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Abstract. We study convective overshooting by means of local 3D convection calculations.
Using a mixing length model of the solar convection zone (CZ) as a guide, we determine the
Coriolis number (Co), which is the inverse of the Rossby number, to be of the order of ten or
larger at the base of the solar CZ. Therefore we perform convection calculations in the range
Co = 0...10 and interpret the value of Co realised in the calculation to represent a depth in
the solar CZ. In order to study the dependence on rotation, we compute the mixing length
parameters αT and αu relating the temperature and velocity fluctuations, respectively, to the
mean thermal stratification. We find that the mixing length parameters for the rapid rotation
case, corresponding to the base of the solar CZ, are 3-5 times smaller than in the nonrotating
case. Introducing such depth-dependent α into a solar structure model employing a non-local
mixing length formalism results in overshooting which is approximately proportional to α at
the base of the CZ. Although overshooting is reduced due to the reduced α, a discrepancy with
helioseismology remains due to the steep transition to the radiative temperature gradient.

In comparison to the mixing length models the transition at the base of the CZ is much
gentler in the 3D models. It was suggested recently (Rempel 2004) that this discrepancy is due
to the significantly larger (up to seven orders of magnitude) input energy flux in the 3D models
in comparison to the Sun and solar models, and that the 3D calculations should be able to
approach the mixing length regime if the input energy flux is decreased by a moderate amount.
We present results from local convection calculations which support this conjecture.
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1. Introduction
Convection poses a difficult problem for stellar structure modelling. One-dimensional

stellar structure models require a parameterization of convection in order to be able to
yield the thermal stratification within the CZ. Since convection in the stellar envelopes
is in general highly efficient, the stratification is close to adiabatic in much of the CZ
and thus a detailed description of convection is not needed there. The most often used
way to parameterize convection is to use the mixing length concept in a form introduced
by Vitense (1953); see also Böhm–Vitense (1958), which considers convective elements
to lose their identity after rising (or descending) the so-called mixing length which is
proportional to the local pressure scale height, i.e.

l = αHp. (1.1)

Using this basic assumption, it is possible to derive equations that relate the velocity and
temperature fluctuations to the mean stratification, and thus, to compute the convective
energy flux (see, e.g. Chapter 6 of Stix 2002).

Among other conceptual problems, the mixing length formalism neglects the effects of
rotation although convection can be significantly influenced by it in regions of the CZ
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Figure 1. Coriolis number in the solar convection zone according to (1.2).

where the turnover time is longer than the rotation period. In a recent study, Käpylä et
al. (2005) estimated the Coriolis number, which is the inverse of the Rossby number, in
the solar CZ from

Co = Ro−1 = 2Ω�τ = 2Ω�αHp/u, (1.2)

where α = 1.66, Ω� = 2.6 ·10−6 s−1, and u the convective velocity obtained using a local
mixing length model. This relation gives values of the order of 10−3 near the solar surface
and of the order of ten or larger near the base of the CZ (see figure 1). We compute the
mixing length parameters relating the velocity and temperature fluctuations to the mean
stratification from local 3D convection calculations in the range Co = 0 . . . 10, which
coincides with the range expected in the Sun. Thus it is possible to probe the influence
of rotation on the mixing length relations and take the effect implicitly into account in a
solar model employing a non-local formulation of the mixing length concept in order to
study overshooting below the CZ.

There is a striking difference between the almost adiabatic overshooting with a very
sharp transition to the radiative gradient seen in non-local mixing length models in com-
parison to the much more subadiabatic and smoother overshooting seen in 3D convection
models. In a recent paper Rempel (2004) suggested that this discrepancy arises due to
the fact that the two models are simply working in different parameter regimes in the
sense that the input energy flux in the 3D models is usually up to 107 times larger in
comparison to the non-local mixing length models and the Sun. We have performed 3D
numerical calculations in which we decrease the input flux by two orders of magnitude
in order to study this effect in more detail.

The remainder of the paper is organised as follows: in § 2 a brief description of the
model is given and in § 3.1 and § 3.2 the results concerning the effects of rotation and
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input energy flux on convective overshooting are presented. Finally, the main results of
the study and remaining problems are summarised in § 4.

2. Numerical model
We use the same model as that described in Käpylä et al. (2005, 2006). The computa-

tional domain is a rectangular box situated at a latitude Θ, in which case the rotation
vector is represented by Ω = Ω0(cos Θ, 0,− sin Θ). In the present study the calculations
with rotation are performed at the south pole, i.e. Θ = −90o. The fluid obeys the ideal
gas law and radiation is taken into account only via the diffusion approximation.

In contrast to many earlier studies (e.g. Brummell et al. 2002) we do not use a piece-
wise polytropic stratification which implies that the thermal conductivity behaves like
a step function. Instead, we use a smoothly varying stratification where the logarithmic
temperature gradient is computed from

∇ = ∇3 +
1
2
{tanh[4(zm − z)] + 1}∆∇, (2.1)

where ∇3 = 0.15 is the gradient at the bottom, ∆∇ = ∇CZ −∇3 the difference between
the gradient in the unstable layer and the applied gradient, and zm the inflection point
of the tanh-function, calculated so that ∇ = ∇ad in the initial state at the base of the
convectively unstable region at z/d = 1.

In order to regulate the input energy flux we split the heat conduction term, ∂te =
. . . + Γcond, in the internal energy equation into two parts

Γcond = ∇ · [κt∇(e − e) + κh∇e], (2.2)

where the first term acts only on the fluctuations and the latter only on the mean,
i.e. horizontally averaged stratification, and where e = cVT . Thus κt and κh can be
considered as the turbulent and radiative conductivities, which satisfy κt � κh in real
stars. We define the conductivies as

κt = γρχ0, (2.3)

κh =
(γ − 1)Fb

g∇ , (2.4)

where χ0 is the reference value of the thermal diffusivity, computed from Pr = ν/χ0,
where Pr = 0.4 is the Prandtl number and ν the kinematic viscosity. Fb is the input energy
flux, g the constant gravitational acceleration, and ∇ the mean logarithmic temperature
gradient given by (2.1) (for more details, see Käpylä et al. 2006).

3. Results
3.1. Effects of rotation on mixing length relations

Using the basic assumption of the mixing length concept, (1.1), it is possible to derive
equations that relate the velocity and temperature fluctuations to the mean thermal
stratification

u′2
z =

α2
uHpg

8
(∇−∇ad), (3.1)

T ′2 =
αT

2
(∇−∇ad)T , (3.2)

where the bars denote horizontal averaging, primes the fluctuation, and ∇ad = (γ−1)/γ =
0.4, where γ = cP/cV = 5/3. Furthermore, adiabatic variation within the convective
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Figure 2. Mixing length parameters according to (3.1) and (3.2).

elements is assumed. Figure 2 shows the results for calculations made at the south pole
with approximate Coriolis numbers 0 (no rotation), 1, 4, and 10. It is clear that increasing
rotation reduces the convective efficiency and thus the mixing length parameters. If the
rotation dependence is intepreted as a depth dependence in the solar CZ, the reduction
of the mixing length α can be taken into account in solar models as an implicit way of
incorporating the effects of rotation on convection. The main effect of reduced α near the
base of the CZ is the reduction of the overshooting when a non-local version of the mixing
length model is used (Käpylä et al. 2005). The overshooting depth is approximately
proportional to the mixing length at the base of the CZ.

3.2. Effects of input energy flux

The non-local mixing length models tend to produce a quasi-adiabatic overshoot region
with a very sharp transition to the radiative gradient below the CZ (see e.g. figure 9 of
Käpylä et al. 2005). Although rotational effects may be able to alleviate the situation, the
sharp transition should still show up in the helioseismic inversions of the solar internal
structure. On the other hand, numerical 3D calculations always tend to produce over-
shooting with a much gentler transition to the radiative gradient (e.g. Brummell et al.
2002). The main difference between these two approaches is that whereas in the mixing
lenght models the input energy flux is the solar flux, i.e. f = F�/ρc3

s ≈ 10−11 in the deep
layers of the CZ, the 3D models need a much higher flux (up to 107 times) in order to
bring the thermal relaxation time closer to the dynamical time scale.

Recently, Rempel (2004) suggested that if the input energy flux in 3D calculations
was reduced by a moderate amount, the mixing length regime could be approached. Our
results (see figure 3) support this conjecture. When the input energy flux is reduced by a
factor of 102 it is seen that the overshooting depth decreases as the average velocities are
reduced, and that the transition to the radiative gradient becomes significantly steeper.
If these results are taken at face value it would seem difficult to avoid the quasi-adiabatic
overshoot region with steep transition at the base of the solar CZ if extrapolated to the
solar regime which is still five orders of magnitude away in terms of the input energy flux.
One must, however, bear in mind that in the present models the convectively unstable
region spans only little over two pressure scale heights so the effects of compressibility
are likely to be weak in comparison to the Sun, affecting the filling factor of downflows.
The filling plays a crucial role in the overshoot model of Rempel (2004), with low values
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Figure 3. Superadiabatic temperature gradient δ = ∇−∇ad as a function of the input energy
flux Fb. The input flux is given in units of ρ0(gd)3/2, see Käpylä et al. (2006) for the details.

In the present models ρc3
s ≈ ρ0(gd)3/2 at the base of the convectively unstable region leading

to dimensionless flux of f = Fb/ρc3
s ≈ O(Fb). The thin dotted curve shows the temperature

gradient if the total flux would be transported by radiative diffusion.

(≈10−5) being able to produce overshooting with smooth transition also for the solar
energy flux.

4. Conclusions
Three dimensional local convection calculations were used to probe the effects of rota-

tion on mixing length coefficients relating the temperature and velocity fluctuations to
the mean thermal stratification. It was found that when the rotational influence on the
flow is comparable to that expected in the deep layers of the solar CZ, the mixing length
parameters are reduced by a factor of three to five. If a depth-dependent mixing length
α is introduced into a solar model, the overshooting at the base of the CZ is reduced
approximately in proportion to the reduction of α. Although the depth of the solar CZ
can be correctly reproduced in this way, the steep transition to the radiative gradient
should still be visible in the helioseismic inversions.

The overshooting in 3D convection calculations is much more subadiabatic with a
smooth transition, which is due to the much higher input energy flux used to meet the
time step constraints. In the present study we show that decreasing the input flux in 3D
calculations leads to more adiabatic overshooting and sharper transition at the base of
the CZ. Although this result seems to suggest that the 3D calculations will approach the
mixing length regime when the flux is reduced enough, one must bear in mind that in the
present models the stratification is rather weak in comparison to the Sun. Thus the effects
of compressibility are likely to be underestimated, and lead to too large filling factor for
the downflows. Furthermore, the spatial size of the downflow plumes is restricted by the
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grid size, and it is probable that the filling factor of downflows further decreases when
the resolution is increased.

To summarize, we stress the point that rotation should be taken into account in models
of convective overshooting since it can exert considerable influence on convection already
in slowly rotating stars such as the Sun. Furthermore, high resolution numerical studies
of deep convection are needed in order to study whether the convective overshooting is
due to very few strong downflows, producing nearly adiabatic overshoot region with a
steep transition, or whether downflows of different strengths penetrate into the stable
region in a larger area producing smooth overshooting required by helioseismology.
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Discussion

J. Christensen-Dalsgaard: Comment: Helioseismology shows that the sound speed
gradient is likely smoother in the Sun than in models even without penetration, possibly
requiring a subadiabatic gradient in the lower parts of the convection zone.

R.F. Stein: Comment: when you model the base of the convection zone, it is very
slightly subadiabatic inside the convection zone.

P.J. Käpylä: This is indeed the case also in our 3D models.
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