COUNTEREXAMPLES IN INTERSECTIONS FOR C*-TENSOR PRODUCTS

by SEUNG-HYEOK KYE

(Received 2nd March 1984)

Let A and B be C*-algebras and $A \otimes B$ denote the minimal C*-tensor product of A and B. T. Huruya [1] gave examples of C*-tensor products $A \otimes B$ with C*-subalgebras $A_1 \otimes B_1$ and $A_2 \otimes B_2$ such that $(A_1 \otimes B_1) \cap (A_2 \otimes B_2)$ strictly contains $(A_1 \cap A_2) \otimes (B_1 \cap B_2)$, answering a question of S. Wassermann [3, Remark 23]. In this short note, we show that the same situation can occur even if $A_1 = A_2$.

Let B_0 be a C^* -algebra with a C^* -subalgebra B. Then, the Fubini product $F(A, B, A \otimes B_0)$ of A and B with respect to $A \otimes B_0$ is defined by $F(A, B, A \otimes B_0) = \{x \in A \otimes B_0; R_f(x) \in B \text{ for each } f \in A^*\}$, where $R_f: A \otimes B_0 \to B_0$ is the uniquely defined bounded linear map satisfying $R_f(a \otimes b) = f(a)b$ for $a \in A$ and $b \in B_0[2, 3]$.

Theorem. Let B be an injective von Neumann algebra which is canonically embedded in its enveloping von Neumann algebra B^{**} and \overline{J} the weak closure for a closed two-sided ideal J in B. Assume that $F(A, J, A \otimes B^{**}) \neq A \otimes J$. Then, we have

 $A \otimes (B \cap \overline{J}) \subsetneq (A \otimes B) \cap (A \otimes \overline{J}).$

Proof. Note that there exist projections of norm one from B^{**} onto B and \overline{J} as in [1]. Hence, we have $A \otimes B = F(A, B, A \otimes B^{**})$ and $A \otimes \overline{J} = F(A, \overline{J}, A \otimes B^{**})$ by [2, 3.7]. But, since $B \cap \overline{J} = J$, we obtain:

$$A \otimes (B \cap \overline{J}) = A \otimes J$$

$$\subseteq F(A, J, A \otimes B^{**})$$

$$= F(A, B \cap \overline{J}, A \otimes B^{**})$$

$$= F(A, B, A \otimes B^{**}) \cap (A, \overline{J}, A \otimes B^{**})$$

$$= (A \otimes B) \cap (A \otimes \overline{J}).$$

S. Wassermann [4,5] gave two examples of triples (A, B, J) of C*-algebras satisfying the assumption of the Theorem. For example, we have the formula

$$B(H) \otimes (B(H) \cap K(H)) \subseteq (B(H) \otimes B(H)) \cap (B(H) \otimes K(H))$$

S.-H. KYE

as a required counterexample, where B(H) (resp. K(H)) denotes the C*-algebra of all bounded linear (resp. compact) operators on an infinite dimensional separable Hilbert space H.

A C*-algebra A is said to have property S if $A \otimes D = F(A, D, A \otimes B)$ for any pair (B, D) of C*-algebras with $D \subset B$. Note that if A has property S then such a pathology does not occur. Indeed, we have

$$A \otimes (B_1 \cap B_2) = F(A, B_1 \cap B_2, A \otimes B)$$
$$= F(A, B_1, A \otimes B) \cap F(A, B_2 \otimes B)$$
$$= (A \otimes B_1) \cap (A \otimes B_2),$$

for any C*-subalgebras B_1 and B_2 of a C*-algebra B.

Added in proof. Professor C. J. K. Batty has pointed out that our Theorem implies

$$A \otimes (B(H) \cap K(H)) \subsetneq (A \otimes B(H)) \cap (A \otimes K(H))$$

whenever A is not an exact C^* -algebra, by the work of E. Kirchberg [J. Operator Theory 10 (1983), 3-8].

REFERENCES

1. T. HURUYA, An intersection result for tensor products of C*-algebras, Proc. Amer. Math. Soc. 75 (1979), 186-187.

2. J. TOMIYAMA, Tensor products and approximation problems of C*-algebras, Publ. Res. Inst. Math. Sci. 11 (1975), 163–183.

3. S. WASSERMANN, The slice map problem for C*-algebras, Proc. London Math. Soc. (3) 32 (1976), 537-559.

4. S. WASSERMANN, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254.

5. S. WASSERMANN, A pathology in the ideal space of $L(H) \otimes L(H)$, Indiana Univ. Math. J. 27 (1978), 1011–1020.

DEPARTMENT OF MATHEMATICS SEOUL NATIONAL UNIVERSITY KWANAK-KU, SEOUL 151 KOREA