$. Let $(a z)^{-1} \sigma_{1}(a z)=\zeta_{1}$, $(a z)^{-1} \sigma_{2}(a z)=\zeta_{2}$. Then $C_{M_{1}}(v t)=\left\langle\zeta_{1}, \zeta_{2}\right\rangle$. We also observe that $u \zeta_{1} u=\zeta_{2}^{-1}$ using the relation $(a z) u(a z)^{-1}=u v$. Collecting the results proved so far, we have the following lemma.
(4.1) Lemma. Let T_{1} be the Sylow 3 -subgroup of $C_{G}(t u)$ containing $\langle\sigma\rangle$. Then we have $C_{G}\left(T_{1}\right)=\langle z t\rangle M_{1}$ and $N_{G}\left(T_{1}\right)=(\langle z t\rangle \cdot\langle a, t\rangle) \cdot M_{1}$ where

$$
\begin{array}{cl}
z^{2}=t u v ; \quad \text { tat }=a^{-1} ; & M_{1}=C_{M_{1}}(t) C_{M_{1}}(v t) ; \\
C_{M_{1}}(t)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle ; & C_{M_{1}}(v t)=\left\langle\zeta_{1}, \zeta_{2}\right\rangle
\end{array}
$$

with $(a z)^{-1} \sigma_{i}(a z)=\zeta_{i}(i=1,2)$ and $u \zeta_{1} u=\zeta_{2}^{-1}$.
Next we shall investigate the structure of $C_{G}\left(\sigma_{1}\right)$. We have

$$
C_{G}\left(\sigma_{1}\right) \cap H=T \cdot Q_{2}
$$

where $Q_{2}=\left\langle a_{2}, b_{2}\right\rangle$, a quaternion group containing the unique involution t. Clearly Q_{2} is a Sylow 2 -subgroup of $C_{G}\left(\sigma_{1}\right)$. We shall use the following result of Brauer-Suzuki [9]. If X is a finite group with a generalized quaternion Sylow 2-subgroup, then $X / 0(X)$ has only one involution. In our case, denote $0\left(C_{G}\left(\sigma_{1}\right)\right)=V$. Then $\left\langle\sigma_{1}\right\rangle \subseteq V$ and $C_{G}\left(\sigma_{1}\right) / V$ has only one involution $t V$. It follows that $\langle t\rangle V$ is normal in $C_{G}\left(\sigma_{1}\right)$ and so (by Frattini's argument,

$$
C_{G}\left(\sigma_{1}\right)=\left(C_{G}(t) \cap C_{G}\left(\sigma_{1}\right)\right) V=Q_{2} \cdot T \cdot V
$$

Because $Q_{2} T \cong S L(2,3)$ is not 3-closed, it follows that $T \nsubseteq V$ and so $T \cap V=\left\langle\sigma_{1}\right\rangle$. We get $C_{G}\left(\sigma_{1}\right)=\left\langle Q_{2}, \sigma_{2}\right\rangle V=S_{2} \cdot V$ where $S_{2} \cong S L(2,3)$ and $S_{2} \cap V=1$. Since $C_{G}(t) \cap V=\left\langle\sigma_{1}\right\rangle$, it follows that t acts fixed-pointfree on $V /\left\langle\sigma_{1}\right\rangle$ and so $V /\left\langle\sigma_{1}\right\rangle$ is abelian $V^{\prime} \cong\left\langle\sigma_{1}\right\rangle \cong Z(V)$.

Now v inverts σ_{1}. Therefore $N_{G}\left\langle\sigma_{1}\right\rangle=\langle v\rangle S_{2} V$. Since V is characteristic in $C_{G}\left(\sigma_{1}\right)$, we have $V \triangleleft N_{G}\left\langle\sigma_{1}\right\rangle$. Thus the four group $\langle v, t\rangle$ acts on V and so V is a 3 -group. Using Brauer-Wielandt's result, we get

$$
|V|=\left|C_{\nabla}(t)\right|\left|C_{V}(v)\right| \cdot\left|C_{\nabla}(v t)\right| .
$$

We know that $C_{V}(t)=\left\langle\sigma_{1}\right\rangle$ and from the fact $M_{1} \subseteq C_{G}\left(\sigma_{1}\right)$, we get that $\left|C_{V}(v t)\right|=9$. Now v is conjugate to $v t$ in $C_{G}\left(\sigma_{1}\right)$ i.e. $v=a_{2}^{-1} v t a_{2}$, we get $\left|C_{V}(v)\right|=\left|C_{V}(v t)\right|$. Thus $|V|=3^{5}$. By Gorenstein-Walter [3],

$$
V=C_{\nabla}(t) C_{V}(v) C_{V}(v t) .
$$

Put $C_{\nabla}(v)=\left\langle\zeta_{3}, \zeta_{4}\right\rangle$ where $\zeta_{3}=a_{2}^{-1} \zeta_{1} a_{2}, \zeta_{4}=a_{2}^{-1} \zeta_{2} a_{2}$. We have

$$
V=\left\langle\sigma_{1}, \zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right\rangle
$$

Since $V \mid\left\langle\sigma_{1}\right\rangle$ is abelian and so elementary abelian of order 81, we may represent $\langle v\rangle S_{2}$ on the 'vector space' $V /\left\langle\sigma_{1}\right\rangle$ over $G F(3)$. We get in terms of the basis $\zeta_{1}\left\langle\sigma_{1}\right\rangle, \zeta_{2}\left\langle\sigma_{1}\right\rangle, \zeta_{3}\left\langle\sigma_{1}\right\rangle, \zeta_{4}\left\langle\sigma_{1}\right\rangle$;

$$
a_{2} \rightarrow\left(\begin{array}{ll}
& -I \\
I &
\end{array}\right) ; \quad t \rightarrow\left(\begin{array}{cc}
-I & \\
& -I
\end{array}\right) ; \quad v=\left(\begin{array}{cc}
-I & \\
& I
\end{array}\right) ; \quad \sigma_{2} \rightarrow\left(\begin{array}{ll}
I & C \\
O & D
\end{array}\right)
$$

where (I) is the 2×2 unit matrix, and C, D are 2×2 matrices over $G F(3)$. Let b_{2} be represented by

$$
\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right)
$$

where $\left.\left(A_{i}\right) i=1,2,3,4\right)$ is 2×2 matrix over $G F(3)$. Using the relation $b_{2}^{-1} a_{2} b_{2}=a_{2}^{-1}$, we get $A_{3}=A_{2}, A_{4}=-A_{1}$. Since $\sigma_{2}^{-1} v \sigma_{2}=\sigma_{2} v$, we get $D=I$. By the relations $\sigma_{2}^{-1} a_{2} \sigma_{2}=b_{2} ; \sigma_{2}^{-1} b_{2} \sigma_{2}=a_{2} b_{2}$, we obtain $A_{2}=I$, $A_{1}=I, C=-I$. Therefore we have

$$
\sigma_{2} \rightarrow\left(\begin{array}{rr}
I & -I \\
O & I
\end{array}\right) ; \quad b_{2} \rightarrow\left(\begin{array}{rr}
I & I \\
I & -I
\end{array}\right) .
$$

Hence we have $\sigma_{2}^{-1} \zeta_{3} \sigma_{2}=\zeta_{1}^{-1} \zeta_{3} \sigma_{1}^{\varepsilon_{1}} ; \sigma_{2}^{-1} \zeta_{4} \sigma_{2}=\zeta_{2}^{-1} \zeta_{4} \sigma_{1}^{\varepsilon_{2}}$ where $\varepsilon_{i}=0,1$ or -1 and $i=1,2$.

Since $V /\left\langle\sigma_{1}\right\rangle$, is abelian, we have $\zeta_{3}^{-1} \zeta_{2} \zeta_{3}=\zeta_{2} \sigma_{1}^{\varepsilon}$ where $\varepsilon=0,1$ or -1 . Conjugating both sides of the equation $\zeta_{3}^{-1} \zeta_{2} \zeta_{3}=\zeta_{2} \sigma_{1}^{\varepsilon}$ by the element a_{2}, we get $\zeta_{4}^{-1} \zeta_{1} \zeta_{4}=\zeta_{1} \sigma_{1}^{\varepsilon}$. Consider the group $C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right) \subseteq C_{G}\left(\sigma_{1}\right)$. We have $C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right) \subseteq P=\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right\rangle$. Suppose that $C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)=P$,
then $\varepsilon=0$, and so $C_{G}\left(\left\langle\zeta_{1}, \zeta_{2}\right\rangle\right)$ is divisible by 3^{5}, a contradiction to the structure of $C_{G}(T)$ since T is conjugate to $\left\langle\zeta_{1}, \zeta_{2}\right\rangle$ in G. So $\varepsilon \neq 0$.

We observe that $\left\langle\sigma_{1}, \zeta_{1}\right\rangle \triangleleft P$. Since $N_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right) / C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)$ is isomorphic to a subgroup of $G L(2,3)$, we get that $C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)$ is of order 3^{5}. So $C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)=\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}, x\right\rangle$ where $x \in\left\langle\zeta_{3}, \zeta_{4}\right\rangle$. Then we have the commutator group $\left(C_{G}\left(\left\langle\sigma_{1}, z_{1}\right\rangle\right)\right)^{\prime}$ of $C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)$ is

$$
\left\langle\sigma_{1}, x^{-1} \sigma_{2}^{-1} x \sigma_{2}\right\rangle \neq\left\langle\sigma_{1}, \zeta_{1}\right\rangle \quad \text { if } \quad x \neq \zeta_{3} .
$$

From the structure of $C_{G}\left(\sigma_{1}\right) /\left\langle\sigma_{1}\right\rangle$ and the fact that $C_{G}\left(\left\langle\zeta_{1}, \zeta_{2}\right\rangle\right)$ is not divisible by 3^{5}, we get $Z\left(C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)\right)=\left\langle\sigma_{1}, \zeta_{1}\right\rangle$. Therefore we have

$$
Z\left(C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)\right) \cap\left(C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)\right)^{\prime}=\left\langle\sigma_{1}\right\rangle \operatorname{char} C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)
$$

and so

$$
\left\langle\sigma_{1}\right\rangle \triangleleft N_{G}\left(C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)\right)=N_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)
$$

(since $\left\langle\sigma_{1}, \zeta_{1}\right\rangle=Z\left(C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)\right)$). By (4.1), there is an element taz $\in C_{G}(t u)$, such that $(\operatorname{taz}) \in N_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)$ but $t a z \in N_{G}\left\langle\sigma_{1}\right\rangle$, a contradiction to $\left\langle\sigma_{1}\right\rangle \triangleleft N_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)$. Theiefore we have shown that

$$
C_{G}\left(\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)=V_{1}=\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right\rangle .
$$

Similarly we can prove that

$$
C_{G}\left(\left\langle\sigma_{1}, \zeta_{2}\right\rangle\right)=V_{3}=\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right\rangle
$$

with $u a z$ playing the role of $t a z$.
Now we are in a position to determine $\varepsilon_{i}(i=1,2)$. By conjugating the equations $\sigma_{2}^{-1} \zeta_{3} \sigma_{2}=\zeta_{1}^{-1} \zeta_{3} \sigma_{1}^{\varepsilon_{1}}$ and $\sigma_{2}^{-1} \zeta_{4} \sigma_{2}=\zeta_{2}^{-1} \zeta_{4} \sigma_{1}^{\varepsilon_{2}}$ by the element $v t$, we verify that $\varepsilon_{1}=\varepsilon_{2}=0$ using the fact $\zeta_{3} \in C_{G}\left(\zeta_{1}\right)$ and $\zeta_{4} \in C_{G}\left(\zeta_{2}\right)$. Except for the unknown $\varepsilon \neq 0$, we have determined the structure of P completely. In particular we see that $Z(P)=\left\langle\sigma_{1}\right\rangle$. The fact implies that $N_{G}(P) \cong N_{G}\left\langle\sigma_{1}\right\rangle$ and therefore P is a Sylow 3 -subgroup of G. By the structure of $N_{G}\left\langle\sigma_{1}\right\rangle$, we see that $N_{G}(P)=V \cdot\left(N_{G}\left(\sigma_{2}\right) \cap S_{2}\langle v\rangle\right)=\langle v, t\rangle \cdot P$. Collecting the results found so far, we have proved the following lemma.
(4.2) Lemma. A Sylow 3 -subgroup P of G and its normalizer $B=N_{G}(P)$ in G have the following structures.

$$
P=T \cdot T_{2} \cdot T_{3} ; \quad B=N_{G}(P)=\langle v, t\rangle \cdot P,
$$

where

$$
\begin{aligned}
& T=C_{p}(t)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle \\
& T_{2}=C_{p}(v t)=\left\langle\zeta_{1}, \zeta_{2}\right\rangle \\
& T_{3}=C_{p}(v)=\left\langle\zeta_{3}, \zeta_{4}\right\rangle
\end{aligned}
$$

$M=T \cdot T_{2}$ is elementary abelian

$$
\begin{aligned}
& {\left[\zeta_{3}, \zeta_{1}\right]=1=\left[\zeta_{4}, \zeta_{2}\right]} \\
& {\left[\zeta_{4}, \zeta_{1}\right]=\sigma_{1}^{\varepsilon}=\left[\zeta_{3}, \zeta_{2}\right]} \\
& {\left[\sigma_{2}, \zeta_{3}\right]=\zeta_{1}} \\
& {\left[\sigma_{2}, \zeta_{4}\right]=\zeta_{2}}
\end{aligned}
$$

5. Final characterization

We shall now determine the structure of $N_{G}\langle v, t\rangle$. First we note by (4.1) that the element $t a z \in C_{G}(t u)$ satisfies the following relations: $(t a z)^{2}=v ;(t a z)^{-1} t(t a z)=v t$ and $(t a z)^{-1} v(t a z)=v$. Therefore $t a z \in N_{G}\langle v, t\rangle$. Also using (4.1), we show that

$$
\operatorname{taz} \in N_{G}\left\langle\sigma_{1}, \zeta_{1}\right\rangle=N_{G}\left(C_{G}\left\langle\sigma_{1}, \zeta_{1}\right\rangle\right)=N_{G}\left(V_{1}\right)
$$

Because $\left\langle\zeta_{3}\right\rangle=C_{G}(v) \cap V_{1}$, we get $(t a z)^{-1} \zeta_{3}(t a z)=\zeta_{3}^{\delta_{1}}$ where $\delta_{1}=1$ or -1 . Next consider the element uaz in $C_{G}(t u)$. Again we verify that $(u a z)^{2}=v$, $(u a z)^{-1} t(u a z)=v t$, and $(u a z)^{-1} v(u a z)=v$. So $(u a z) \in N_{G}\langle v, t\rangle$. Also we check that $u a z \in N_{G}\left\langle\sigma_{1}, \zeta_{2}\right\rangle=N_{G}\left(C_{G}\left\langle\sigma_{1}, \zeta_{2}\right\rangle\right)=N_{G}\left(V_{3}\right)$. So we get once more $(u a z)^{-1} \zeta_{4}(u a z)=\zeta_{4}^{\delta_{2}} \delta_{2}=1$ or -1 .

We can now construct the following table using (4.1) and the results just found to show the actions of the elements taz, $a_{2}, u a z$ on $V_{1}, V_{2}(=V)$, V_{3} respectively by conjugation.

Table I

	$t a z$	a_{2}	$u a z$	$\left(t a z a_{2}\right)^{3}$	$\left(a_{2} u a z\right)^{3}$
σ_{1}	ζ_{1}	σ_{1}	ζ_{2}	$\sigma_{1}^{\delta_{1}}$	$\sigma_{1}^{\delta_{2}}$
σ_{2}	ζ_{2}	-	ζ_{1}	-	-
ζ_{1}	σ_{1}^{-1}	ζ_{3}	σ_{2}^{-1}	$\zeta_{1}^{\delta_{1}}$	-
ζ_{2}	σ_{2}^{-1}	ζ_{4}	σ_{1}^{-1}	-	$\zeta_{2}^{\delta_{2}}$
ζ_{3}	$\zeta_{3}^{\delta_{1}}$	ζ_{1}^{-1}	-	$\zeta_{3}^{\delta_{1}}$	-
ζ_{4}	-	ζ_{2}^{-1}	$\zeta_{4}^{\delta_{2}}$	-	$\zeta_{4}^{\delta_{2}}$

If δ_{1} is equal to (-1), then we have

$$
\left(t a z a_{2}\right)^{3} v \in N_{G}\langle v, t\rangle \cap C_{G}\left\langle\sigma_{1}, \zeta_{1}\right\rangle
$$

and $\left(t a z a_{2}\right)^{3} v$ inverts ζ_{3}, a contradiction since

$$
N_{G}\langle v, t\rangle \cap C_{G}\left\langle\sigma_{1}, \zeta_{1}\right\rangle=1
$$

Hence we must have $\delta_{1}=1$ and consequently $\left(\operatorname{taza} a_{2}\right)^{3}=1$. Similarly, we obtain $\delta_{2}=1$ and $\left(a_{2} u a z\right)^{3}=1$. Since $u a z=t u \cdot t a z$ and $t a z \in C_{G}(t u)$, we have that taz and uaz commute. Thus we have shown that

$$
\left\langle t a z, a_{2}, u a z\right\rangle \subseteq N_{G}\langle v, t\rangle
$$

and the following relations hold for the group $\langle t a z, a z, u a z\rangle$;

$$
(t a z)^{2} \equiv a_{2}^{2} \equiv(u a z)^{2} \equiv\left(t a z a_{2}\right)^{3} \equiv\left(a_{2} u a z\right)^{3} \equiv 1
$$

$(\bmod \langle v, t\rangle) ;(t a z)(u a z)=(u a z)(t a z)$. By Moore's result, we get

$$
\left\langle t a z, a_{2}, u a z\right\rangle \mid\langle v, t\rangle \cong S_{4}
$$

(the symmetric group in 4 letters). Since $C_{G}\langle v, t\rangle$ is of order 16 , we have also proved that $\left\langle t a z, a_{2}, u a z\right\rangle=N_{G}\langle v, t\rangle$. Therefore we have proved the following lemma.
(5.1) Lemma. We have

$$
N=N_{G}\langle v, t\rangle=\left\langle t a z, a_{2}, u a z\right\rangle
$$

where $N_{G}\langle v, t\rangle \mid\langle v, t\rangle \cong S_{4}$. Moreover, the actions of the elements taz, a_{2}, uaz on V_{1}, V_{2}, V_{3} respectively are shown in Table I with $\delta_{1}=\delta_{2}=1$.

We shall next show that the set of elements in $B N B$ i.e. the set of elements of the double cosets $B x B$ with $x \in N$, forms a subgroup of G. Moreover we shall compute the order of $B N B$. But first we want to define a few notations.

Put $W=N /\langle v, t\rangle$ and $t a z\langle v, t\rangle=r_{1}, a_{2}\langle v, t\rangle=r_{2}, u a z\langle v, t\rangle=r_{3}$. Then elements of W are generated by the involutions $\boldsymbol{r}_{1}, r_{2}, r_{3}$. For any $w \in W$, let $l(w)=l$ be the smallest non-negative integer such that $w=r_{i_{1}} \cdot r_{i_{2}} \cdots r_{i_{l}}$ where $r_{i j} \in\left\{r_{1}, r_{2}, r_{3}\right\}$. Let $\omega\left(r_{1}\right)=\operatorname{taz}, \omega\left(r_{2}\right)=a_{2}$ and $\omega\left(r_{3}\right)=u a z$. For any $w \in W$ and $w=r_{i_{1}} r_{i_{2}} \cdots r_{i_{s}}$, let

$$
\omega(w)=\omega(r) \omega_{i_{1}}\left(r_{i_{2}}\right) \cdots \omega\left(r_{i_{s}}\right)
$$

For notational convenience, we shall denote $B w B(\omega \in W)$ to mean $B \omega(w) B$.
(5.2) Lemma. The set of elements in $G_{i}=B \cup B r_{i} B(i=1,2,3)$ is a subgroup of G.

Proof. Representing the elements taz, ζ_{4} on the 'vector space' $M=\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}\right\rangle$ over $G F(3)$, we get

We note that since $C_{G}(M)=M$, the representation is faithful.

Consider the element $\mathrm{taz}_{4} \zeta_{4}$. We have

$$
\left(t a z \zeta_{4}\right)^{3} \rightarrow\left(\begin{array}{cccc}
-\varepsilon & & & \\
& 1 & & \\
& & -\varepsilon & \\
& & & 1
\end{array}\right)
$$

Suppose $\varepsilon=1$, then we have $v\left(t a z \zeta_{4}\right)^{3} \in C_{G}\left(\sigma_{1}, \zeta_{1}\right)=V_{1}$, a contradiction. Therefore $\varepsilon=-1$. Then we get $\left(\operatorname{taz} \zeta_{4}\right)^{3} \in M \cap C_{G}(v)=1$. So $\left(\operatorname{taz} \zeta_{4}\right)^{3}=1$. Similarly we get $\left(u a z \zeta_{3}\right)^{3}=1$ and we know that $\left(a_{2} \sigma_{2}\right)^{3}=1$. Therefore, we have putting $\zeta_{4}=X_{1}, \sigma_{2}=X_{2}, \zeta_{3}=X_{3}$,

$$
\begin{equation*}
\left(\omega\left(r_{i}\right) X_{i}\right)^{3}=1 \quad(i=1,2,3) \tag{*}
\end{equation*}
$$

Suppose that we have $g_{i}=b_{i} \omega\left(r_{i}\right) b_{i}^{\prime} \in B r_{i} B$ with b_{i}, b_{i}^{\prime} in B. Then the element $g_{i}^{\prime}=\left(b_{i}^{\prime}\right)^{-1} \cdot \omega\left(r_{i}\right)\left(\omega\left(r_{i}\right)^{-2} \cdot b_{i}^{-1}\right) \in B r_{i} B$ and we have $g_{i} \cdot g_{i}^{\prime}=1$.

Clearly to show that G_{i} is a subgroup of G, we need only to show that $\omega\left(r_{i}\right) X_{i}^{\delta} \omega\left(r_{i}\right) \in G_{i}(\delta=0,1$, or -1$)$, since for any $b \in B$, we can write $b=v_{i} X_{i}$ with $v_{i} \in\langle v, t\rangle V_{i}$ where v_{i} is normalized by $\omega\left(r_{i}\right)$. We have three cases to consider.
(a) $\delta=0$. Then we have $\omega\left(r_{i}\right) \cdot \omega\left(r_{i}\right) \in\langle v, t\rangle \subseteq B$.
(b) $\delta=1$. Then $\omega\left(r_{i}\right) X_{i} \omega\left(r_{i}\right)=X_{i}^{-1} \omega\left(r_{i}\right) \cdot \omega\left(r_{i}\right)^{-2} X_{i}^{-1} \in B r_{i} B$ by $(*)$.
(c) $\delta=-1$. Then $\omega\left(r_{i}\right) X_{i}^{-1} \omega\left(r_{i}\right)=\omega\left(r_{i}\right)^{2} X_{i} \omega\left(r_{i}\right) X_{i} \omega\left(r_{i}\right)^{2} \in B r_{i} B$ by (*).

Therefore we have shown that G_{i} is closed under taking inverses and multiplication. Thus G_{i} is a subgroup of G.
(5.3) Lemma. For any iand $w \in W$, if $l\left(r_{i} w\right) \geqq l(w)$, then $r_{i} B w \cong B r_{i} w B$.

Proof. Since $W \cong S_{4}$, and r_{i} satisfies the Moore's relation, we may identify r_{1}, r_{2}, r_{3} with the transposition (12), (23), (34) in S_{4} respectively. Let $C_{0}=\{1\}, C_{1}=\left\{r_{1}, r_{2}, r_{3}\right\}$. We shall give a method of constructing C_{n} for $n \geqq 2$. Suppose that the sets C_{0}, \cdots, C_{n-1} have been constructed. Let \tilde{C}_{n} be the set of all 'words' of length n. Define $C_{n}=\tilde{C}_{n}-\bigcup_{0 \leqq i \leqq n-1} C_{i}$. Then clearly elements w in C_{n} has $l(w)=n$.

To check that for those $w \in W$ with $l\left(r_{i} w\right) \geqq l(w)$, we have

$$
r_{i} B w \cong B r_{i} w B,
$$

we need only to see that $r_{i} X_{i} w \subseteq B r_{i} w B$. It is easily verified that for those $w \in W$ such that $l\left(r_{1} w\right) \geqq l(w)$, we can always write $r_{i} X_{i} w=r_{i} w Y_{i}$ with $Y_{i} \in B$ using Table I.

The computations are summarized in Table II, which is self-explanatory.

Table II

w	$=r_{i} \ldots r_{i}$	$l(w)$	$l\left(r_{1} w\right)$	$l\left(r_{2} w\right)$	$l\left(r_{3} w\right)$	Y_{1}	Y_{2}	Y_{3}
(12)	r_{1}	1	0	2	2		ζ_{2}	ζ_{3}
(23)	r_{2}	1	2	0	2	ζ_{2}^{-1}		ζ_{1}^{-1}
(34)	r_{3}	1	2	2	0	ζ_{4}	ζ_{1}	
(132)	$r_{1} r_{2}$	2	1	3	3		ζ_{4}	ζ_{1}^{-1}
(123)	$r_{2} r_{1}$	2	3	1	3	σ_{2}		σ_{1}
$(12)(34)$	$r_{1} r_{3}$	2	1	3	1		σ_{1}^{-1}	
(243)	$r_{2} r_{3}$	2	3	1	3	σ_{1}		σ_{2}
(234)	$r_{3} r_{2}$	2	3	3	1	ζ_{2}^{-1}	ζ_{3}	
(13)	$r_{1} r_{2} r_{1}$	3	2	2	4			σ_{1}
(1432)	$r_{1} r_{2} r_{3}$	3	2	4	4		ζ_{4}	σ_{2}
(1342)	$r_{3} r_{1} r_{2}$	3	2	4	2		σ_{1}^{-1}	
(1243)	$r_{2} r_{1} r_{3}$	3	4	2	4	ζ_{1}		ζ_{2}
(1234)	$r_{3} r_{2} r_{1}$	3	4	4	2	σ_{2}	ζ_{3}	
(24)	$r_{2} r_{3} r_{2}$	3	4	2	2	σ_{1}		
(143)	$r_{1} r_{2} r_{1} r_{3}$	4	3	3	5			ζ_{2}
(142)	$r_{1} r_{2} r_{3} r_{2}$	4	3	5	3		ζ_{2}^{-1}	
$(13)(24)$	$r_{2} r_{3} r_{1} r_{2}$	4	5	3	5	ζ_{3}		ζ_{4}
(134)	$r_{3} r_{2} r_{1} r_{2}$	4	3	5	3		ζ_{1}^{-1}	
(124)	$r_{2} r_{3} r_{2} r_{1}$	4	5	3	3	ζ_{1}		
(1423)	$r_{1} r_{2} r_{1} r_{3} r_{2}$	5	4	4	6			ζ_{4}
(14)	$r_{1} r_{2} r_{3} r_{2} r_{1}$	5	4	6	4		σ_{2}	
(1324)	$r_{2} r_{3} r_{1} r_{2} r_{1}$	5	6	4	4	ζ_{3}		
$(14)(23)$	$r_{1} r_{2} r_{3} r_{2} r_{1} r_{2}$	6	5	5	5			
					5			

(5.4) Lemma. The set $B N B=G_{0}$ is a subgroup of G and the double coset $B w_{1} B$ is different from $B w_{2} B$ if $w_{1}=w_{2}$.

Proof. It follows from (3.1), (5.2), (5.3) and Tits [8].
We shall next compute the order of G_{0}. We check that

$$
w_{0}=\omega\left(r_{1} r_{2} r_{3} r_{2} r_{1} r_{2}\right) \in C_{G}\langle v, t\rangle
$$

and so is an involution. The group $\left\langle v, t, w_{0}\right\rangle$ is elementary and different
from $\langle v, t, u\rangle=\left\langle v, t, \omega\left(r_{1}\right)^{-1} \omega\left(r_{3}\right)\right\rangle$. Consider the group $I=P \cap w_{0} P w_{0}$. It is acted on by $\langle v, t\rangle$. By Brauer-Wielandt [10], we get

$$
I=C_{I}(t) C_{I}(v t) C_{I}(v)
$$

Now we have $C_{I}(t)=T \cap w_{0} T w_{0}$. Since $\left\langle t, v, w_{0}\right\rangle \neq\langle t, u, v\rangle$, we get either $\left\langle t, v, w_{0}\right\rangle=\left\langle t, v, t_{1}\right\rangle$ or $\left\langle t, v, u t_{1}\right\rangle$. In either case, by the structure of H, we get $T \cap w_{0} T w_{0}=1$. Since $T_{2}=\omega\left(r_{1}\right)^{-1} T \omega\left(r_{1}\right)$, we obtain

$$
T_{2} \cap w_{0} T_{2} w_{0}=\left(T \cap T^{\omega\left(r_{1}\right) w_{0} \omega\left(r_{1}\right)^{-1}}\right)^{\omega\left(r_{1}\right)} .
$$

We have again that

$$
\omega\left(r_{1}\right) w_{0} \omega\left(r_{1}\right)^{-1} \in C_{G}(v, t) \quad \text { and } \quad\langle t, u, v\rangle \neq\left\langle t, v, \omega\left(r_{1}\right) w_{0} \omega\left(r_{1}\right)^{-1}\right\rangle
$$

So we get $T_{2} \cap w_{0} T_{2} w_{0}=C_{I}(v t)=1$. Lastly, by exactly the same reason, we prove that $T_{3} \cap w_{0} T_{3} w_{0}=C_{I}(v)=1$ showing that $I=1$.

Table III

w	B_{w}	$\left(B_{w}\right)^{\prime}$
1	1	P
(12)	$\left\langle\zeta_{4}\right\rangle$	V_{1}
(23)	$\left\langle\sigma_{2}\right\rangle$	V_{2}
(34)	$\left\langle\zeta_{3}\right\rangle$	V_{3}
(132)	$\left\langle\sigma_{2}, \zeta_{2}\right\rangle$	$\left\langle\sigma_{1}, \zeta_{1}, \zeta_{3}, \zeta_{4}\right\rangle$
(123)	$\left\langle\zeta_{2}, \zeta_{4}\right\rangle$	$\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{3}\right\rangle$
(12) (34)	$\left\langle\zeta_{3}, \zeta_{4}\right\rangle$	$\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}\right\rangle$
(243)	$\left\langle\zeta_{1}, \zeta_{3}\right\rangle$	$\left\langle\sigma_{1}, \sigma_{2}, \zeta_{2}, \zeta_{4}\right\rangle$
(234)	$\left\langle\sigma_{2}, \zeta_{1}\right\rangle$	$\left\langle\sigma_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right\rangle$
(13)	$\left\langle\sigma_{2}, \zeta_{2}, \zeta_{4}\right\rangle$	$\left\langle\sigma_{1}, \zeta_{1}, \zeta_{3}\right\rangle$
(1432)	$\left\langle\sigma_{1}, \zeta_{1}, \zeta_{3}\right\rangle$	$\left\langle\sigma_{2}, \zeta_{2}, \zeta_{4}\right\rangle$
(1342)	$\left\langle\sigma_{2}, \zeta_{1}, \zeta_{2}\right\rangle$	$\left\langle\sigma_{1}, \zeta_{3}, \zeta_{4}\right\rangle$
(1243)	$\left\langle\sigma_{1}, \zeta_{3}, \zeta_{4}\right\rangle$	$\left\langle\sigma_{2}, \zeta_{1}, \zeta_{2}\right\rangle$
(1234)	$\left\langle\sigma_{1}, \zeta_{2}, \zeta_{4}\right\rangle$	$\left\langle\sigma_{2}, \zeta_{1}, \zeta_{3}\right\rangle$
(24)	$\left\langle\sigma_{2}, \zeta_{1}, \zeta_{3}\right\rangle$	$\left\langle\sigma_{1}, \zeta_{2}, \zeta_{4}\right\rangle$
(143)		
(142)	$\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{3}\right\rangle$	$\left\langle\zeta_{2}, \zeta_{4}\right\rangle$
(13)(24)	$\left\langle\sigma_{1}, \sigma_{2}, \zeta_{1}, \zeta_{2}\right\rangle$	$\left\langle\zeta_{3}, \zeta_{4}\right\rangle$
(134)	$\left\langle\sigma_{1}, \sigma_{2}, \zeta_{2}, \zeta_{4}\right\rangle$	$\left\langle\zeta_{1}, \zeta_{3}\right\rangle$
(124)	$\left\langle\sigma_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}\right\rangle$	$\left\langle\sigma_{2}, \zeta_{1}\right\rangle$
(1423)		$\left\langle\zeta_{4}\right\rangle$
(14)	V_{2}	$\left\langle\sigma_{2}\right\rangle$
(1324)	V_{3}	$\left\langle\zeta_{3}\right\rangle$
(14)(23)	P	1

Define for any $w \in W$, the group B_{w} generated by all elements x in P such that $\omega(w) x \omega(w)^{-1}$ is in $w_{0} P w_{0}$. Using the informations obtained so far and taking advantages of the identification of W with S_{4} in Table II, we can construct the group B_{w} for all $w \in W$, and these groups B_{w} are shown in Table III.

We observe that for every B_{w}, there exists the subgroups (B_{w}) such that $B_{w}\left(B_{w}\right)^{\prime}=P$ and $B_{w} \cap\left(B_{w}\right)^{\prime}=1$.
(5.5) Lemma. Every element of G_{0} can be written uniquely in the 'normal' form $h \cdot p \omega(w) \cdot p_{w}$ with $h \in\langle v, t\rangle, p \in P$ and $p_{w} \in B_{w}$. The order of G_{0} is $2^{7} \cdot 3^{6} \cdot 5 \cdot 13$.

Proof. By (5.4), the group G_{0} is the set of elements in $B N B$. Hence for any element $x \in G_{0}$, we get that $X=b_{1} \omega(w) b_{2}, b_{i} \in B$. We have that $P=B w \cdot(B w)^{\prime}$. We may write $b_{2}=h p_{2}^{\prime} p_{2}$ with $h \in\langle v, t\rangle, p_{2} \in B_{w}$ and $p_{2}^{\prime} \in\left(B_{w}\right)^{\prime}$. Since, we have $\omega(w) h \omega(w)^{-1} \in\langle v, t\rangle$ and $\omega(w) p_{2}^{\prime} \omega(w)^{-1} \in P$, we get $x=b \cdot \omega(w) \cdot p_{2}$ showing the existence of the 'normal' form.

To prove uniqueness, suppose that we have $b \omega(w) b_{w}=b^{\prime} \omega\left(w^{\prime}\right)\left(b_{w^{\prime}}\right)$. By Tits [8], we get $w=w^{\prime}$ and so we have $b \omega(w) b_{w^{\prime}}=b^{\prime} \omega(w)\left(b_{w}\right)^{\prime}$. Therefore we get $\left(b^{\prime}\right)^{-1} b=\omega(w) b_{w}\left(b_{w^{\prime}}\right)^{-1} \omega(w)^{-1}$. Since we have $\left(b^{\prime}\right)^{-1} b \in B$ and $\omega(w) b_{w}\left(b_{w^{\prime}}\right)^{-1} \omega(w)^{-1} \in P^{w_{0}}$, we obtain $\left(b^{\prime}\right)^{-1} b \in B \cap P^{w_{0}} \subseteq P$. The uniqueness follows from the fact $P \cap P^{w_{0}}=1$.

By Tits [8], the 24 double cosets $B w B$ are distinct. Therefore we have

$$
\left|G_{0}\right|=\sum_{w}|B w B|=|B| \sum_{w}\left|B_{w}\right|=2^{7} \cdot 3^{6} \cdot 5 \cdot 13 .
$$

The proof of this lemma is now complete.
Before the final proof of the theorem we need the following result of Thompson [7].

Lemma B (Thompson). Let \mathscr{M} be a subgroup of the group \mathscr{X} such that
(a) $|\mathscr{M}|$ is even
(b) \mathscr{M} contains the centralizer of each of its involutions.
(c) $\bigcup_{s \in \mathscr{E}} \mathscr{M}^{\mathrm{s}}$ is of odd order.

Then $i(\mathscr{X})=1$ where $i(\mathscr{X})$ is the number of conjugate classes of involutions of \mathscr{X}.

Conclusion of the proof of the theorem

Using the informations of our tables (I, II and III), we can multiply any two elements of G_{0} in the 'normal' form to get the product uniquely in the 'normal' form. (Uniqueness of product since we have determined $\varepsilon, \delta_{1}, \delta_{2}$). Now if X is any finite group satisfying (a) and (b) of the theorem,
then X has a subgroup X_{0} of order $\left|L_{4}(3)\right|$ with uniquely determined multiplication table. Hence taking X to be $L_{4}(3)$, we see that $X_{0}=L_{4}(3)$ and so $L_{4}(3) \cong G_{0}$. Consequently G_{0} satisfies conditions (a) and (b) of lemma B. If condition (c) of this lemma were true for G_{0}, then we would get $i(G)=1$, a contradiction to (2.11). So $\bigcap_{g \in G} G_{0}^{g}$ is even and normal in G. By (3.2) we get immediately that $G=G_{0}$. The proof of the theorem is now complete.

Acknowledgement

The author wishes to thank Professor Z. Janko who suggested and supervised this research, Dr. D. Asche and Dr. D. Held with whom the author has had numerous discussions. All the results were done while the author was a Monash Graduate Scholar.

References

[1] E. Artin, Geometric Algebra, Wiley-Interscience (1957).
[2] R. Brauer and M. Suzuki, 'On finite groups of even order whose 2-Sylow group is a quaternion group', Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1757-1759.
[3] D. Gorenstein and J. H. Walter, 'On finite groups with dihedral Sylow 2-subgroups', Illinois J. Math. 6 (1962), 553- 593.
[4] M. Hall Jr., The Theory of Groups, MacMillan (1959).
[5] D. G. Higman, 'Focal series in finite groups', Cand. J. Math. 5 (1953), 477-497.
[6] Z. Janko, 'A characterization of the finite simple groups $P S p_{4}(3)$ ', (to appear).
[7] J. G. Thompson, 'Non-solvable finite groups whose non-identity solvable subgroups have solvable normalizers', (to appear).
[8] M. Jacques Tits, 'Théorème de Bruhat et sous-groupes paraboliques', C.R. Acad. Sci. Paris, 254 (1962), 2910-2912.
[9] M. Suzuki, 'On characterization of linear groups', I. Trans. Amer. Math. Soc. 92 (1959).
[10] H. Wielandt, 'Beziehungen zwischen der Fixpunktzahlen von Automorphismengruppen einer endlichen Gruppe', Math. Zeit. 73 (1960), 146-158.

Monash University
Clayton, Australia

