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Abstract

A new, elementary proof of the Macdonald identities for An_x using induction on n is given. Specifically,
the Macdonald identity for An is deduced by multiplying the Macdonald identity for An_, and n Jacobi
triple product identities together.

1991 Mathematics subject classification (Amer. Math. Soc): primary 33D70; secondary 05A19.

1. Introduction

Throughout this paper q is any complex number satisfying \q\ < 1. We will use the
following notation for infinite products. Let

m=0

and (x{,x2,... ,xn;q)x = {xx\q)0o{x2,q)00...{xn\q)00.

The Jacobi triple product identity is

(1-1) (x,qx-\q-q)oo=

where Q = n(n - l)/2.
For proofs of this identity, see Andrews [2], Andrews [3, pp. 63-64], Gasper and

Rahman [9, p. 12] or Hardy and Wright [10, pp. 282-283].
The Macdonald identities are multivariate generalizations of the Jacobi triple

product identity. These identities were formulated in terms of affine root systems
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346 Shaun Cooper [2]

and proved by Macdonald [13], although some instances of these identities were
discovered earlier by Dyson [7, Section 2] and others (see also [13, p. 94]).

The Macdonald identity for An_i is

(1.2) (q;q)"^1 Yi (*<*71;<7)oo(<7*r1*/;4)°o

(n) / x qm' \

Here YJ means sum over all integers mu • • • ,mn satisfying m.\ + • • • + mn = 0,
m

and this notation will be used throughout. The aim of this paper is to give a simple
proof of this identity using induction on n. The inductive step consists of writing

(xix7i;q)00(qx71xJ;q)00

l<i<j<n j=\

Now use (1.2) as the inductive hypothesis to expand the product

and use the Jacobi triple product identity (1.1) to expand each product

(xjxnli'< q)oo(qx~lxn+1; q)x.

The truth of the Macdonald identity for An then follows after some calculation and
simplification.

The idea of multiplying identities together has been used before.
1. Carlitz and Subbarao [4] proved the quintuple product identity (the Macdonald
identity for BC\) by multiplying two Jacobi triple product identities together. Hirsch-
horn [12] obtained a generalization using a similar method.
2. Carlitz and Subbarao [5] gave a proof of Winquist's identity (the Macdonald identity
for B2), and a generalization, by multiplying four Jacobi triple product identities
together. A different generalization was obtained by Hirschhorn [11], who also
multiplied four Jacobi triple product identities together.
3. Garvan [8, Theorem 3.5] proved the Macdonald identity for A2 by multiplying
three Jacobi triple product identities together.
4. Cooper [6, Chapter 2] gave new proofs of the Macdonald identities for G2 and Gj
and obtained some generalizations by multiplying two Macdonald identities for A2

together.
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[3] Proof of the Macdonald identities for An_i 347

A knowledge of root systems is not necessary to read this paper. There are only
two prerequisites. The first is the Jacobi triple product identity. The second is the
Vandermonde determinant identity, which will be stated below in Lemma 4.1.

The reader can consult Milne [14] for another proof of the Macdonald identities
for An, Stanton [15] for the Macdonald identities for the other infinite families and
Macdonald [13] for the general case. Milne's paper [14] mentions connections with
other topics and contains a large number of references.

2. The initial cases n = 1 and n = 2

Let

(2.1) Fn{xu...,xn-q) =

The Macdonald identity for An_, is an explicit formula for the Laurent series expansion
of Fn in powers of JCI,. . . ,xn. Denote the multivariable Laurent expansion of Fn by

(2.2) Fn(xu... ,xn;q) = ^cn{ax,... ,an;q)x"' •••*"",

where the summation is over integers — oo < a{, a2,... , ctn < oo. Since Fn is
homogeneous of degree zero, that is,

Fn(kxu ... ,kxn\q) = Fn(xu . . . ,xn;q),

for any non-zero complex number A, the summation in (2.2) is actually over all
integers satisfying a, + • • • + an = 0 . The remainder of this paper is devoted to
showing that the multivariate Laurent series expansion of Fn is given by the following
formula.

THEOREM 2.3 (Macdonald identity for An_,).

(2.4) Fn(xu... ,xn;q)

i ^ 2 l n m n nmxX •••*,, H I 1
 xamjh

where the summation is over all integers —oo < nt\,... ,mn < oo satisfying mx +
m2-\ hm n =O, and

(2-5) cn(q) = . * r

(q; q)n
0

'OO
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The case n = 1 is trivial: it claims 1 = 1. Observe that the case q = 0 is also trivial:
in this case, the only non-zero term on the right-hand side is the one corresponding to
mi = m2 — • • • = mn = 0, and so both sides reduce to rii<;</<n(l ~~ xixJX)- From
now on we will assume 0 < \q\ < 1.

The case n = 2 (Macdonald identity for A i) is

(2.6)
V*2 /oo

1

W > H/oo m | + r a 2 = o
(

E i

i
„This is equivalent to the Jacobi triple product identity. To see this, put x — X\X2' in

(1.1) to get

oo / \2m oo / v \

= V q2m2~m I - I - T ?2m2+m I - I
^ o o V^2/ m t ^ V^2/

Now let ffi] = m and m2 = —m and divide both sides by (q;q)oo- The result is
(2.6), and thus the Macdonald identity for A\ is equivalent to the Jacobi triple product
identity. This completes the easy part of the induction. The cases n = 1 and n — 2
have been verified.

3. The inductive step: outline

Suppose that the Macdonald identity for An_, is true. That is, take as the inductive
hypothesis the statement that equations (2.4) and (2.5) are true for some value of n.
Now consider the function Fn+i. We want to show that Fn+1 has a Laurent series
expansion of the same form as (2.4) but with n replaced with n + 1. We proceed in
four steps.

1. Use the Macdonald identity for An^ together with the Jacobi triple product
identity to find an explicit formula for cn + 1(o! | , . . . , an+1; q) as an infinite product.
In particular, this formula gives as a special case the value of the constant term
cn+\ ( 0 , . . . ,0 ; q) (cf. Stanton [15], where a different procedure is used to compute
the constant term).

2. Use the result of step 1 to deduce which coefficients are zero and which are
non-zero.
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3. Use the results of steps 1 and 2 to express any non-zero coefficient cn+\(ct\,... ,
un+l; q) as a multiple of one of a finite set of (n + 1)! coefficients. This set of
coefficients is called the orbit of the constant term under the action of the symmetric
group Sa+1.
4. Show that each coefficient in the orbit of the constant term is equal to
±cB+1(0,... ,0;q).
These four steps will complete the inductive step and a summary will be given in the
last section.

4. Step 1: an infinite product formula for the coefficients

In this section we will obtain a formula for the coefficient cn+l (au ... , an+1; q) as
an infinite product. In the course of the calculation we shall encounter the Vander-
monde determinant identity.

LEMMA 4.1 (Vandermonde determinant identity). Let a = (au ... ,on) be a per-
mutation of (1,2,... , n ) . Let Sn be the set of all permutations of (1,2,... , n ) . Let
sgn(cr) = + 1 or — 1, depending on whether a is an even or odd permutation,
respectively. Then

(4.2) ^ ( s g n a K ' - 1 ^ 2 • • •<"-= \ \

For an outline of a proof of this identity, see f 1, pp. 41-42, exercises 10 and 11].
The main result of this section is the following.

LEMMA 4.3. Let a.\, • • • , an+i be integers satisfying a\ + • • • + otn+\ = 0. Then

(nn-\-\. -J/I+1\/I —1

(4.4) c + 1 (a . , . . . ,an+l;q) = ( - l ) ^ g C J ) + - + ( ? ) ^ ' ? >°°

x T~7 (g(aj+j)-(*i+i) n+l+(o,-+i)-(a;+y). _n+l\

PROOF. Write

Fn+i(xi,... ,xn+x;q) = Fn(xu... ,xn;q
1=1

The idea is to use the inductive hypothesis to expand Fn as a series, use the Jacobi
triple product identity to expand each product {XiX~lx\ q)00(qx^1xn+i; q)^ and then
extract the coefficient of x"1 • • • x"+\ • The resulting series can be summed by the
inductive hypothesis to give the required result. The details are as follows.
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By (2.1), (2.4), (4.2) and the Jacobi triple product identity (1.1) applied n times,
we have

Fn+1(xu... ,xn+1;q)

= Fn(xu . . . , xn; q)
n

1=1

^ " ( m J H l-m^)+m,+2m2H Vnma
q

1
X

OO OO

' oo i'i=—oo in——oo

oo oo

X

Put

n + (an -n) + in =an,

Then ax + a2 H h aB +i = 0 and

(4.5) c n + i ( a i , ••• ,an+l;q)

aeSn

Now,

— b — c\ (a — b — c)(a — b — c — I)

- 6 ) + T -

2

ab + {b -
c2 b c
Y + 2 + 2'
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so

(ak - nmk - (ak - k)\

V 2 )
(otk\ n2m\

= I 2 I + —r nakmk + {nmk - uk){ok - k)

(ak - k)2 nnh ak - k

2 2 2

Thus we find

^ (ctk - nmk - (ok ~ k)

{ 2 2 7
k=l \ * / k=\\L/ L k=\ k=\

1 n

while

k=\ k=\ k=l

-k).

Substitute these back into equation (4.5) to obtain

Cn+l(OCl, • • • , Cln+\\ q)

\-nmn—n(a\mi+-+anmn)

X "
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X

1

i—r / g(«+l)"ii-(di+i| \

1 1 \ ,j(n+l)my-(ory+;) I
<j<;<n \ "I /

FT („(<*;+./)-(«,+;) ^n+l+(«,+i)-(aJ+;). n + lx

where in the last step we have used the induction hypothesis (2.5) with qn+l for q and
Xi = q~("i+l). This proves Lemma 4.3.

COROLLARY 4.6.

(4.7) c n + ! ( 0 , . . . , 0 ; o ) = .

PROOF. Taking ay = • • • = an+l = 0 in Lemma 4.3 gives

C+ 1(0, • • • , 0; <?) = {q"+U] ^ ^ '

l. nn+\\n-\ Ji

; <?)

r-r( ,. «+iy

5. Step 2: the nonzero coefficients

By lemma 4.3, we have for any integers P\,... , pn+i satisfying

(*) ( P i - ! ) + ••• + ( p n + i - ( n + 1 ) ) = 0 ,

that

(5.1) cn+x(P, - 1, p2 - 2, ... , pn+l - (n + 1); q)

The quantity ( ^ " A , ?"+'+A-ft; ^ n + 1 ) 0 0 is zero if and only if £, - A = 0 (mod« + 1).
Therefore the product in (5.1) is non-zero if and only if Pj - # ^ 0 (modrc + 1)
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for all i, j with 1 < i < j < n, that is, ̂ i , . . . , f}n all lie in distinct residue classes

(modn+l ) ,o requ iva len t ly , f3k = ak (modn + l),k = 1 , . . . , n, for some permutation

a — (au • • • , an+\) of (1 , • • • , n + 1). The condition (*) then forces /?„+, = an+l

(modn + 1).

Thus we can write /}k = (n + \)mk + ak, k = 1, • • • , n + 1, and the condition (*)

is equivalent to mt + • • • + mn+] = 0.

We summarize this in the following lemma.

LEMMA 5.2. A coefficient is non-zero if and only if it is of the form

- 1, (n + l)m2+o-2-2, . . . , (n + l)mn+l +an+l - (n + 1); q)

for some permutation a = (o\, ... , on+\) and some integers m\,... , mn+\ satisfying
m, H hwn + 1 = 0 .

6. Step 3: a relation between the non-zero coefficients

The main result in this section is an expression for

cn+l((n + l)mi +CT, - 1, . . . , (n + l)mn+, + an+l - (n + 1);

in terms of cn+\{o\ — 1 , . . . , an+] — (n + 1); q). Before getting to this, let us record
some results that will be needed.

LEMMA 6.1. Ifkis an integer, then

W-**-1;^ (-1)*
(x,qx"l;q)oc

PROOF. If k > 0 then

peg*, g'-**-1; g ) ^ _ ( 1 - * - ' ) ( ! -

= (-1)*

Ifk <0, let; = -it. Then

qx~u,q)oc (x,qx-l;q)0
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(-D*
x'q®'

LEMMA 6.2. IfYUti mk = 0and(au • • • , an+\) is a permutation of {\, • • • , n + l)
then

(a)

(rt + 1 ) 2 ^ 2 , , . 1 S ^ . n V ^ t ^ n + 1

— (w + 1) > Acmt H —mn+1.

(b) ]T] (o) - CT,)(m7 - m,)

l<i<7<« V Z / Z *=1

k=\

PROOF, (a) ^ 2 J - ( 2 J = y - - +ab - ac, so
c\ A - c\ a2 aJ - (̂  2 J = y - -

/(n + \)mk +ok-k\ (ok - k\
v 2 ; ~ ^ 2 )

(n + I)2 , n + 1
= ^ mk 2~

and

k=l l k=\ k=\ k=\

(n 4- I)2 " " " „ I i
Ylm2k + (" + ^^2akmk - (n + l ) ^ A : w t H — mn+].
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[11] Proof of the Macdonald identities for An_, 355

(b)

= 2^, (°'m> + ajmj) ~ 2^, (aimj + ajmi)

= ( « - ! ) > okmk - yoiirij

!)(» + 2)
an+1 I ( -

/

in+\ + mn+1.
t=l z

mk
" k=\ k=\

2
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LEMMA 6.3. Let (au ... , CTH+1) be a permutation of (1,2, ... ,n + 1), and let

mx,... , mn+\ be integers satisfying ni\ + • • • + mn+i = 0. Then

c n + l ( ( n + l ) / n , + < T i - 1 , . . . , ( n + l ) m n + l + a n + x - (n + I); q )

= ? ! f (mf+...+B,j+|)+»1a1+...+«,+1a,+1C)i+i(ai _ h an+i_(n + 1 ) ; q)

P R O O F . By Lemma 4.3 we have

cn+l((n + l )m, +Q-, - 1, . . . , (n + l ) m n + l + crn+i - (n + l ) ; g )

- 1, . . . , an+l - (n + 1);

aj-a,) (n+l)-(n+\)(mj-m,)-(aj-o,). ^"+

By lemma 6.1, with qn+l for q, x, = qa> a' and k — nij — m,, this is equal to

The power of — 1 in this expression is, modulo 2,

- (n + l)mn+i + ^ (mj ~ m<)

n

= —(n + \)mn+\ + 2_\(2k — n — \)mk

n+l

= —(n + 1) 2_.mk = 0.
k=\

The power of q is

(ak-k

E
which by Lemma 6.2 becomes simply

(m\ H [- »i^+1) + miff, H h mn+lorn+,
2

and this proves the lemma.
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7. Step 4: the orbit of the constant term

In this section we will show that the (n + 1)! coefficients in the orbit of the constant
term are in fact all equal to the constant term, up to a multiplicative factor of ±1 .

L E M M A 7 . 1 . L e t a = ( a x , . . . , crn+i) b e a p e r m u t a t i o n of (I, 2 , . . . , n + 1 ) . Then

cn+\(cri - l , o r 2 - 2 , ••• ,crn+i - (n + 1 ) \ q ) = ( s g n a ) c n + 1 ( 0 , 0 , . . . , 0 ; q ) .

P R O O F . W e w i l l s h o w t h a t f o r 1 < i < n ,

( 7 . 2 ) c n + l ( a x — 1 or,- — i, oi+x - (i + 1 ) , . . . , an+x - (n + 1) ; q)

= -cn+\{o\ - 1 , . . . , CT,+, - i, Oi - (i + 1 ) , . . . , orn+1 -(n + l) ; q).

Since any coefficient cn+\(ax — 1 , . . . ,an+i — (n + l);q) can be obtained from
c n + i ( 0 , . . . , 0; q) by repeated applications of (7.2), (that is, the symmetric group is
generated by transpositions), this is enough to prove the lemma.

CASE 1. By Lemma 4.3, we have for 1 < i < n — 1,

c»+i(ffi - 1, . . . , g, - i, a,+1 - (i + 1), ... , <rB+i - (n + 1) ; q)

cn+x(ox - 1 , . . . , oi+, - i, CT, - (i + 1 ) , . . . , an+x -(n + l);q)

= " I

after simplification.

CASE 2.

cn+x(ax - 1 , . . . , CTn - n, an+x - (n + 1); q)

cn+i(o-\ - 1 , . . . , an+x -n,on-(n + 1); ^ )
1 1\a,+i-(n + l) "-1 (rt"n

= (~1} fl(v)-("-+D n - ^
"i-^i+i-t qn+l)0
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n (na»~k
 nn+\+k-an. nn+\\

\<k<n+\,k?onVi 'I ' 1 >^

T\ (q""+'~k, nn+l+k~a"+<; o n + 1 ) o

_ ^ ( " 2 ) - ( " + 2 )+<Wl-CT»

-,k-an ~n+\+on-k. «n+l \
/ > q > q too

after simplification, since the product in both the numerator and denominator is

This completes the proof of the lemma.

8. Summary

It is now just a matter of putting the results of the previous sections together to
complete the induction. By Lemmas 5.2, 6.3 and 7.1, in that order, followed by
Corollary 4.6 and Lemma 4.1, we obtain

^n + lC*l> • • • > Xn+U q) =

" ^ " l)mi+<Ti - 1 , . . . , (n + l)mn+i+an+i-(ra + 1);.

_ Y ^ C + 1 ) -±l(m2+...+m2 ) (n+

- 1 , . . . ,cfn+1-(n+l);q)qm\O\-\ \-mrt+\on+\

X X
an+l-(n+\)

1 An+1

= c n + i ( 0 , ••• , 0 ; <

https://doi.org/10.1017/S1446788700001051 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001051


[15] Proof of the Macdonald identities for An_i 359

X V ' . . « Y" "

This completes the inductive step and so the Macdonald identities for An_] have been
shown to be true by induction on n.
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