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LP (1< p<oo) ESTIMATES FOR 0 ON A CERTAIN
PSEUDOCONVEX DOMAIN IN C*

KENZO ADACHI' aNpD HONG RAE CHO

Abstract. Let ¥ € C?[0,1] be a positive real valued function on (0,1]. Under
certain assumptions on ¥, the set D = {z € C"; Z?vll l2,1* + ¥(|za]?) < 1}

is a pseudoconvex domain with C*-boundary which may be infinite type. If ¥
has flatness at 0 so that fol |log \Il(s)ls‘%ds < o0, then we can obtain LP(1 <
p < 00) estimates for du = f on D.

§1. Introduction and statement of the result

In this paper we study LP(1 < p < oo) estimates for & on a certain
pseudoconvex domain in C™ with some boundary condition. The estimation
is deduced from the explicit formula of the solution for O represented by
integral kernels.

LP(1 < p < 00) estimates for 9 on strongly pseudoconvex domains were
obtained by Kerzman [5] in case f is a (0,1)-form, and in the general case
by @vrelid [6]. With the finite type condition, L? estimates were obtained
by Chang-Nagel-Stein [2] for pseudoconvex domains of finite type in C2. In
dimension n > 3, Bruna-Castillo [1] got L? estimates for  on some convex
domains of ellipsoid type. However, there is a counter-example which show
that LP(2 < p < 0o) estimates for § are not true on general pseudoconvex
domains [3]. In the geometric convex case, Polking [7] obtained LP(1 <
p < o) estimates for & on convex domains in C? without the finite type
condition. Polking’s results and ours show that it will be possible to get LP
estimates for § with some weaker geometric conditions than the finite type
condition.

Let ¥ € C?[0, 1] be a real valued function satisfying
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(A) ¥(0)=0 and ¥(1)=1;

(B) ¥'(¢t) >0, 0<t<1;

(C) ¥'(t) +tP"(t) >0, 0<t<I;

(D) there exists 7 € (0,1) such that ¥"(¢) >0, 0<t<T.
Define

n—1
D={zeC"lz|<1,j=1,---,n, Z |z > + O(|za]?) < 1},

j=1
so that D is a bounded Reinhardt domain. Without loss of generality, we
assume that ¥ is defined and satisfies (B) and (C) in an interval of the
type [0,1 + €),e > 0. Therefore, conditions (B) and (C) imply that D
is a weakly pseudoconvex domain with a C?-boundary defining function
p(z) = ;‘;11 |zj|* + ¥(|zn|?) — 1. Define p,(2n) = ¥(|z,|?). Since the
complex Hessian of p,, at z, is W/(|2,|?) + |2,|20”(|2,|?) this shows that p,
is strictly subharmonic if z, # 0. To exclude the strongly pseudoconvex
case we assume of course ¥/(0) = 0. We showed that LP(1 < p < o0)
estimates for & depend on flatness of ¥ at 0. Now we state our main result.

MAIN THEOREM. Let D = {z € C™; Y071 |2[* + ¥(|2n]?) < 1}, and
let f € L (D), 1 < p < oo, be 0-closed. If fol |log \I!(s)ls"%ds < 00, then
there is a solution u of du = f on D such that for each p with 1 < p < oo,

lullze(py < eI fllzr(p)

where the constant c(p) is independent of f.

ExaMPLES. (1) For m a positive integer, put ¥,,(t) =t™,0 <t < 1.
Then ¥,, satisfies conditions (A)—(D) and the condition in Main theorem.
In this case the domain defined by ¥,, will be a complex ellipsoid.

(2) For a > 0, write ¥, (t) = eexp(—1/t*),0 <t < 1. Then ¥, satisfies
all conditions (A)—(D) and it satisfies the condition in Main theorem if and
only if o < %

Remark. 1In the case of Q = {z € C%;]21]2 + ¥(|22)?) < 1}, Verdera [9]
obtained the L™ estimate for & on Q. By the same method, we can obtain
the L>® estimate for  on D. However, for LP estimates we must extend
integral kernels to the interior of D.
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§2. Construction of the solution operator for 9

From the condition (D) we have the following inequality.

LEMMA 2.1. ([9]) There ezists a constant n = n(¥) > 0 such that for

N = 16, the following inequality holds:

W(IC+ o) = WGP~ 2Re | (<)

> U(Nwf?),¢v e ¢ < n,lv] <.

Let D be an open neighborhood of D and suppose p to be defined in
D. Put

C) :z_:a—p —Zj), (C)Z)Eﬁxcn'

LEMMA 2.2. There exists a positive constant n, depending only on V¥,
such that for M = 312

n—1

Re FO(C’ Z) Z p(C) - p(Z) + Z 'CJ - Zj'2 + \I/(MIC - Z|2)>
j=1
where (C,z) € D x C", |¢a| < 1,|¢ = 2| < .
Proof. From Lemma 2.1 it follows that

p(z) = p(¢) — 2Re Fy(¢,2) + ((z)— p(¢) + 2Re Fy(¢, 2))
n—1
= p(¢) — 2Re Fy(¢,2) + Z 1217 = D 1612+ U(|zn]?) — ([Cal?)

7=1
n—1
Tl — 2 OV 2y,
#2Re Y 3G 5) + 2Re [ (16aP) o = 2]

n-—1

2 p(¢) — 2Re Fo((, +ZICJ_Z]|2+\I}(N1CTL—ZTLI )s
7j=1
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where (¢,z) € D x C", |¢a| < 1, |¢ — 2| < 0. From conditions (A) and (D),
we have for small |z], |y],

2, .2
1
v (”“ - ) < (V@) +U(?) s ¥ + V).
Thus we get
n—1 N
> 16— s + VNG~ =) 2 ¥ (16 - F).
j=1
Thus we have the required inequality. 0
For €,6 > 0, we define
Ds={z € Dip(z) <8}, Vs=1{z¢e Dilo(2)| < 6},

Ues ={(¢,2) € Vs X Dg; |¢ — 2| < €}, Z={z;2, =0}

If we use Lemma 2.2, by the same method as in [9], we can obtain the
following results.

LEMMA 2.3. There exist €,6,¢c, M > 0, depending on ¥, and C*-func-
tions ® : Vs x Ds — C,F,G : U.s — C, holomorphic in z € Ds for each
fixed ( € V5, such that

(a) & = FG in Uos, F(C,() = 0, |G| > cinUsg, |®] > cin (Vs x
Dé)\Uﬁ,6§

(b) F = Fy in a neighborhood of bDN Z, and the following inequality holds
n—1
Re F(C,2) 2 p(¢) = p(2) + D 16 =~ 2P + (M| = z]) for (C,2) € Ues;
j=1
(c) dcF (¢, 2)l¢=- = 9p(2);

(d) @(¢,2) = 27-1(¢j—2j)P;(C, 2), where P; is continuously differentiable
in Vs X Dgs, holomorphic in z € Dg for each fired ( € Vs, 5 =1,...,n.

DEFINITION 2.4. A generating form W((,z) = >_7_; w;((, 2)d(; with
coefficients in C1*°(bD x D) is a (1,0) form in ¢ such that
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() <W(G2), ¢~z >= S0 wi((,2)(G-%) =1 for ((,2) €bDxD

(ii) wj(¢,2) € CH>*(D x D), 1<j<n.

DEFINITION 2.5. Let W((,2) = 37, w;((, 2)d(; be a generating form
with coefficients in C1*°(bD x D) and let W((,2,A) = AW((,2) + (1 —
MB(C,z) where A€ I =[0,1) and B =% f=|C 22 For —-1< g <n,
the Cauchy-Fantappié kernel Qq(ﬁ\/) of order q generated by W is defined
by

— (=1)a@D/2 ( n—1

Q,(W) = i) . ) W A (EC,AVAV)n—q_l A (8, W)

for 0 < ¢ <n—1, and 0 otherwise. 2,(W) is defined in the same way, with
W instead of W.

By Lemma 2.3, Lp = % with P = 377, P;d(; is a generating form
which is holomorphic in z € D. Thus it follows that (see [8, Theorem 3.6
in IV])

f=08.(Tf) (g=1),
where

T,f = bDXIf/\Qq_I(ED)—/Df/\Qq_l(B).

§3. Extension of integral kernels to the interior of D

For convenience, we briefly recall the extension of integral kernels to
the interior of D. We will use the same notations as in [8]. We only need
to consider the case 0 < ¢ —1 < n — 2. In the following, we replace ¢ — 1
by ¢ for convenience. Since P((, z) is holomorphic in z, for 0 < g < n — 2
and any f € Cpq+1(bD) one has

| fnuEo) = [ Frdulo,B)

where the double form A,(Lp, B) is given by
n—q—2

(3.1) Ag(Lp,B)= > a}Al(Lp,B),
=0
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with numerical constants a{l and

PA 8@3 A (Ecp)j A (5@46)""1‘2_9' AN (Bzagﬂ)q

(3:2) Aq(Lp, B) = P+ gn—(+1)

_ AN(POP)
T @itlgn—(+1)’

Before applying Stokes’ theorem we must extend the generating forms Lp
and B from bD x D to D x D without singularities. Let F/((,2) = F(¢,2) —
2p(¢). Then for ¢ € Vg,

~ —p(€) = p(2) + 51 1G5 — 1* + W(MIC — 2[?),
(3.3) Re F(¢,2) 2 ((,2) € Ues
—p() +c¢, (¢, 2) € (Vs x Ds)\Ues,

and so F(C, z) never vanishes for (¢,z) € Vs x Ds. Set B = 8+ p(C)p(2).
Then
98

B = € Coo(—D' X —D_\AbD)a App = {(Ca C)a s bD}7

and B = B for ¢ € bD. We fix ¢y > 0 such that {Ce D; 1p(Q)] < 2¢0} € Vg,

and choose x € C*°(D) with x(¢) = 1 for { € Vs with p({) > —¢p and
x(¢) =0 for ¢ € D with p(¢) < —2e. Set (¢, z) = F(¢,2)G(C, z) and

A} (P,9B)

A7 = _-av 7m0
Aq(LDa B) - X(C) $j+1,§n_(j+1)

and
n-—-q—2

A(Lp,B)= Y alA(Lp,B).
=0

It follows directly from the definition that

~

A, (Lp,B) = A,(Lp,B) on bD x D.

~

Thus, by Stokes’ theorem, we have the integral solution operator Tj :
L} (D) = L} ,_1(D), 1 < g < n, defined by

Taf = (-0 [ £ ABAys(Lo,B) = [ 11051(B).
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84. Proof of Main theorem

Let M ((, z) be any of the coefficients of the double form 84Aq 1(Lp, B)
which make up the kernels of T,. From (3.1) and (3.2) we see that Aq 1(Lp,
B) is a linear combination of terms Al% i) 1<l1<n-—q—-1, where N €

C1°(D x D) and N(¢,2) = O(|¢ — z|). Hence M is a linear combination

of terms

IN (9PN [0¢8 + (9¢cp)p(2)IN

Bign—l  Pl+1gn-l ~(n=0) B gn—i+1 , with 1<l<n-—g-1
Notice that _
(4.1) ON o] :
q)l/@n—l I(I)]llc _ z'?(n—l)

(4.2) ((’)C(I))N 1

' Pi+13n-1 |(I)|l+l|<‘_z|2n D1’
(4.3) (0cB)N 1

’ Pl n—l+1 |q>|l|< — z[2n— 0’
@y |[@ReCIN el 1

’ Pl n—l+1 |B[H¢ — 2[2(n=0D+1 ™ |P|I-1|¢ — z[2(n—D+1

Thus from (4.1)—(4.4) it follows that

n—q—1 1 1

. M = =
(4.5) |M(C,2)| ; {|¢’|l_1|C — z|2(n=D+1 + |®|¢|¢ — z|2(n=D

1
+|&>|l+1|§ P } forall {,z € D.

LEMMA 4.6. ([4]) There is a positive constant vy, depending on ¥, such
that for each z sufficiently close to bD, one can find in B(z,7v) a smooth
(of class C') change of coordinates t*)(¢) = (t1,. .., ta,) satisfying

(a) t1 +it2 = p(¢) +ilm F((,2);
(b) t3(2) = ... = ton(z) = O;

(c) [t&(Q) =t = ¢~ '], ¢ ¢ € B(z7).
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It is enough to consider the first term in the representation of Tq f.
Thus the proof of Main theorem will be a consequence of standard results
in analysis once we prove the following estimates.

PROPOSITION 4.7.
1
/|M(C,z)|dV((),§/ llog U(s)|s~3ds forall z€ D
D 0

and

/IM ¢, 2)|dV(z) /|log\Il s)|s™ 2ds forall ¢ €D.

Proof. We will prove the necessary estimates for the second term
among righthand terms in (4.5). The corresponding estimates for the first
and third terms can be handled by analogous methods. Let us first prove
for1<li<n-—q-—1,

1 1 1
/Dn% Bl 2D dv(¢) 5/0 |log U(s)|s~2ds forall ze€ D.
Integrals are significant only for points near to bD. Therefore, consider
6,7 > 0, and z close to bD, such that Lemmas 2.3 and 4.6 can be applied.
We may assume that v is the smaller of the constant ¢ in Lemma 2.3. On
Vs \ B(z,7), the denominators of the righthand terms in (4.5) are bounded
from below away from zero, uniformly in z, by (a) of Lemma 2.3. Hence we
must prove that

1 1 .

48 / b dv 5/ log ¥(s)|s™2d
(9 DAB(z) |BL[¢ — 2[2(n—D) (9] A |log W(s)|s~2ds
forall ze D.

We use the coordinates ¢ = (t1,...,t2,) given by Lemma 4.6 on the neigh-
borhood B(z,7), where v > 0 is independent of z. Recall that t; = p(()
and tz = Im F((, z) = Im ®(¢, z). Thus from (3.3) it follows that

2(n—1)
1D(¢,2)] 2 [0l + [t] + [p(2) + Y & +T(ME?).
J=1

It is now clear that (4.8) will follow from
dty - - - dtop
I 2(n 1) ,2 <00
e [EPOD{[ea] + [ta] + X205 ) & + (M)
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fori=1,...,n—q— 1.
If I = 1, by using the inequality a'=¢b* < a 4 b for a,b > 0,0 < € < 1,
it follows that

I / dty---dtoy,

1 =
tI<e |20 [Jey] + [to] + T2y D 12+ T(MIE]2)]
- dtydtodt!
~ lt]<e ltl|2(n—1)(1—e)(|t1| + |t2|)1+2(n—1)e

t=(t1,to,t)
< 1.

Now, if [ > 1, we obtain

I / dty -« - dtoy,
l =
ﬂ«whhwwum+zmlw+wwmmv

</ at' /C dT

t'=(t3,...,tan)

- / at’

~ Jpi<e |t/|2(n—z)—1[zj2,(="3"1) 2 + T (M]Y|2))

B dt" 2(n_3)7-d7'

~ /t” [t/ <c It//I r2(n—l- 1)[7"2 + ‘I’(M|t”12)]l 1

=(t2n—1:t2n)

</ di” rdr
~ lt|<e It”I 0 7‘2+\I’(M[t”|2)

"2
</ Ilog‘I'(JI\/flt ) gy
It <e [t"|

< /01 | log \Il(s)ls"%ds.
The proof of the estimates
/ |M(C, 2)|dV (2 / |log W(s)|s™ 2ds for all ceDNVs,
is similar. For ¢ € D fixed near bD there are coordinates u = (u1, ..., u2n)
for z € B((,7), where 7 is independent of {, such that u;(z) = p(2),u2(z) =

Im F(¢, z), and u(¢) = (p(€),0,...,0), which has properties analogous to
those of the coordinates ¢ = (¢1,...,%2,) on B(z,v). From the estimate in
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(b) of Lemma 2.3 we then obtain

2(n—1)
D¢ 2)| 2 fua| + Juz| + D uf + U (M]ul?),
=3

for u = u(z) and z € DN B((,7), so that one can proceed as in the proof
of the estimate of I. 0
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