
ALGEBRAIC APPROXIMATION OF CURVES 

A. H. WALLACE 

Introduction. In his paper on the algebraic approximation of differentiable 
manifolds Nash (1) introduced the concept of a sheet of a real algebraic variety 
(see the definition in §16 below) and raised certain questions of a general nature. 
In attempting to answer these questions it has been necessary to evolve 
some sort of technique for manipulating curves on algebraic varieties, and, in 
particular, to set up a criterion for the possibility of approximating a sequence 
of analytic arcs (definition in §1) joined end to end by a single analytic arc. 
The greater part of this paper is devoted to this latter topic, the results being 
applied in the last section to the problems suggested in Nash's paper. 

The work falls naturally into three parts. The first deals with the approxi­
mation of plane curves by algebraic curves, the second with the corresponding 
problem in higher dimensional spaces and on varieties in general, while the 
third is concerned with the sheets of real algebraic varieties. The separate 
preliminary treatment of the case of plane curves is natural in the sense that 
plane algebraic curves present a specially simple situation, being represented 
each by a single equation. 

The following is a brief sketch of the paper. Part I deals with plane curves 
consisting of analytic arcs placed end to end, the object being to approximate 
these by parts of algebraic curves, smoothing off the joins of the arcs in some 
way but preserving in some way the other singularities of the original curve. 
The corresponding question in Euclidean w-space is then taken up in Part II. 
Finally, for a curve on a real algebraic variety the technique is to project into 
a suitable linear space, approximate the projected curve and then lift back 
on to the variety again. It is here that the preservation of the singularities of 
the given curve is important. For a bit of experimentation soon shows that 
the approximation of the projected curve may not lift into an approximation 
of the original curve unless attention is given to this point. A disturbance of 
the structure of a singularity may result in the lifted curve going off, so to 
speak, in the wrong direction. 

In Part III the sheets of a real algebraic variety are defined, namely, as 
sets maximal with respect to the property that any two points can be joined 
by an analytic arc in the set. This property of analytic connectivity is not 
transitive, and so the concept is a bit tricky to handle, but the use of the 
approximation theorems of Part II gives a partial transitivity property. Next, 
a local study of a real algebraic variety shows that it has locally the structure 
of a cell complex in the sense of Whitehead (with a little more trouble the 
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corresponding global result could be obtained, but it is not needed here). 
Finally, the following three questions of Nash (1) are answered. Are sheets 
closed sets? Does a real algebraic variety have just a finite number of sheets? 
Does each sheet have a point on it with a neighbourhood containing no 
points of the variety not on that sheet? The answers are respectively yes, yes, 
no. 

In the local cell decomposition of a variety mentioned above, each cell is 
contained in a sheet. It is natural to ask when cells with common frontier 
points belong to the same sheet. The answer is not hard to see when two r-
cells meet along a variety of dimension r — 1, but the general case seems a 
bit more difficult, and so far no satisfactory answer has been worked out. 

I should like here to draw attention to a recent paper by Whitney (4) in 
which some further connectivity properties of real algebraic varieties are 
obtained. 

PART ONE: PLANE CURVES 

1. Definitions. All the curves to be discussed in this paper will be contained 
in Euclidean spaces; thus, a curve is specified by setting the co-ordinates 
xi, X2, . . . , xn in the relevant space equal to continuous functions of a real 
parameter t, which will, in general, be assumed to vary from 0 to 1. The equa­
tions Xi = fi(t) so obtained are the parametric equations of the curve. 

An analytic arc in Euclidean w-space is defined to be an arc with parametric 
equations xt = /*(/), where theft are real analytic functions of the variable /, 
0 < * < 1. 

Let C be an analytic arc in w-space and let P be a point of C, with co­
ordinates (xi, x2', . . . , xn'), say. Let to be a value of t for which fi(k) = x/, 
where xt = /*(/) (i = 1, 2, . . . , n) are the parametric equations of C. Let 
P(/o) be the variable point with co-ordinates (gi(t), g2(t), . . . , g»(/)), where 
the gi are the expansions of the/* in powers of / — to) a similar definition is 
to be made for all k such that fi(t0) = x/ (i = 1, 2, . . . , n). If A is the ideal 
of C in the ring of power series in the xt — x/ with real coefficients, then it is 
known that A has just a finite number of prime components. The points 
P(to), for all possible /0, are generic zeros for these prime components, and so 
to has only a finite number of possible values. That is to say, in a neighbour­
hood of each of its points, C consists of a finite number of irreducible algebroid 
branches. 

Continuing with the notation of the last paragraph, suppose that, in a neigh­
bourhood of P , C consists of exactly one algebroid branch, and let Pi, F2, . . . , 
Fr be a basis for the ideal of power series in the X i — X x vanishing on C around 
P. Then P is said to be simple on C if the matrix (dFi/dXj) is of rank n — 1 
at P. If the rank of this matrix is less than n — 1, or if C consists near P of 
more than one branch, then P is said to be a singular point of C. 

If at least one of the functions ft(t) appearing in the parametric equations 
of C has a non-zero derivative at P , it is not hard to see that P is a simple 
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point of C. Thus, the singular points must be among those at which the 
derivatives of all the fi vanish. Since the ft are analytic, it is clear that there 
can be only a finite number of such points. Thus, an analytic arc has at most 
a finite number of singularities. Note, incidentally, that the derivatives of all 
the ft may vanish at a simple point; consider, for example, the origin on the 
plane curve given by x = t2, y = t6. 

It will be assumed for convenience in what follows that the parameter 
values t = 0 and / = 1 are always mapped on simple points of any analytic 
arc under consideration. These points will be called the end-points of the arc. 

An algebraic arc will be defined to be an analytic arc which lies entirely on 
some real algebraic curve. 

Let Pi , P2 , • • • , Pm be a finite collection of points of Euclidean w-space 
and for each pair Pu Pi+i let Ct be an analytic arc with these points as end-
points, not passing through any other of the Pj. Then the point-set union C 
of the Ci will be called a piecewise analytic curve. The Ct will be called the 
arcs belonging to C and the Pj will be called the joints of C. 

A piecewise algebraic curve is a piecewise analytic curve all of whose arcs 
are algebraic arcs. A variation of this definition is obtained by taking P i = Pn , 
when the resulting piecewise analytic or algebraic curve will be called closed. 
To avoid repetitive descriptions later it will be convenient to agree that the 
term ''singularities of a piecewise analytic or algebraic curve" means the set 
of singularities of the individual arcs along with all intersections of the arcs 
other than the joints; thus, the joints of the curve are not counted among the 
singularities. 

Let C and C be piecewise analytic curves. Then C will be called an e-
approximation of C, for a given positive number e, if there is a homeomorphism 
f'.C —-> C such that the distance of f(p) from p is less than e for all p 6 C. 

Let C and C be piecewise analytic curves and let p £ C, p' G C. Then 
C and C are said to be analytically equivalent at the pair p, p' if there are 
neighbourhoods U and Ur of p and pf, respectively, and an analytic homeo­
morphism / of U onto U' which carries U C\ C onto U' C\ C. An analytic 
homeomorphism will map the point (xi, ) on the point (Xi, X2, 
. . . , Xn) given by the formulae 

n 

Xt — a\ = XI CLijixj — dj) + Fu i = 1, 2, . . . , n 

where (#i, a2, . . . , an) and (a/ , a2
r, . . . , an') are the co-ordinates of p and p' 

respectively, the determinant \ai3\ is not zero and the Ft are power series in 
the of order not less than two (the order of a power series being the 
degree of the lowest terms appearing). The analytic equivalence will be said 
to be of order r if / can be so chosen that all the series Ft are of order not less 
than r. 

Let C be an e-approximation of the piecewise analytic curve C, and let / 
be the appropriate homeomorphism of C onto C Then, if f(p) is simple on 
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C whenever p is simple on C, and if f(p) = p for each singular point p of C, 
and if C and C are analytically equivalent at each pair p, f(p) = p, for each 
singularity p of C, then C will be called a singularity preserving e-approxima-
tion of C. 

The main idea to be treated in what follows is that of the smoothing approxi­
mation. This notion will now be introduced in two forms. In the first place 
let C denote the figure in the (x, y)-plane consisting of two analytic arcs with 
a common point P simple on each of them, and not an end point of either of 
them, and assume that the tangents to the two arcs at P are distinct. The 
curve C will be called an e-approximation of C smoothed at P if : 

(1) There is a continuous mapping/: C' —» C such t ha t / _ 1 (P ) consists of 
two distinct points P\ and P 2 on C, and / is a homeomorphism on C — P\ — P 2 ; 

(2) The distance of p îromf(p) is less than e for all p Ç C; 

(3) There is a neighbourhood U of P in the plane and an analytic homeo­
morphism F of [Zona circle V of centre (0, 0) in the (X, F) -plane such that 
F(U P\C) consists of the parts of the X and F axes in V and F(U C\ C) 
consists of the part of the hyperbola X Y = 1 contained in V. 

The second form in which this idea will be wanted is as follows. Let C be 
a piecewise analytic curve in the plane consisting of the union of two analytic 
arcs C\ and C2 with the joint P, and suppose that the tangents to C\ and C2 

at P are distinct. Then an €-approximation of C smoothed at P is defined as 
above, with the modification that F(U C\ C) consists of the positive parts 
of the X- and F-axes in V, and F(U C\ C) consists of the part of XY = 1 in 
the first quadrant of V. 

Smoothing approximations will later be required not only in the plane but 
also in spaces of any dimension. Let C be a figure in w-space consisting either 
of two analytic arcs crossing at ? or of a piecewise analytic curve with the 
joint P , the tangents at P being distinct in each case. Then C will be called 
an approximation of C smoothed at P if there is an analytic homeomorphism 
F of a neighbourhood Uof P onto a sphere Vof centre P ' such that F{U C\ C) 
and F(U C\ C) lie in a plane through P r , and F(U C\ C) is an approximation 
of F(U r\ C), in the sense already defined, smoothed at P'. 

2. Analytic equivalence and smoothing. The object of this section is 
to show how singularity preserving and smoothing approximations of plane 
curves can be explicitly constructed. 

LEMMA 2.1. Let F be a power series in x and y free of multiple factors, let G 
be a power series in x and y and let X be a real number. Assume F and G to be of 
order > 1, so that F — 0 and F + \G = 0 are the equations, in a neighbourhood 
of the origin, of curves C and C, each consisting of a finite number of analytic 
arcs through the origin. Then: 
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(1) If the integer r is pre-assigned, there is an integer s such that if G is of order 
> s j C and C are analytically equivalent at the origin {a s elf-cor responding point), 
the analytic equivalence being of order > r. 

(2) If the analytic equivalence of (1) is induced by an analytic homeomorphism 
f: U —> Uf, where U and U' are neighbourhoods of the origin, then f depends 
analytically on X. 

Proof. The proof of this lemma is due to Samuel (2), with some minor 
changes. Write 

In the ring of power series in x and y with real coefficients let a be the ideal 
(Fi, F2) and let p be the ideal (x,y). The ideal (F, a) has an isolated zero 
at the origin and so there is an integer d such that pd C (F, a). I t follows at 
once that, for any integer k, p2d+A: C F$k + a2pfc. Then if G is of order 2d + ky 

that is to say, if G € p2d+]c, F + \G can be written as F + XH + XFK, where 
H Ç a2pk and K Ç pk. 1 + XK has an inverse in the ring of power series 
in x and y, convergent in a neighbourhood of the origin, and so the equation 
F + XG = 0 is equivalent to the equation F + \H(1 + XK)'1 = 0. The last 
equation can be written as F + ^Ai3FiF0 = 0, where the Ai0 are in pfc and 
have co-efficients analytic in X, and vanishing for X = 0. It must now be 
shown that there is an automorphism S of the power series ring in x and y 
given by equations of the form: 

S(x) — x + ^ n ^ i + U\iFi, 
S(y) = y + U21F1 + W22.F2, 

where the utj are power series in x and y vanishing at the origin, such that 
S{F) = F + 'EAijFiFj. The existence of 5 will establish the required analytic 
equivalence between C and C . 

Now, by Taylor's theorem, S(F) = F(S(x),S(y)) = F + ^utjFtFj + terms 
of degree > 2 in the utj and in the Ft. Thus, to prove the existence of 5, the 
Uij must be determined so that 

ZuijFiFj+ ... = ZAtjFiFj, 

where the dots denote the higher terms. A solution can be obtained by picking 
out from this equation the terms in FtFj for each pair i, j . The following four 
equations are thus obtained: 

Uij = Au + terms of degree > 2 in the us. 

These equations can be solved formally by iteration for the u{j as power series 
in x and y; convergence is assured by the implicit function theorem, provided 
x and y are small enough. 

To see that the analytic equivalence between C and C' obtained in this way 
satisfies (1) and (2) in the statement of the lemma, note that the orders of 
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the Aij are all > k, and so the orders of the ui3 also satisfy this inequality. 
Condition (1) of the lemma follows at once. To verify condition (2), note 
that the presence of X in the terms A tj (remembering that the A tj have co­
efficients analytic in X vanishing for X = 0) implies that the coefficients of the 
utj, written as power series in x and y, will be analytic in X, as required. 

It is an immediate corollary of this lemma that, if the neighbourhoods U 
and U' are fixed so that the equations of the automorphism S, or what is 
essentially the same, of the homeomorphism / : U—> U' are convergent, then, 
if X is taken small enough, C C\ U will be approximated arbitrarily closely 
by C C\ U'. 

LEMMA 2.2. Let C be an algebraic curve in the plane with a singular point P 
at which exactly two simple branches meet with distinct tangents, and let U be a 
neighbourhood of P such that U C\ C is homeomorphic to two crossed line seg­
ments. Let F = 0 be the irreducible equation of C and let G be any polynomial in 
x and y not vanishing at P. Then if e is pre-assigned and X is taken small enough 
F + XG = 0 is a smoothed ^-approximation of C within a sufficiently small 
neighbourhood Uo of P. 

Proof. Take P as origin, and let Uo be a neighbourhood of P such that 
G T^ 0 in Uo. If Uo is small enough, G~l is a convergent power series in x, y 
in Uo. Also, if Uo is small enough, F can be factorized into fgh, where / , g, h 
are convergent power series in Uo, f = 0 and g = 0 are the equations of the 
two branches meeting at P, and h TA 0 at P. f and g are thus of order one. 
Then the equations X = f, Y = ghG~x define an analytic homeomorphism of 
Uo onto a neighbourhood of the origin in the (X, Y)-plane. It is not hard to 
see that if X is small enough, this homeomorphism defines the required 
smoothing approximation. 

The above lemmas will be combined to give a proof of the following theorem : 

THEOREM 1. Let C be a plane algebraic curve with singularities at (xu y^ 
(i = 1, 2, . . . , n). Let exactly two simple branches of C with distinct tangents 
meet at (xi, yi). Then, if K is a circular disc containing the (xt, yf) and e is a 
pre-assigned positive number, there exist algebraic curves d and C2 such that 
Ci r\ K and Ci C\ K are ^-approximations of C C\K, smoothed in the two 
complementary ways at (xi, yi) (corresponding to the two complementary hyper­
bolas xy = ± 1 ) and otherwise singularity preserving, with analytic equivalence 
of pre-assigned order at each singularity. 

Proof. Let F(x, y) = 0 be the equation of C, free from multiple factors and 
define the polynomial G(x, y) by the equation 

n 

G(x,y) = IT l(x - xi)2 + (y - yi)2Y-

G vanishes at each of the (xu yd for i = 2, . . . , n and is of order 2r at 
each of these points. And so, by Lemma 2.1, if r is large enough, the curve 

https://doi.org/10.4153/CJM-1958-028-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-028-5


248 A. H. WALLACE 

F + \G = 0 is a singularity preserving approximation of F = 0 in suitably 
chosen neighbourhoods of the (xt, yi) (i ^ 1), and the approximation can be 
made arbitrarily good by taking X small enough. Also G ^ 0 at (xi, yi) and 
so, by Lemma 2.2, F + AG = 0 is, in a suitable neighbourhood of (xi, ^i), a 
smoothed approximation of F = 0, and again the approximation can be made 
arbitrarily good by making X sufficiently small. 

On the other hand, if p is a simple point of C, there is a neighbourhood of p 
in which there is an admissible system of co-ordinates (in the sense of the 
real analytic structure of the (x, y)-plane) one of which is the arc length along 
C while the other is X. Thus, if 7 is a non-singular arc on C, 7 has a neighbour­
hood in which the only part of F + \G — 0, for X sufficiently small, is a non-
singular arc whose points are at arbitrarily small distance from 7. 

Let C be the curve F + \G = 0. Then, to complete the proof of the theorem, 
a mapping / : C —> C must be constructed to satisfy the conditions of the 
definitions of smoothing and singularity preserving approximations. In order 
to construct this mapping take an open covering of C H Z a s follows. 

(i) About each singularity (xu yd take a neighbourhood Ut such that in 
Uu for X sufficiently small, F + \G = 0 gives a singularity preserving or 
smoothing approximation of F == 0, as the case may be. Writing g for the 
inverse of the mapping f which is to be constructed (and remembering that 
g will be a mapping, and in fact a homeomorphism on C with (xi, y{) removed, 
the latter point being carried by g into two distinct points), this means that 
g is now constructed on the Ut Pi C. 

(ii) C C\ K with the (x*, yt) removed consists of a finite number of simple 
arcs joining singular points to each other, or joining singular points to frontier 
points of K, or joining frontier points of K to each other. Let 7 be one of these 
arcs and let the end-point p\ be one of the {xu yt). Let q\ be the point on 7 
furthest from pi for which the operation g is already defined and let qî be a 
point between pi and qi on 7. Proceed similarly at the other end p2 of 7, 
marking points q2 and q2 on 7. If an end point of 7, say pu is non-singular on 
C but lies on the frontier of K, take qi = pi and take g/ near qi but outside 
K. Let U(y) be the union of normal line segments to 7 at all points from 
qî to q2 of length d(y) on either side of 7. If 8(y) is small enough, U(y) is 
fibred by these normal segments. Repeat this procedure for each arc oi C (~\ K 
with the singularities removed. 

The Ui along with the U(y) form the required covering of C C\ K. Let U 
be the union of these sets; then U is a neighbourhood of C C\ K. Since F ^ 0 
in K — U, it is clear that, for X sufficiently small, C C\ K lies entirely in U. 
Also, fixing attention on the arc 7, and using the notation introduced above, 
it follows at once from Lemma 2.1 or 2.2, whichever is relevant, that, for X 
small enough, g(qi) and g(#2) are in U(y). A similar statement can be made 
for all the other arcs of C H K. Then, remembering that X can be taken as 
one of the local co-ordinates in the plane in U(y), it follows at once that 
C C\ U(y) consists of a simple arc with g(qi) and g(q2) near its end-points. 
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It is now easy to see that g can be extended to the whole of C C\ K by mapping 
the arc qiq2 of C on the arc g(qi)g(q2) of C in U(y), proceeding similarly for 
each arc 7 of C C\ K. For e pre-assigned, / = g~l is an e-approximation if 
X is small enough, and the theorem is completely proved. 

The curves C\ and C2 mentioned in the statement of the theorem refer 
to the two complementary ways of smoothing at (xi, yi), corresponding 
respectively to positive and negative values of X. 

It is clear that the above theorem could be modified to yield an approxima­
tion of C which is smoothed at several singularities, while preserving the 
rest. 

Also, it is clear that the order of the analytic equivalence between C and 
C at each singularity can be made arbitrarily high by taking the exponent 
r in G large enough. 

3. Preliminary approximation theorems. The principal object of this 
part of the paper is the application of Theorem 1 to the approximation of 
piecewise analytic curves by circuits of algebraic curves. The way in which 
this is to be done will now be sketched, the details being completed later in 
this section and in the next. 

Fix attention first on a closed piecewise algebraic curve C in the plane, and 
let the arcs of C be Ci (i = 1, 2, . . . , n). Each Ct is part of an algebraic 
curve Cu and C is part of the composite algebraic curve C — [}Ci. If matters 
are suitably arranged, Theorem 1 can be applied to approximate C by an alge­
braic curve C', smoothing at the joins of the Ct. Thus, C is approximated by a 
circuit C of the algebraic curve C'. Parts of C' — C may, however, meet C. 
The next step is to show that the curve C' can be modified in such a way that 
the approximating circuit becomes isolated, that is to say, does not meet any 
other part of the curve. The lemmas which establish the procedure for isolating 
the approximating circuit will be dealt with first in this section. The sequence 
of operations can be summarized as follows : 

(1) Lift C' into 3-space in such a way that C is separated from the rest. 

(2) Make a transformation of 3-space so that the unwanted circuits are 
removed. 

(3) Project back onto the plane. 

LEMMA 3.1. Let C be a real plane algebraic curve and let (xu yù, {i = 1,2, 
. . . , r), be singularities at each of which exactly two simple branches meet with 
distinct tangents (C may, of course, have other singularities as well). Then there 
is a curve C in 3-space which, under the projection P onto the (x, y)-plane, 
projects onto C and is such that P~l{xu yt)y for each i, consists of exactly two 
distinct points, while, apart from these points, P is a homeomorphism on C'. 
Also, if (xo, y0) is a singularity of C other than the (xt, yt) and if P_1(x0, yo) 
— (xo,yo,Zo), then C and C are analytically equivalent at the pair of points 
(xo, yo, Zo) and (x0, 3>o, 0), to an arbitrarily high order. 
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Proof. Assume co-ordinates chosen so that the lines X — X \ , X — X2, • • • j 
x = xr meet Cin simple points, apart from the points (xu yt) (i = 1,2,3, . . . ,r) 
and suppose that at all these simple points the tangents are not parallel 
to the ;y-axis. Also, at each of the points (xu yt) (i = 1, 2, . . . , r) there are 
two tangents, and it is to be assumed that none of these tangents is parallel 
to the y-axis. Let Yu F2, . . . , Ys be the ^-co-ordinates of the singularities of 
C, other than the (xu yt). Let the line x = x% meet C at the simple points 
(%u ytj), j — 1, 2, . . . , m, and l e t / be the product of all the distinct expressions 
picked from the y — Yu the y — y{ and the y — yiJ} for all i,j\ that is to say, 
if a number of these expressions should happen to be equal, the corresponding 
factor of/ is nevertheless to appear just once. Similarly, let g be the product 
of distinct factors picked from the set x — xt. Let F(x,y) be the rational 
function f/g. 

Examining the behaviour of F on the curve C, it is clear that the only 
possible points of indeterminacy are the zeros of g, namely, the points (x^yt) 
and (xi} ytj) for all i,j. Representing y as a power series in x — xt for points 
of C around (xu ytj) it turns out that F is continuous on C at that point. On 
the other hand, at the point {xu yt) there are two distinct branches of C 
with distinct tangents. Making use of the two corresponding expansions of 
y in powers of x — xiy it follows this time that F is continuous on each of the 
branches of C at (xi, yt) taken separately. The fact that the tangents to these 
two branches are distinct ensures that the two limits of F as (x, y) approaches 
(xit yt) along the two branches of C are different. 

Now let C be the curve in 3-space whose points are of the form 

(x,y, Fm(x,y)), 

where (x, y) is on C. Then C is the curve required by the statement of the 
present lemma. For if P is the projection of C on C it is clear that P~l(xu yt) 
consists of two distinct points, corresponding to the two limits of F along 
the branches at (xu yt) and that P is one-one on C except at these points which 
project doubly. To complete the proof of the lemma, the behaviour of P 
at points projecting on singularities of C other than the (xiy yt) must be 
examined. Around such a singularity (x0, y0), F is a real analytic function of 
x and y, and so P extends to an analytic homeomorphism of a neighbourhood 
of 

(xo, yo, so) = P _ 1 0 o , y0) 

on a neighbourhood of (x0, y0, 0) in 3-space. For example, the mapping of 
(x, y, z) on (Xj y, z — Fm(x, y)) gives such an extension which is an analytic 
equivalence of order m. This completes the proof. 

LEMMA 3.2. Let C be an algebraic arc in n-space En with a singularity Q 
projecting, under rectangular projection, on an arc C in r-space Er with a singu­
larity at Qf. Let C and C be analytically equivalent at Q, Q', the equivalence being 
induced by an analytic homeomorphism F of a neighbourhood U of Q on a neigh-
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bourhood Uf of Q', such that, on F~l(Ur C\ Er), F coincides with the projection. 
Then a sufficiently good approximation G of C projects on an arbitrarily good 
approximation G ' of C'. Also, if G is a singularity preserving approximation 
of C with analytic equivalence of sufficiently high order, and if the order of the 
analytic equivalence induced by F is of sufficiently high order, then C\ will be a 
singularity preserving approximation of C, and the corresponding analytic 
equivalence at Q' will be of pre-assigned order. 

Proof. The first part of the lemma, that a sufficiently good approximation of 
C projects into an arbitrarily good approximation of C, is practically trivial, 
and so attention will be fixed on the second part. Let P be the orthogonal 
projection of En on ET. Let Fi be an analytic homeomorphism of U (the same 
neighbourhood as in the above statement; no generality is lost as U can, if 
necessary, be shrunk to suit both situations) on a neighbourhood Ui of Q, 
such that Fi induces the analytic equivalence assumed between C and G at 
Q. Let U0 be a neighbourhood of (?' in Er, say V C\ Er. Define F as PFX F~l 

restricted to Uo. It is clear that Ff defines an analytic equivalence of G ' and 
C at Q' as required. Also, it is not hard to see that, since P is a linear trans­
formation, the order of Ff can be made as high as one pleases by making those 
of F\ and F large enough. 

LEMMA 3.3. Let Pi, P2, . . . , Pr be a set of points in n-space En contained in a 
sphere A with centre the origin. Let P be a point outside A and let U be a pre-
assigned neighbourhood of P. Then there exists a rational mapping F of En onto 
itself such that: 

(1) F approximates the identity mapping arbitrarily closely on A; 
(2) F carries all points outside a sufficiently large sphere B into U; 
(3) F(Pf) = Pi for each i, and if (an, ai2, . . . , ain) are the co-ordinates of 

Pt then the equations of F in a neighbourhood ofP\ are ofthe form X' 3 = Xj + Fti, 
where Ftj is a power series in the Xj — atj of pre-assigned order. 

Proof. The idea involved here is similar to that of (3, Lemma 2, §3). The 
mapping constructed there is the composition of stereographic projection of 
En on a sphere in En+\ and an oblique projection back onto En. Such a mapping 
would be rational and would satisfy (1) and (2) above, but not (3). The 
required mapping will be constructed by making a suitable modification of 
stereographic projection. 

Let r be an integer such that 2r is greater than the pre-assigned orders 
referred to in (3) of the present theorem, let d(Ph x) be the distance of the 
point (xi, X2, . . . , xn) from Pu and define the polynomial 

G(x) = F] àir{Pt, x). 
i 

Then the equations of the mapping F are to be : 

(1) Xi = (k2X! + &GO)tan a)/(k2 + G(x)) 
Xt = k2xt/(k

2 + G(x)), i = 2, 3, . . . , n, 
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where (Xi, X2, . . . , Xn) is the transform of (xi, ) under F. It must 
be shown that the constants k and a can be chosen so that the conditions of the 
lemma are satisfied. 

In order to do this, it is convenient to consider the geometrical meaning 
of the mapping F with the equations (1). Let the »-space En be the hyperplane 
xn+i = 0 in (n + 1)-space, and let the co-ordinates be chosen so that P is 
on the Xi-axis. Let a be the angle between the xre+i-axis and the line joining F 
to the point (0, 0, . . . , 0, k) in (» + 1)-space. Then F is the composition of 
the mappings / and g where f(xi, #2, . . . , xn) = (yi, y2, . . . , yn+i) and 
&Cyi> ̂ 2, . . . , yn+i) = C^i, X2, . . . , Xn) these mappings being defined by the 
equations: 

(2) yt = k2Xi/(k> + G(x)), i = 1,2 n, 
yn+1 = kG(x)/(k> + G(x)). 

(3) Xi = yi + yn+1 tan a 

Xi = yu i = 2, . . . , ». 

The mapping g is, of course, the projection of En+i onto En along lines parallel 
to the join of P and (0, 0, . . . , 0, k) while/, on the other hand, is a mapping 
similar to stereographic projection, and would coincide with it if G were 
replaced by X)^*2- / can be described geometrically as the projection from 
(0, 0, . . . , 0, k) of En on the hypersurface H in En+i having the equations 
(2) as parametric equations. / is a one-one mapping of En+i on H, and in fact 
a birational correspondence, the inverse mapping being given by 

xt = kyt/(k - yn+i), i = 1, 2, . . . , ». 

Comparing H with the sphere of centre (0, 0, . . . , 0, §&) and radius k in 
En+i, given by the parametric equations 

Yt - k2Xi/(k2 + ^2 x))y i = 1, 2, . . . , », 

Yn+i = k J2 x2j/(k2 -1- J2 x2), 

it is easy to see that, for points (xi, x2, . . . , xn) in some bounded set in En 

the distance of (yi, y2, . . . , 3Vt-i) from (Fi, F2, . . . , Yn+i) can be made as 
small as one likes by taking k large enough. Also it is a simple computation 
to show that, still confining (xi, x2, . . . , xn) within a bounded set the partial 
derivatives of yn+i with respect to the xu calculated from the equations (2), 
are as small as one pleases if k is sufficiently large, while dyj/dxt approximates 
bijy the Kronecker 6, for large k. It follows that the normal to H at points 
corresponding to values of (xi, ) in a bounded set will make an 
arbitrarily small angle with the xw+i-axis in En+i if k is large enough. Taking 
the sphere A as the bounded set in these remarks, it follows at once that a 
line parallel to the join of P to (0, 0, . . . , 0, k) will, if k is large enough, meet 
H at not more than one point corresponding to values of (xi, #2, . . . , xn) in 
A. That is to say, gof = F is one-one on A for sufficiently large values of k. 
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An easy calculation shows that for k sufficiently large, F also approximates 
the identity mapping arbitrarily closely on A. Thus (1) in the statement of 
the lemma is proved. To verify (2) note that outside a large sphere B, the 
polynomial G(x) will be large, and so, if B is large enough, the distance of 
iyii J2, . . . , yn+i)i given by equations (2), from (0, 0, . . . , 0, k) will be less 
than a pre-assigned number. On the other hand, a sufficiently small neighbour­
hood of (0, 0, . . . 0, k) will project under g into U, and so (2) is proved. To 
prove part (3) of the lemma, note that G(x), as a power series in the Xj — atj 

around Pit is of order 2r, and so the series expansions of the Xj in equations 
(1) are of the required form. 

LEMMA 3.4. Let C be a real algebraic curve and let C = C\ \J C2 where C\ is a 
closed circuit and C2 is the rest of the curve. Assume that the intersections of C\ 
and C2 are all double points at which exactly two simple branches meet. Then 
there exists an algebraic curve C' — C\ VJ C2 of which the circuit C\ is a singu­
larity preserving ^-approximation of C\ for pre-assigned e, while C2 is contained 
in an arbitrary neighbourhood of a pre-assigned point P, arbitrarily far from 
C\. In addition, the order of the analytic equivalence of C\ and C\ at each singu­
larity can be made greater than a pre-assigned integer. 

Proof. The first step is to apply Lemma 3.1 to C, taking the points of inter­
section of C\ and C2 as the {xu yt). In this way a space curve K — K\\J K2 

is obtained such that K\ C\ K2 = <t>. Also, K\ projects in a one-one manner on 
d , and if (xo, yo, Zo) on K\ projects on a singularity of Ci, then K\ and C\, 
regarded as space curves, are analytically equivalent to an arbitrarily high 
order at the pair (xo, yo, So) and (xo, 3̂ o, 0). The next step is to move K2 to a 
great distance from K\. Take the 3-space with co-ordinates (x, y, z) as the 
hyperplane / = 0 in (x, y, z, t)-space. Let A and B be spheres in the latter 
space with the origin as centre, and such that K\ C A C B. Let B be of radius 
R. Let 4>(x, y, z) be a continuous function equal to zero on K\ and equal to 
2R on K2C\ B. Apply the Weierstrass approximation theorem to approxi­
mate </> on B by means of a polynomial / . Let g be a rational function of 
X, yj z which is equal to zero to a pre-assigned order at each singularity of Ki, 
satisfies everywhere the inequality 0 < g < 1, and also satisfies g > 1 — 8 
outside pre-assigned neighbourhoods of the singularities of Kly 5 being a 
pre-assigned positive number. A method of construction for g will be given in 
Lemma 3.5 below. Now, for each point (x, y, z) of K, set G(x, y, z) equal to 
the point in 4-space with co-ordinates (x, y, z,fg), where/and g are evaluated 
at (x, y, z). Then G is a birational transformation of K into a curve 

K' = Ki! u j jy . 

K\ projects in a one-one manner on Ki and is contained in A, while K2
r lies 

outside B, if the functions / and g have been suitably chosen. Also, there is 
analytic equivalence between K\ and K± at each singularity, the order being 
that of g, regarded as a power series at the point in question. 
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The mapping F of Lemma 3.3, carrying (x, y, z, /)-space on itself is now 
to be applied. F carries K' into a curve 

K" = KÏ U KV. 

The points Pt of Lemma 3.3 are here to be taken as the singularities of K\ . 
Now, the notation used here is intended to indicate that K\" and K2" are 
the images of Ki and K2 under F\ it must, however, be checked that K" 
constitutes the whole of a real algebraic curve. That this is so follows at 
once from the fact that F is birational on Kf, being the composition of the 
birational mapping/ of Lemma 3.3 and the projection g of Lemma 3.3 which, 
being one-one on A, is certainly birational on f(K'). By Lemma 3.3 K\f is a 
singularity preserving approximation of K\ , which will be arbitrarily close if 
the constant k of Lemma 3.3 is taken large enough. Also, the analytic 
equivalence of K\ and K\' at each singularity can be made of arbitrarily 
high order. If the sphere B has been made large enough, Lemma 3.3 implies 
that K2

/f will be contained in a preassigned neighbourhood of P in 4-space. 
The proof will now be completed by a projection back onto the plane, 

which is the subset z — t = 0 of 4-space, applying Lemma 3.2 to obtain the 
required result. To apply Lemma 3.2, note first that, under the orthogonal 
projection of (x, y, z, t)-space on the (x, y)-plane K\ is carried onto d , the 
singularities of the former being mapped on those of the latter, with analytic 
equivalence in each case of pre-assigned order. Also, by the above argument, 
K\" is a singularity preserving approximation of K\, with analytic equivalence 
at each singularity of arbitrary high order. It follows at once from Lemma 3.2, 
that, if Ki" is a sufficiently close approximation of K\ , and if the orders of 
analytic equivalence just mentioned are high enough, then C/, the projection 
of Ki" is as stated in this lemma. Also, K2" is contained in a neighbourhood of 
P , and so the same holds for its projection C2, and the proof of the lemma is 
complete. 

LEMMA 3.5. Let P i , P2 , . . . , Pm be points in Euclidean space of any dimension, 
and let Ui, U2l . . . , Um be spheres with these points as centres and radii r\, r2, 
. . . , rm, respectively. Then there is a rational function f such that f vanishes to a 
pre-assigned order at each Pt and f > 1 — e outside the Uu for a pre-assigned 
positive number e, and at all points 0 < / < 1. 

Proof. Let 77 be a positive number and let s be a positive integer. Denote by 
d(Pi, x) the distance of P from the point with co-ordinates (#1, x2l . . . , xn). 
Define 

ft(x) = d*°(Pu x)/{rjr^ + d*'(Pi9 *)). 

Clearly 0 < ft < 1, and also/* vanishes at Pu being of order 5 there (regarded 
as a power series around Pt). It is not hard to verify that /* > 1 — rj at points 
outside Ui. Now set 

m 

fix) = n /«(*)• 
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It is easy to see that if rj is small enough, / satisfies the requirements of the 
lemma. 

4. The main approximation theorems in the plane. The main results 
of Part I will now be obtained, namely, approximation theorems for piece-
wise analytic and algebraic curves in the plane. Attention will first be fixed 
on closed curves, and the required result approached in two stages, namely, 
Theorems 2 and 3. 

THEOREM 2. Let C be a closed piecewise algebraic curve with arcs Cu joints Pj} 

satisfying the following conditions : 
(1) d is part of an algebraic curve Ci and at each Pt exactly two C) meet, 

namely Cu and Ci+\, and Pt is to be simple on both, the two tangents being distinct. 
(2) If C\ — Ci meets C3 {this is to include the case i = j) then it does so at a 

point which is simple both on Cj and on C% — Ct and the two tangents there are 
distinct. 

Then there exists an algebraic curve C — C\ \J C2 , where the circuit C\ is 
an ^-approximation of C (e being pre-assigned) smoothed at the Pi and singularity 
preserving, with analytic equivalence of pre-assigned order at the singularities, 
while C2' is contained in an arbitrarily pre-assigned set U. 

Proof. Apply Theorem 1 to C = \JCi. Within a disc containing C this gives 
an arbitrarily good approximation of C, smoothing at the Pu and otherwise 
singularity preserving with analytic equivalence of arbitrarily high order at 
the singularities. Let the resulting curve be C* = C*i U C*2 where C*i 
approximates C. Then the above conditions ensure that the intersections of 
C*i and C*2 are all points where two simple branches meet With distinct 
tangents. Applying Lemma 3.4 to C*, the required result follows. 

Theorem 3 will now generalize Theorem 2 and remove restrictions placed 
temporarily on the C in that Theorem. 

THEOREM 3. Let C be a closed piecewise analytic curve in the plane with arcs 
d, and joints Pj. Then there exists an algebraic curve C\ U C2 with one circuit 
C\ giving an e-approximation of C, where e is pre-assigned, smoothed at the 
Pi, and otherwise singularity preserving with analytic equivalence of arbitrarily 
high order, while C2 lies in a pre-assigned set. 

Proof. Let Qt be a singular point of C; it may be a singular point of just one 
Cj or a point at which several of these arcs meet, being either singular or simple 
on each one of these. Let U\ be a sufficiently small neighbourhood of Qt and 
let Fi = 0 be the equation of C Pi Ui} where Fi is a power series in x and y. 
If all sufficiently high powers of x and y in Ft are dropped a polynomial 
equation F/ = 0 is obtained which represents in Ui a curve analytically 
equivalent to CPi Ui, the analytical equivalence being of arbitrarily high 
order. The same can be said of F/ + X&i = 0 where Gt is a polynomial 
containing only sufficiently high powers of x and y and X* is a real number. 
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Repeat the above procedure at each singularity Qt of C, thus obtaining a 
set of algebraic curves F/ + \tGi = 0. By suitable adjustment of the A* 
it may be ensured that the curve F{ + XiGt = 0 does not contain Q3 for 
i y£ j . Now approximate the remainder of C outside the neighbourhoods Ut 
by straight line segments. These segments along with the parts of the curves 
F/ + XfGi = 0 in Ui are to play the part of the Ct of Theorem 2. It is easy to 
see that these line segments can be chosen in such a way that the conditions 
of that theorem hold. An application of Theorem 2 then gives the required 
result. 

COROLLARY. Theorem 3 will also hold if C is replaced by any piecewise analytic 
curve, not necessarily closed. 

Proof. For if the Ct are the arcs of a non-closed piecewise analytic curve then 
a closed curve may be obtained by joining the first and last end points of C 
by any analytic arc not meeting the Ci at any other point. Theorem 3 may then 
be applied to the resulting closed curve after which the unwanted portion of 
the approximation, corresponding to the additional analytic arc, can be 
discarded. 

PART TWO : CURVES ON REAL ALGEBRAIC VARIETIES 

5. Approximation of a curve in 3-space. It has now been shown that a 
piecewise analytic curve in the plane, that is to say, a sequence of analytic 
arcs joined end to end, can be approximated by part of an algebraic curve. 
As indicated in the introduction, that approximation theorem was the first 
stage towards a similar approximation theorem on a real algebraic variety. 
The second stage is to generalize the result in the plane to Euclidean spaces 
of higher dimension. The general result will be proved by induction on the 
dimension of the surrounding space starting with dimension 3. The case of 
dimension 3 needs special attention because it is not, in general, possible to 
make a projection of a curve on to a plane in a one-one manner. 

The procedure for obtaining the required approximation in 3-space is as 
follows. 

(1) Let C be a closed piecewise analytic curve in 3-space. Let Cy and Cz 

be its projections on the planes y = 0 and z = 0 respectively. Approximate 
these curves by circuits of algebraic curves C/, CJ with equations f(x, z) 
= 0, g(x, y) = 0, respectively. These approximations are to be smoothed at 
the joints and otherwise singularity preserving. Then it will turn out that in 
3-space the curve C with equations / = g = 0 has a circuit approximating C 
arbitrarily closely, smoothing at the joints and otherwise singularity preserving 
(provided that the approximations in the two planes are suitably made). 

(2) Now C' can be represented alternatively by the equations g(x, y) = 0, 
z = h(x, y) where h is a rational function with indeterminacies at points on 
which more than one point of C' or some singularity of C! projects. In par­
ticular the circuit of C' approximating C is obtained by allowing the argument 
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(x, y) of h to vary on a suitable circuit of Cz
f. Approximate this circuit of C/ 

by an isolated circuit of an algebraic curve C" with equation g'{x,y) = 0 
and then it will be shown that the equations gr = 0, z = h define a curve 
C" in space with an isolated circuit approximating C, smoothing at the joints 
and otherwise singularity preserving. 

The details of the procedure sketched in (1) above will be carried out by a 
sequence of lemmas in the next three sections. These treat in turn various 
special points of C. First, there are the singularities of C which are to be 
preserved; second, points at which C is to be smoothed; and, finally, points 
at which the tangent to C is parallel to the (x, z) - plane. An example of the 
last type is the point (0, 0, 0) on one loop of the intersection of the cylinders 

x2+ (y - l )2 = 1, z2 + (y - l )2 = 1. 

A slight displacement of the cylinders, unless subject to suitable restrictions, 
would clearly change the configuration at the origin. 

6. Analytic equivalence. The object of this section is to give a criterion 
for the analytic equivalence of curves defined locally by suitably related sets 
of equations. As the results are to be used later in the proofs of the general 
approximation theorems, it will be convenient to state a lemma applicable to 
space of any dimension. 

LEMMA 6.1. Let ft(x), i = 1, 2, . . . , m, be power series in xi, x2, . . . , xn, 
and let F(x> z) be a power series in xi, x2, . . . , xn, z\ similar meanings are to 
be attached tof/(x)f i — 1, 2, . . . , m, and F'(x, z). Suppose that there is an auto­
morphism S of the power series ring in the xt of the type S(x%) = xt + ht(x), 
where the hi are power series of order not less than 2, and where S(ft) is a linear 
combination of the / / , and S~l{fi) a linear combination of the fh for each i. 
Theny if the orders of the hi and of the difference F — Ff are sufficiently high and 
if the series f\,f 2, . . . ,/m, F, and Fz have no common zero in a neighbourhood 
of the origin, there will be an automorphism T of the power series ring in X\, x2} 

. . . , xn and z, of the form 

T(xi) = xt + hi{x), T(z) = z + l(x, z), 

where the order of l(x, z) is greater than a pre-assigned integer, and where T 
and T~l carry each of the setsfuf2} . . . ,fm, F andfx ,f2, . . . , /„ / , F' into linear 
combinations of the other. 

Proof. The power series l(x, z) mentioned in the statement of the lemma is 
to be found in such a way that the set of equations ft(x + h) = 0(i — 1, 2, 
. . . , w), F(x + h, z + I) == 0 is a set of linear combinations of the equations 
fi'(x) = 0(i = 1, 2, . . . , m)f F'(x, z) = 0 , where x + h denotes the set Xj + hj 
(j = 1, 2, . . . , n). Since the automorphism S already relates the ft and the 
/ / in this way, it will be sufficient to find / in such a way that 
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F{x + A, z + Ï) = E ^t/V(*) + 5 F ( x , s), 

where the ^4* and 5 are power series in the Xi and z, and £ is invertible in a 
neighbourhood of the origin. The last condition is equivalent to saying that 
B does not vanish at the origin. Applying Taylor's theorem to the equation 
just written, it turns out that the power series /, the A t and B must be deter­
mined to satisfy the following equation: 

(1) F{x + h, z) + lFz(x + h,z) + \l2Fzz{x + h,z) + ... 

= Z A1fi(x)+BF\x9z) 

where the dots denote terms involving higher powers of /. 
There are two cases to consider. If Fz ^ 0 at the origin, then Fzix + h, z) 

is invertible around the origin, and so equation (1) can be divided by it. 
Equation (1) can then be solved by setting the A t all equal to zero and B = 1, 
and then calculating I iteratively. The first approximation to / will be 
F'(x, z) — F(x + h, s), and the order of this, which will also be the order of /, 
can be made arbitrarily high by making the orders of the ht and F — F' 
high enough. 

The second and more complicated case is where Fz is zero at the origin. 
In this case, in order to enable an iterative solution for / to be carried out, it 
will first be shown that the A t and B in (1) can be chosen in such a way that 
the terms free from /, namely, — F(x + h, z) + X) Ajfi(x) + BF'(x, z), will 
be equal to a multiple of Fz

six + h, z) for some pre-assigned integer 5. By the 
hypothesis of the operation of the automorphism 5 on the/*, this is equivalent 
to finding power series A / and B such that — F(x + h, z) + X) A tfi(x + h) 
•+ BFf(x, z) is a multiple of Fz

six + h, z). 
In solving this auxiliary problem, it is convenient to make a change of 

notation, writing Xt for xt + ht. Thus, the auxiliary problem is as follows: 
if the pi{X) (i = 1, 2, . . . , n) are power series of sufficiently high order, 
then it is required to find power series Pi, Q and R, Q being invertible, such 
that 
(2) - F(X, z)+Yl P<ft(X) + QF'(X + p,z)= RF,\X, z). 

A solution will actually be found in which Q = 1 + Q", where Q" is of order > 1. 
Writing Pi = - PiQ~\ Q~l = 1 + 0! and B! = Q~lR, equation (2) becomes 

(3) F\X + p,z) = F(X, z) + E Pift(X) + Q'F{X, z) + R'FS
Z(X, z) 

where this equation is to be solved for the Pi, Qf and Rf. Now, since by hypo­
thesis the / i , F and Fz have an isolated common zero at the origin, there is an 
integer d such that all monomials of degree d in the Xt and z are in the ideal 
generated in the ring of power series in the Xt and z by the ft(X), F(X, z) 
and Fz*{X,z). On the other hand, if the pt are of sufficiently high order, 
F'(X + p, z) — F(X, z) will be of order > d. It follows at once that the 
P / , Qi and Rf can be chosen so that (3) is satisfied. 
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Returning to the main question, the solution of this auxiliary problem 
implies that equation (1) can be rewritten as 

(4) IFZ{% + ft, z) + \l2Fzz{x + ft, z) + . . . = C(x, z)Fs
z{x + ft, z) 

where C is some power series. This equation will now be solved by setting 

I = u(x, z)Fz~ (x + h,z), 

where u is a power series to be determined. By means of this substitution 
(4) becomes 

u + G = CFz(x + ft, z) 

where G is a power series in the x, z and u, involving only powers greater than 
the first of u. The power series u can now be obtained from this equation by 
iteration, the convergence of the process being assured by the implicit func­
tion theorem. Note that the first approximation to u in the iterative process 
is CFz(x + h,z), and so the first approximation to / is CFz

s~1(x + h,z). Since 
Fz is zero at the origin, this ensures that / will be of pre-assigned order, merely 
by taking s big enough. By following through the above proof step by step 
it is not hard to see the 

COROLLARY. If the ht and Ff depend analytically on one or more parameters 
in such a way that the ht vanish and Ff reduces to F when these parameters are 
set equal to zero, then the series I will also depend analytically on these parameters 
and will vanish when they are set equal to zero. 

Restrict attention now to curve branches in 3-space. 

LEMMA 6.2. Let C be a curve branch {not necessarily irreducible) in a neigh­
bourhood of the origin in 3-space. C is part of a curve with equations F(y, z) = 0, 
G(x, y) = 0 where F and G are power series free of double factors. Then, if C 
has equations F'(y,z) — 0,G'(x,y) = 0 where Ff and G' are power series 
such that F — Fr, G — G' are of sufficiently high order, it will follow that C and 
C are analytically equivalent to an arbitrarily high order at the origin. 

Proof. By Lemma 2.1 there exists a transformation of the type (x, y) 
—> (x + ft, y + k) carrying G into G' where ft and k are power series in x and 
y whose orders are greater than a pre-assigned integer if G and Gf are of 
sufficiently high order. Also, F and Fz have a common isolated zero at the 
origin. The result then follows from Lemma 6.1. 

COROLLARY. If F' and G' depend analytically on one or more parameters in 
such a way that they reduce to F and G when these parameters vanish, then the 
equations of the analytic equivalence referred to in this lemma will also depend 
analytically on these parameters and will reduce to the identity transformation 
when the parameters vanish. 

This follows itself from the corollary of Lemma 6.1. 
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7. Smoothing in 3-space. Let G and G be two analytic arcs in 3-space 
with common end point P where P is simple on both arcs and projects into 
simple points of the projections of these arcs on the (x, y) = plane and on the 
(y, z) = plane. Also, the tangents at P to G and G are to be distinct and are 
to project into distinct tangents under the above projections. It will be assumed 
that these tangents are not parallel to the (x, z) = plane. There are two 
cases to consider. 

(1) If P has co-ordinates (x0, 3>o, Zo) then G and G both lie on the same side 
of the plane y = yo for a neighbourhood P. 

(2) G and G lie on opposite sides of y = yo around P. 

Case (2) can be dealt with straightforwardly, but around points presenting 
case (1) a modification will be made so that in fact only points presenting 
case (2) arise. 

Suppose case (1) holds. If y\ is suitably chosen near yo, y = Ji cuts G and 
G at uniquely defined points P\ and P2 respectively near P. Let G be the 
circular arc P\ P P2. It is not hard to see that the arcs G and G at Pi satisfy 
all the conditions stated above and present case (2). A similar statement may 
be made about G and G at P2. In the sequel all points at which case (1) 
holds will be dealt with in this way. Attention from now onwards can be con­
fined to case (2). 

Let Fi = 0 and P2 = 0 be the irreducible power series equations for the 
projections G' , C2 of G, G on the (x, y) = plane and write F = F\ F2. 
Let G(x, y) be a power series ^ 0 at the projection (#0, yo) of P. C\ ^J C2 

has a smooth approximation of the form F + AG = 0, where X is small, the 
sign being chosen so that C\ and G ' are joined up (cf. Lemma 2.2). Examining 
this smoothing process again it is required to show that the lines y — y\ meet 
F + \G = 0 in just two points, one of which lies on the smooth approximation 
of C\ yj G ' where X is sufficiently small and y± is sufficiently near ;y0. 

To do this, suppose that the linear terms of Fi and F2, written in powers 
of x — xo, y — yo are 

au(x - xo) + au{y — yo) 

<i2i(x — xo) + a22(y — yo). 

The condition that the tangents to G and G at P should not be parallel to 
the (x, z)-plane implies that an and a2\ are both ^ 0. It follows that for small 
X, F + \G = F\ F2 + \G contains a term in (x — x0)2. The Weierstrass 
preparation theorem implies that there is a power series P in x — x0, y — ^0 
and X not vanishing at x — Xoy y — 'Vo, X = 0 such that 

P{FXF2 + XG) s (x - xo)2 + a(y)(x - x0) + b(y) s F'(x, y, X), 

where a and b are power series in y and X. The above equation shows that 

dF' 
-—- 5̂  0 at x — xo = y — yo = X = 0. 
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And so b contains a linear term in X, which means that, at y = 3/0, the discrimi­
nant of Ff, regarded as a quadratic in x — x0, changes sign as X changes sign. It 
follows at once that for a suitable choice of sign for X, Ff = 0 will have two 
real roots. It is clear that one of them will lie on the smooth approximation 
of C\ U C2'. Summing up: 

LEMMA 7.1. If case (2) described above holds and if C/, and CV', are the pro­
jections of Ci, and C2, respectively, on the (x, y)-plane and (xo, yo) is the projec­
tion of P, then, in a neighbourhood of (x0, yo) there exists an arbitrarily good 
smooth approximation of C\ \J C2' cut in one point by each line y — y\. 

Suppose that H = 0 is the equation of the projection d " \J C2" of Ci U C2 

on the (y, 2)-plane. Then the lines y = yu z = Z\, with (yit Zi) near (y0, z0) 
cut the sheet of the surface F + XG = 0 over the above constructed approxi­
mation of C\ \J C2 in one point. A homeomorphism 0 of a neighbourhood of 
(0, yo, z0) on the (3;, s)-plane and a neighbourhood of (x0, Jo, zQ) on that surface 
is thus defined. It is thus clear that for n small enough and of suitable sign and 
K 9e 0 at (yo, zo), K being a power series in y — y0, z — Zo, the surface H + \K 
= 0 cuts the (y, 0)-plane in a smooth approximation of C\' \J C2". And so, 
applying the homeomorphism 0, F + \G = 0, H + /ULK = 0 is a curve an 
arc of which is a smooth approximation of Ci U C2 in a neighbourhood of P. 

The result so obtained may be summed up in 

LEMMA 7.2. Let C\, C2 be analytic arcs with the common end point P, case (2) 
holding, and suppose that d \J C2 is part of the curve F(x, y) — 0, H(y, z) — 0. 
Then, in a sufficiently small neighbourhood U of P and for X, n sufficiently small 
and with suitable signs, the curve F + \G = 0, H + JJLK = 0, where G(x, y) 
and H(y, z) are analytic functions 5̂  0 at P, has an arc which is a smooth e-
approximation of {C\\J C2) C\ U, where e is pre-assigned. 

8. Tangents parallel to the (x, z)-plane. Let P be a simple point of an 
analytic arc C and suppose that the tangent at P is parallel to the (x, z)-
plane. Let the projections of C around P on the (x, y)-plane and (y, z)-plane 
have respectively the equations F(x, y) = 0 and H(y, z) = 0. The surfaces 
F = 0 and H = 0 touch at P and so the procedure of §7 would not give an 
approximation of C. The procedure to be followed here is to construct a curve 
through P analytically equivalent to F = H = 0. 

In more detail, let (xo, yo, z0) be co-ordinates of P and let G and K be 
power series in (x — x0, y — yo) and (y — yo, z — Zo), respectively, of suffi­
ciently high order. The conditions of Lemma 6.2 are satisfied by F = H = 0; 
it follows at once from that lemma and its corollary that F + \G = 0, H 
+ JJLK — 0 is analytically equivalent to F = II — 0 in a neighbourhood U 
of P and is an e-approximation of it, with pre-assigned e, if X, /z are small 
enough (U being fixed). In particular, F + \G = H + JJLK = 0 contains an 
arc C" approximating C C\ U. 
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9. First stage of approximation in 3-space. The lemmas of the preceding 
sections are now to be combined, the idea being to choose co-ordinates in 
such a way that the situations described in these sections all arise separately. 
Attention will be restricted meanwhile to closed piecewise algebraic curves. 

Let C be a closed piecewise algebraic curve in 3-space with arcs d and joints 
Pj and assume that the tangents to the two arcs meeting at each joint are 
distinct. Assume that Ct is part of an algebraic curve Ct such that at each 
Pj just two branches belonging to these algebraic curves meet. Choose co­
ordinates as follows. 

(1) The projection of C = U Ct on the (x, y)-plane is to be one-one with 
the exception that some double points, projections of two simple points of 
C, may be introduced. The two tangents at each such double point are to be 
distinct. In particular, the joints Pj are to project regularly. 

(2) The (x, z) -plane is not to be parallel to the tangents of the Ct at the 
joints. 

It will be assumed, in addition, that all joints have been adjusted so that 
case (2) as described in §7 applies at each; this adjustment itself yields an 
arbitrarily good approximation of the curve. 

For convenience the following points on the (x, y) and (y, z)-planes will 
be called special : 

(a) The projections of all singularities of C = U Ci except the Pj\ 

(b) Double points of the projection which are projections each of two simple 
points; 

(c) Projections of points where the tangent to C is parallel to the (x, z)-
plane; 

Then the following theorem gives a first approximation to C. 

THEOREM 4. Let F(x, y) = 0 and FI(y, z) = 0 be the equations of the pro­
jections of C on the (x, y) and (y, z)-planes respectively. Let G(x, y) and K(y, z) 
be polynomials not vanishing at the projections of the Pt. Then, if G and K are 
arranged to have suitable signs at the projections of the Pi and if they vanish to 
sufficiently high order at all special points and if X, n are small enough, F + XG 
= 0, H + fiK = 0 is a curve C' with a circuit C' which is an arbitrarily good 
approximation of C smoothed at the P.t and otherwise singularity preserving 
with analytic equivalence of arbitrarily high order at the singularities. 

Proof. The plan of the proof is similar to that of Theorem 1. The Pt and all 
points projecting on special points are surrounded by sufficiently small neigh­
bourhoods for the appropriate lemma to apply. Thus, Pt has a neighbourhood 
U(Pi) such that C is a smooth approximation of C , and arbitrarily close if 
X, JJL are small enough. If P projects on a special point it has a neighbourhood 
U(P) in which C' is analytically equivalent to F = H = 0. That is to say, 
part of C' C\ U(P) is analytically equivalent to C and this implies the 
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existence of an operator / mapping C Pi U(P) into Cf such that the distance 
of Q from f(Q) is arbitrarily small if X, /x are small enough (see Lemma 6.2). 
Thus, in the union of the U(P), where P is either a joint of projects or a 
special point, the operator / is constructed and is a one-valued continuous 
mapping. f(Q) is in all cases arbitrarily close to Q if X, n are small enough. It is 
required to extend / to all of C. C outside the U(P) is made up of non-singular 
arcs. In sufficiently small neighbourhoods of these arcs it is not hard to see 
that C is a union of non-singular arcs. The extension of / is then made as in 
Theorem 1. 

It will be noticed that the success of the proof of the above theorem depends 
upon the possibility of choosing polynomials G and K vanishing to a sufficiently 
high order at the singularities of C and with the correct signs at the Pi (see 
§15). 

10. Second stage of approximation in 3-space. In this section C is a 
circuit of a real algebraic curve C in 3-space. Co-ordinates can be chosen so 
that C projects on a curve Co in the (x, y)-plane, the correspondence between 
these curves being one-one except that a finite number of points of Co are each 
projections of a pair of simple points of C. Such points of Co are to be double 
points where two simple branches meet with distinct tangents. If Co has the 
equation F(x, y) = 0 then C can be represented by equations F = 0, z = f/g, 
where f/g is a rational function of x and y defined except possibly at singular 
points of Co. 

THEOREM 5. C being as above there exists a real algebraic curve C of which an 
isolated circuit C is an arbitrarily good approximation of C, singularity preserving 
with analytic equivalence of arbitrarily high order at each singularity. 

Proof. Apply Theorem 3 to C0, thus obtaining a curve C0' of which one circuit 
Co' is an arbitrarily good singularity preserving approximation of Co with 
analytic equivalence of order greater than a pre-assigned integer at each 
singularity, while C0' — C0' is contained in some pre-assigned set. Let the 
equation of C0

r be F'(x,y) = 0 and consider the curve C' with equations 
Fr = 0, z = f/g. In particular let C be a circuit of C' projecting on Co'. 

Let P be a singularity of C and apply Lemma 6.1, F and F' playing the part 
of the fiyf/ of that lemma, and both F and Ff of the Lemma being replaced 
by gz — f. If the analytic equivalence of C0 and Co' is of sufficiently high order 
around the projection of P , then the lemma quoted implies that C and C are 
analytically equivalent at P, to an arbitrarily high order. 

A similar argument at points Pi and P2 of C projecting on the same point 
of Co, shows that C is analytically equivalent to C around P\ and P%. 

Finally, the continuity of f/g at simple points of C0 ensures that the corres­
pondence between C and C is one-one and is in fact the required approxi­
mation. It is clear that C is an isolated circuit, and in fact C' — C can be 
made to lie in a pre-assigned set. The proof is thus complete. 
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11. The final approximation theorems in 3-space. 

THEOREM 6. Let C be a closed piecewise algebraic curve with arcs Ct. Ci is to 
be part of an algebraic curve d, and at each joint of C two simple branches of the 
Ci are to meet with distinct tangents. Then there exists an algebraic curve Cf 

with an isolated circuit C which is an arbitrarily good singularity preserving 
approximation of C, smoothed at the joints, and with analytic equivalence of 
arbitrarily high order at the singularities. 

Proof. The idea of the proof has already been sketched in §5. By Theorem 4, 
approximate C with a circuit C* of an algebraic curve. Then apply Theorem 5 
toC*. 

THEOREM 7., Let C be a closed piecewise analytic curve in 3-space. Then there 
exists an arbitrarily good singularity preserving approximation of C by an isolated 
circuit of a real algebraic curve. 

Proof. In a sufficiently small neighbourhood of each singularity, C can be 
replaced by an analytically equivalent algebraic arc (2). The remainder of C 
can be approximated by straight line segments joined end to end. Thus, C 
has been approximated by a closed piecewise algebraic curve and it is not 
hard to see that the condition imposed in Theorem 6 can be assumed to be 
satisfied. The result follows at once from that theorem. 

COROLLARY. A similar result holds for an open piecewise analytic curve, for 
such a curve can always be closed by an auxiliary arc joining its end points. 

12. Approximation of a piecewise algebraic curve in w-space. An 
approximation theorem of this type has already been obtained for n = 3. 
The general result will be obtained by induction. Let C be a closed piecewise 
algebraic curve in w-space. C is part of a composite algebraic curve C. Co­
ordinates are to be chosen in such a way that C projects on the hyperplane 
xn = 0 in a one-one manner and also in such a way that no tangent to C 
is parallel to the xn-axis. Thus, under this projection no fresh singularities are 
introduced. If the arcs of C are denoted by C\, Ci being part of a real algebraic 
curve Ciy then it will be assumed that the joints P} of C are the only points 
common to the Ct. It will be remembered that a similar restriction was im­
posed on curves in 3-space but was eventually removed in the proofs of the 
approximation theorems. 

Let K be the projection of C, K that of C, Kt that of Ci and Kf that of 
Ci on xn = 0. Then a point (xi, x2, . . . , xn) belongs to C if and only if (x\, Xi, 
. . . , xn-i) is on K and xn = f(xi, x2, . . . , xn-i), where/ if a continuous function 
which is rational on each Kt separately, projection being a birational mapping 
on each C\. The approximation of C is to be made by approximating K, by 
the induction hypothesis, in xn — 0 and at the same time approximating / 
by a rational function F such that \f — F\ is small except at singularities of 
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K. Near such a singularity the numerator and denominator of F are to differ 
by terms of arbitrarily high order from those of / . 

Attention will now be fixed on approximation by rational functions of the 
type just indicated. Let A be a bounded closed set in Euclidean space. A real 
valued function f on A is called quasi-rational on A if there exists a finite 
set 5 of points of A, to be called the singularities of/, such that fis continuous 
on A — S and such that there is a polynomial yp vanishing at each point of 
S but at no other point of A and having the property that f\p is equal to a 
polynomial in some neighbourhood of each point of S. 

The function F on A is called a rational approximation of the quasi-rational 
function / if; 

(1) F is rational; 

(2) Outside prescribed neighbourhoods of the points of S, / — F is less than 
a pre-assigned number e; 

(3) If (xi, x2, • • • , xn) is in 5, / = <t>/\p around (x), <t> being a polynomial 
and F — $/^, the fractions not necessarily being in lowest terms, then 
4> — <£, \f/ — <ï> have orders greater than a pre-assigned integer r in the xt — xt. 

In the notation of (3) the approximation is said to be of order > r a t the 
singularity (x). If, in addition,/ is one-valued (as in the above situation of a 
function of a curve) then the inequality \f — F\ < e will be required to hold 
on all of A and the accuracy of the approximation can be specified by e and r. 

THEOREM 8. Let f be a quasi-rational function on the closed bounded set A, 
and let Pi, . . . , Pn be the set of singular points. Let V\ be a neighbourhood of 
Pt and let e be a pre-assigned number. Then there exists a rational approximation 
off approximating to within e outside the Uif and approximating to a pre-assigned 
order at the Pi. 

Proof. At Pif f can be written as a rational function with denominator \f/; 
s a y / = <t>i/ip in a neighbourhood of Pt. f is continuous outside the Ui, and so 
in particular \f/f is continuous outside Ui. 

Construct a polynomial 3> vanishing at the Pt in a similar way to the <£*. 
A convenient method is as follows. Let gt be a polynomial vanishing to order 
r at Pj(j 7* i) and such that gt — 1 vanishes to order r a t Pt (cf. §15). Then set 

# 0 ) = Z) £<*<• 
Now $ — ypf is continuous on A — (J Ui, and so has a polynomial 771-

approximation G there. Let H be a rational function vanishing to order r 
at the Pif and such that 1 — rj2 < H < 1 outside the Ui (Lemma 3.5). Let 
d> = $ - GH. Then 

| 0 - * / | = \<S>-GH-tf\ 
= | $ - # - G + G(l -H)\ 
< î?l + |G|î?2, 

outside the [7*. Hence, outside the Uu | 0 / ^ — / | < (771 + |G|r72)/|^|. 
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On A — (J Ut yp is bounded below; and so, if rji, T?2 are small enough, this 
last quantity is < e. Now compare the fractions <j>/\l/ and <j>t/\l/ around P t. 
They have the same denominators and the difference of their numerators is 

<t> — 4>% = z_j gj^j ~ GH — <f>i 

= X) gits + (gt - 1)0< - GH 

and the terms of this expression are all of order not less than r at P , by the 
mode of definition of the gt and of H. 

To apply the above result to the approximation of the curve C some pre­
liminary adjustments may be necessary. Suppose that Ct is given by 

_ Jji\PÇj-i X2, » • • , Xn— 1) 
Xn / \ j 

gi(Xi, X2, • • • , Xn-i) 

where (xi, x2, . . . , xn-i) is on Kx. Suppose that g\ vanishes at some of the 
joints of the Ku say Py, Pk, . . . . These points will not include the ends of 
of K\ since projection is one-one and regular at these end points. Let 
h\{xu X2, . . . , xn-i) be a polynomial vanishing on K\ but not at P3, Pkl . . . (by 
hypothesis these are not on K\). Then/ i / (g i + ch\) = fi/gi on Ku c being a 
constant, and the denominator is not 0 at any Pit If necessary, a similar 
adjustment is to be made for all the gt. 

Now set the fractions fi/gi with adjusted denominators over a common 
denominator g and rewrite as fi/g. Then / defined as j J g on I j is a quasi-
rational function on K whose singular points, namely, the zeros of g, are all 
different from the Pt. The following approximation theorem can now be 
proved. 

THEOREM 9. Let C be a closed piecewise algebraic curve in n-space. Then 
there exists an arbitrarily good singularity preserving approximation of C by 
an isolated circuit of an algebraic curve, with smoothing at the joints and analytic 
equivalence of arbitrarily high order at the singularities. 

Proof. The result is true for n = 3 and will now be proved by induction. 
Assume that it is true for n — 1. Then, in the notation introduced at the 
beginning of the section, K has an approximation K' by an isolated circuit 
of an algebraic curve with the analytic equivalence at all singularities of the 
quasi-rational function / (all projections of singularities of C are to be in­
cluded among these). Let F be a rational approximation of/. 

Then, by Lemma 6.1, if the analytic equivalence of K and K' at singular 
points of / and at singularities of K is of sufficiently high order and if 
the approximating order of F to f at these points is sufficiently high also, 
then C is analytically equivalent to the curve xn = F{x\, x2, . . . , xn-i) with 
(xi, X2, . . . , xn-i) G K', at the appropriate points of C. Apart from singular 
points it is clear that this curve is an approximation of C and it is certainly 
an isolated circuit of an algebraic curve. 
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The usual extension (similar to that made in §11) can be made here to 
closed and open piecewise analytic curves in n-space. 

13. Approximation on a hypersurface. It is convenient to make a few 
remarks here on real algebraic varieties. A real algebraic variety V is the set 
of all real points on a complex algebraic variety V. V is understood to be 
contained in affine espace over the complex numbers while F is a subset of 
Euclidean ^-space. V is to be chosen as the smallest complex algebraic 
variety containing V. Thus, V has a simple point on V for otherwise V 
could be replaced by its singular locus. Denote by V' the variety whose 
points are obtained from those of V by taking the complex conjugates of all 
co-ordinates. Then it can be assumed that V' = V. For otherwise V could 
be replaced by V' C\ V. The equations of V can therefore be chosen to have 
real coefficients. 

It is known that if V is of dimension r then co-ordinates can be chosen in 
such a way that the equations of V are of the form f(xi, Xi, . . . , xr+i) = 0, 
xr+1+i = fi(xi, #2, . . . , %r+i) where/ is a polynomial and the/* (i = 1 , 2 , . . . , 
n — r — 1) are rational functions of their arguments. By the arguments made 
above it can also be arranged that the coefficients appearing in / and the ft 

are all real numbers. It is then not hard to see that if P is a real simple point 
of V then there are uniformising parameters whose real parts are real local 
co-ordinates, in the sense of real analytic manifolds, on V around P. That is to 
say, P has a neighbourhood analytically homeomorphic to a Euclidean r-
cell. P is then called a simple point of V. Also the dimension of V is defined 
by the dimension of V, namely, r. 

Now let C be a closed or open piecewise algebraic curve on a real algebraic 
hypersurface H in w-space. Assume that C is not contained in the singular 
locus of H and that the joints of C are all simple on H. Assume for the moment 
that n > 3. Choose co-ordinates so that the following conditions hold: 

(1) H has a polynomial equation F — 0 and C is not contained in the locus 
with equations F = dF/dxn — 0 and in particular the joints of C are not in 
this locus. 

(2) C projects in a one-one manner on a curve K in the space xn — 0. 

THEOREM 10. There exists an arbitrarily good singularity preserving approxi­
mation of C by a circuit or arc {the latter if C is open) of an algebraic curve on 
H, smoothed at the joints and with analytic equivalence of arbitrarily high order 
at the singularities. 

Proof. A smoothing approximation Kr which is singularity preserving is to 
be constructed for K. Let Qu Q2, . . . , Qm be the singularities of K along with 
all the intersections of K with the projection of F = dF/dxn = 0. Then K 
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and K' are to be made analytically equivalent at all the Qt (Theorem 9). If 
this approximation is close enough and if the analytic equivalences just 
mentioned are of high enough order, then Lemma 6.1 implies analytic equiva­
lence of C and part of the curve C given by F = 0, with (xi, x2, . . . , xn-i) 
on Kf around the Qt. It is easy to see that these local approximations can be 
extended to the required approximation; the details of the argument are 
similar to those of the proof of Theorem 1. In particular, the smoothing of 
the approximation K' of K lifts into H since F = 0 can be solved for xn 

around the points in question. 

In the case n = 3 it cannot be assumed that the projection on xz = 0 is 
one-one on C. New singularities may be introduced. In the approximation of 
K by Kf

f we can also make these curves analytically equivalent at any such 
new singularities. The lifting into H is carried out as before with the aid of 
Lemma 6.1. The theorem is thus proved for all values of n. 

It is clear from the proof that C and C can be made analytically equivalent 
at any further finite set of points in addition to those projecting on the Qt. 

Theorem 10 can be extended at once to the approximation of piecewise 
analytic curves on a hypersurface. For, let C be such a curve on the hyper-
surface H, satisfying a condition similar to that imposed in Theorem 10, 
namely, that no arc of C lies in the singular locus of H, and in particular, 
the joints of C are simple on H. Subdivide C into arcs such that on each of 
them the projection on the hyperplane xn = 0 is one-one. Then apply the 
method of Theorem 10 to approximate each of these arcs by an algebraic arc 
on H} with analytic equivalence at all the singularities of C and also at all 
points of intersection of C with the locus having the equations F — 0, dF/dxn 

= 0. 

14. Approximation on a variety of any dimension. 

THEOREM 11. Let C be a piecewise analytic curve on a real algebraic variety 
V having at most a finite number of points in common with the singular locus of 
V. In particular the joints of C are to be simple on V. Then there exists an algebraic 
curve on V with a circuit or arc approximating C arbitrarily closely, smoothed 
at the joints and otherwise singularity preserving, with analytic equivalence of 
arbitrarily high order at the singularities. 

Proof. Suppose that V is of dimension n and is contained in (n + r)-space. 
The result is then known, by the last section, for r = 1, and the object is to 
prove it in general by induction on r. 

Choose co-ordinates so that the equations of V are/(xi , x2, • . • , xn+i) — 0, 
where / is a polynomial, along with xn+i = ft(xu i ) , ( i = 2 , . . . f r ) , 
where the ft are rational functions of their arguments. That such a choice 
of co-ordinates can be made is a well-known theorem of algebraic geometry. 
There is thus a sequence of varieties Vu V2, . . . , Vr, where V& is contained 
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in Euclidean (n -f- s) -space in which the co-ordinates are Xu x2, • • • , ^n-\-si 
has the equation / = 0, and Vs+i projects on Vs in such a way that the 
points of Vs+i are of the form (xh x2, . . . , xn+s+i) with (xh x2, . . . , xn+s) 
G F s and xn+?+i = / s + i (xi, x2, . . . , xn+i). The curve C on V — Vr pro­

jects on a curve Cs on Vs. Thus, the points of Cs are defined by xw+s = 
fs(xi, x2, . . . , xw+i) with (#1, #2, . . . , xw-|_s_i) on C5_i. It can also be assumed 
that the co-ordinates are chosen so that the ft are indeterminate at only 
finitely many points of Cs and that none of these is a joint of Cs. 

By the induction hypothesis Cs can be approximated by a circuit or arc 
Cs

r of an algebraic curve on Vs with smoothing at the joints, otherwise singu­
larity preserving with analytic equivalence of arbitrarily high order at the 
singularities of Cs and also at all points of Cs at which any of the ft is indeter­
minate. Define Cs+i as the curve whose points are (xu x2, . . . , xn+s+i) with 
(xh x2, . . . , xn+s) € Cs and xn+s+1 = fs+i(xu x2, . . . , xn+i). Then Cs+i is an 
arc or circuit of an algebraic curve on Vs+\. It is required to prove that it is 
an approximation of Cs+i with smoothing at the joints and otherwise singularity 
preserving. Clearly it is an approximation outside neighbourhoods of the 
following points: (a) singularities of Cs+i, (b) points of Cs+i singular on Vs+i, 
(c) points of Cs+i projecting on points of Cs at which some/* is indeterminate. 
That Cs+i is analytically equivalent to Cd+i around all such points follows 
at once from Lemma 6.1. The inductive proof is thus complete. 

15. Some special polynomials. In this section explicit constructions are 
given for polynomials satisfying certain special conditions, such as were 
required in some of the proofs earlier in this paper. 

The first such polynomial is to be a polynomial F(P; Q; x) in the co­
ordinates Xi, x2, . . . , xn in w-space vanishing to the order r at P and such that 
1 — F vanishes to the order r at Q. For convenience in defining this polynomial 
take P as the origin and let the co-ordinates of Q be (x'i, x'2, . . . , x

f
n). Then 

the definition is to be 

WC;:) - i - Z -^ . 

The next definition is to be that of a polynomial F (Pu Pi, • . . , Pn\ Q\ x) 
vanishing to the order r at Pu Pi, . . . , Pm and such that 1 — F vanishes to 
the order r at Q. A suitable definition for a polynomial with this property is 
the product of the F(Pt; Q; x) for i = 1, 2, . . . , m, using the definition just 
given for the individual factors. 

Finally, a polynomial is to be constructed which vanishes to the order r 
at the points Pu P2, . . . , Pm and has given values ku k2, . . . , kp at another 
set of points Qu (?2, . . . , Qp. A suitable definition for such a polynomial is 

£ ktF(Pu Pi,.-., Pm, Qi, ft, . . . , & , . • • . QP; Qt; x) 

where the circumflex denotes the omission of the letter marked. 
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PART III : SHEETS OF A REAL ALGEBRAIC VARIETY 

16. Definition and examples. A subset S of a real algebraic variety V 
will be called analytically connected if every pair of points of S can be joined 
by an analytic arc contained entirely in S. A subset S of F is called a sheet of 
V if S is analytically connected and is not contained in any larger analytically 
connected set on V. 

This definition is slightly weaker than that given by Nash. The term 
"sheet" in (1) is equivalent to the term "proper sheet" according to the follow­
ing definition. 

The sheet 5 of F is called proper if there is a point of S with a neighbourhood 
U such that U C\ V C S. If this condition is not satisfied S will be called 
embedded. 

Examples. (1) Consider the surface in 3-space with the equation (y2 + z2)2 

= zV. The cross-section of this surface parallel to the (y, z) -plane for x > 0 
consists of two circles touching while for x < 0 the only real points are in the 
x-axis. The two circles referred to have equal radii proportional to x3/2. It is 
not hard to see that this surface has two sheets. One is the x-axis and the 
other is the part of the surface with x > 0. The first statement is clear since 
the x-axis is analytically connected and any analytic arc on the surface through 
a point with x < 0 must lie entirely on the x-axis. To prove the second state­
ment take any points P and Q on 5 with x > 0 and project them on the 
(y, 2)-plane. Let the projections be P' and Q'. If these points are on the same 
side of z = 0, join them by a straight line with parametric equations z = z(t), 
y — y(t)* Then 

x(t) - (A±JLM! 

is real analytic and gives the required arc on the surface joining P and Q. 
If Pr and Q' are on opposite sides of z = 0 join them by an analytic arc 
y = y(t)> z = s ( 0 s u c n that the origin corresponds to t = 0 and such that 
this arc crosses z = 0 only at the origin. Assume that around t = 0 y and z 
have power series expansions y(t) = at + . . . , z(t) = bt + . . . with a and b 
non-zero. Then x(t) is an analytic function of 5 where t = sz. This again gives 
an analytic arc on the surface joining P and Q, all points of the arc satisfying 
x > 0. It should be noted that when P and Q are on opposite sides of z = 0 
then an analytic arc joining them must necessarily pass through the origin. 
In this example both the sheets occurring are proper. 

(2) Consider now the surface 5 

(3,2 + S2)4 _ Z4X6 + (3,2 + Z2y = 0 

where r > 8. Let F = (y2 + s2)4 - z4x6. Then 

2 dF , dF , dF 
- 0 X - 7 - + 3 ' — + 2 — 

S ox ay az 
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is a constant multiple of (y2 + s2)4 and so for r > 8, (y2 + z2)r is in the square 
of the ideal generated by Fx, Fy, and Fz. The theorem of Samuel (1) shows 
that the surface S near the origin is shaped like two copies of the surface in 
example (1) placed point to point. On the other hand, the equation of S can 
be written as 

xh2 = i (y2 + z2)2{\ + (y2 + z2)r-±f\ 

The procedure of the example of (1) shows that the sets x > 0 and x < 0 
on this surface are analytically connected. Also, the second method of writing 
the equation of 5 shows that no analytic arc connects points with x > 0 to 
points with x < 0. The two sets on S given by x > 0 and by x < 0 are thus 
two separate sheets and are proper. The x axis is also a sheet for it is analytically 
connected and not contained in either of the above sheets. It is embedded. 

17. Local dimension of a sheet or variety. Let V as before be a real 
algebraic variety contained in the complex algebraic variety V = V' of com­
plex dimension n. It will be convenient to speak of n as being the dimension 
of V. Let S be a sheet of V and let p be a point of S. 

The local dimension of S at p, written as dimpS, will be said to be equal to 
n if every neighbourhood of p contains a simple point of V lying on S. Other­
wise dimp will be said to be less than n. 

THEOREM 12. Let S be a sheet of the real n-dimensional algebraic variety V 
and let p be a point of S. If dimvS = n, then dim^S = nfor all a on S. 

Proof. Since dinvS = n, a neighbourhood U of p will contain a simple 
point p' of V lying on 5. If a is on S then there is an analytic arc A on S joining 
p' and a. This arc is not entirely contained in the singular locus of V since 
pr is simple, and so it meets this locus at a finite number of points. The last 
statement is equivalent to the fact that an analytic function of £ for 0 < t < 1 
has only a finite number of zeros. Therefore, there is a simple point of V on 5, 
namely, on A, in any neighbourhood of q. Therefore, dimqS = n. 

COROLLARY. / / dimp5 < n for some p on S then S consists entirely of singular 
points of V. 

Proof. For if g is a simple point of V lying on S then dim^S = n and so, by 
the above theorem, dimp5 < n is impossible. 

If dinvS = n for some p on 5 the above theorem justifies defining the dimen­
sion of 5 by n. In the contrary case the dimension of S will be said to be less 
than n. 

Now, in the case where the dimension of 5 is less than n, S is contained in 
the singular locus of V. Thus, 5 is a sheet of a subvariety of V. Let Vo be the 
smallest subvariety of V containing S and let the dimension of V0 be r. The 
above theorem and its corollary show that dinvS, 5 being regarded as a sheet 
of Vo, is r at each point p of S. That is to say, the dimension on 5 is r. For 
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otherwise S would be contained in the singular locus of V0, namely, a smaller 
sub variety than V0. 

Thus, the dimension of 5 can be defined in all cases as the dimension of the 
smallest real algebraic variety containing S. 

Some properties of w-dimensional sheets of ^-dimensional varieties can be 
deduced from the following semi-transitivity property of analytic connectivity. 

LEMMA 17.1. Let p, q, r be points on V, q being simple. Then, if there are 
analytic arcs on V joining p to q and q to r, there is also an analytic arc on V 
joining p to r and meeting a pre-assigned neighbourhood of q. 

Proof. The union of the two arcs joining p to q and q to r is a piecewise 
analytic arc on V. By Theorem 11 there is an algebraic arc approximating it 
arbitrarily closely, smoothing at q and otherwise singularity preserving. This 
give the required joint of p and r. Note incidentally that p and r may be singu­
lar on the given arcs, and these singularities must be preserved along with 
any others. 

THEOREM 13. Let V be a real algebraic variety of dimension n and let p be a 
simple point. Let S be the set of all points joined by analytic arcs to p on V. 
Then S is an n-dimensional sheet of V and every sheet of dimension n can be 
obtained in this way. 

Proof. Let q\ and g2 be points of S. Then there are analytic arcs on F joining 
qi to p and p to q2. Let U be a neighbourhood of p homeomorphic to an n-
cell. Lemma 17.1 implies that there is an analytic arc on V joining qi to q2 

and meeting U in some point g, say q being a simple point of V. Take q' on 
the arc q\q2. Then there is an analytic arc joining qf to q on V, namely, part 
of the arc qiq2, and there is also an analytic arc in the cell U joining q to p. 
Applying again Lemma 17.1 it follows that there is an analytic arc on F joining 
q' to p. Therefore, qr belongs to S and so the whole arc q\q2 lies in 5. That is 
to say, it has been shown that S is analytically connected. 

It must be shown now that S is a maximal analytically connected set. As­
sume that S C S' where S' is analytically connected. If g is a point of S' there 
exists an analytic arc joining p and q in S' and so in V. It follows that S ' C 5 
and the maximality of S is established. 

Obviously dimp5 = n and so 5 is ^-dimensional. 
Conversely, let 5 be an w-dimensional sheet of V. Then S contains by 

definition a simple point p of V. Every point of 5 can be joined to p by an 
analytic arc lying in 5 and so lying in V. The above result and the maximal 
property of S show that S is the set of all points which can be joined to p 
in V by analytic arcs. 

COROLLARY 1. Each simple point of V belongs to exactly one sheet. 
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COROLLARY 2. Each n-dimensional sheet of a real n-dimensional variety V 
is proper. 

Proof. If S is of dimension n there is a simple point p of F on S. It follows 
that there is a neighbourhood U of p such that U C\ F is an n-cell. All points 
of U C\ V can be joined to p by analytic arcs on V and so £/ P\ F lies in the 
sheet determined as in the above theorem by p. This sheet must be S and so 5 
is proper. 

The notion of local dimension can also be introduced for a real algebraic 
variety V (and, in fact, more generally for any real algebroid variety). If 
p is a point of V then the local dimension of V at p, written dim^F, will be 
said to be n if every neighbourhood of p contains a simple point of V, that is 
to say, a real simple point of V in the terminology of §13. Otherwise dimpF 
will be said to be less than n. 

If dimpF < n then there is a subvariety F0 of V consisting entirely of singular 
points and there is a neighbourhood U of p such that U C\Vo — U C\ V. 
Let Vo be the smallest real subvariety of V with this property. Then every 
neighbourhood of p must contain a simple point of Vo; for otherwise Vo 
could be replaced by its singular locus, a smaller subvariety. If Vo is of dimen­
sion r then dim^Fo = r. Define now dimpF = dimPFo. 

Note that a variety is not homogeneous with respect to the notion of local 
dimension, whereas a sheet of a variety is. For example, on the surface of 
example (1) in §16 points satisfying x > 0 have local dimension 2 whereas 
those satisfying x < 0 have local dimension 1. 

18. Local study of a real algebraic variety. To get further information 
of the sheets of a variety some results on the local structure of a real algebraic 
variety are required. These will be obtained in the following three lemmas. 

LEMMA 18.1. Let p be a point of a real algebraic variety V in n-space. Then, 
in any pre-assigned neighbourhood of p there is a neighbourhood U which can 
be written as the union of the closures of a finite number of disjoint open n-cells 
Ui such that the union of the frontiers of the Ui is of the form W C\ U where W 
is a real algebraic variety containing V. In addition, each Ui has p on its frontier. 

Proof. The proof will be carried out by induction on n. Assume first that 
dimpF = n — 1. Take p as origin and choose co-ordinates in such a way 
that F, which is a hypersurface, has an equation of the form 

F = xr
n + aiXn'1 + . . . + ar = 0, 

where the at are analytic in xi, x2, . . . , xw_i at p. This simply means that the 
xn-axis does not lie in F. Let F0 be the projection on xn = 0 of the locus with 
equations F = dF/dxn — 0. The induction hypothesis implies that there is a 
neighbourhood Uo of p in xn — 0 such that Uo can be written as \}ZU where 
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the Zi are disjoint open (n — l)-cells and (jFrZ* = Uo C\ Wo, where Wo 
is a variety containing F0. For each Zt there are two possible cases to consider. 

(1) There are sets on V, say Z*(1), Z/ 2 ) , . . . , Zt
(s\ projecting homeomor-

phically on Zt and having p in their closures. 

(2) There are no such sets as in (1). 

Let C be a cylindrical neighbourhood of p, specified as the set of all points 
(xi, x2, . • . , xn) with (xi, X2j • • • j X/£— i) in some neighbourhood of p and xn 

satisfying an inequality of the type |xj < k. C can be chosen as follows. 
If Z / is a set on F projecting homeomorphically on Zz presenting case (2) or if 
Z / projects on a set Zt presenting case (1) but [is different from Z*(1), Z/ 2 ) , 
. . . , Z / s ) , then CC\Z( = c/>. Also, C is to be taken so that the subsets 
xn = dr & of C do not meet V. This choice is always possible since the x^-axis 
does not lie in V. 

Shrink Uo if necessary so that Uo C C; this can be done by the induction 
hypothesis. Then define U as the set of points (x ) such that 
(xi, x2, . . . , xn-\) £ Uo, \xn\ < k for some positive number k. The cell decom­
position of U is now to be defined. The part of U over a set Zt presenting case 
(1) is divided into open cells by the Z^j). On the other hand, the part of U 
over a set Z Î presenting case (2) is itself an w-cell. Define the Ui as the collec­
tion of all these cells. It is at once clear that the Ut are disjoint and that p 
is in U jiov each7. 

The union of the frontiers of the U3 consists of V P\ U along with the top 
and bottom of U and the subset of U projecting on \jFrZt. The last set 
can be written as Uo O Wo where Wo is a real algebraic variety, by the in­
duction hypothesis. Therefore, U Fr Uj is of the form required by this lemma. 
Also U can be taken arbitrarily small and so the proof is complete if d im p F 
= n — 1. 

If dirripF < n — 1, repeat the above proof with Vo taken as the projection 
of V on xn = 0. Here only the sets Z presenting case (2) will appear but the 
rest of the proof is as above. 

LEMMA 18.2. Let p be a point on a real algebraic variety V of dimension n and 
let W be a subvariety of V containing p. In any pre-assigned neighbourhood 
of p there is a neighbourhood U of p such that V C\ U is the union of the closures 
of a set of disjoint open cells of dimensions < n such that: 

(1) \$FrUi = U C\Wr where Wf is a variety on V containing W. 
(2) Each r-cell in the decomposition of V C\ U is contained in exactly one proper 

sheet of V of dimension r. 
(3) p Ç Û xfor each i. 

Proof. Note first that Lemma 18.1 is the special case of this lemma with V 
replaced by w-space. The general proof will be carried out by induction, the 
result being obvious for a curve. Assume that the theorem is true for any 
variety V such that dimp V < n in any space. The result is then to be proved 
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for a variety of local dimension n a t p. The proof will first be carried out for 
a var iety F in (n + 1)-space with d i m ^ F = n. V mus t thus be a hypersurface 
and so co-ordinates can be chosen so t h a t it has an equation of the form 

F = xr
n+1 + diXn+l + . . . + ar = 0 

where the at are analytic a t p which is to be taken as origin. Project on xn+\ 
= 0 and let Wo be the union of the projections of W and of the locus with 
equations F = dF/dxn+\ = 0. Apply Lemma 18.1 and use the notat ion used 
there. Then there is an arbitrari ly small neighbourhood Uo of p in xn+\ = 0 
such t ha t Uo = [}ZU where the Zt are disjoint open w-cells the union of 
whose frontiers is a variety W\ containing Wo. In the terminology of Lemma 1, 
if Zt presents case (1) there exists a finite number of sets Zt

U) on V projecting 
homeomorphically on Zu p lying in the closure of each of them. Let U be 
chosen as in Lemma 18.1 and let g Ç V C\U. Then there are two cases to 
consider according as d im^F = « o r d i m ^ F < n. 

If d i m ^ F = n, every neighbourhood TV of g contains a simple point qf of V. 
Then, in a suitable neighbourhood Nf of q' contained in N, there is a point 
q" which is simple on V and does not project on the variety W\ which contains 
the frontiers of Z*. Then a neighbourhood of q,r projects homeomorphically 
into a subset of some Zt. T h a t is to say, q" is in some set Z / projecting homeo­
morphically on ZL. I t follows a t once, since N is any neighbourhood of q, t h a t 
q is in the closure of Z / . By the choice of U, namely, as in Lemma 18.1, Z / 
must be one of the Zt

U) having p in its closure. Hence all points q of V C\ U 
with d i m ^ F = n are in the closure of some Zt

(j). 

All points g in F Pi U with dim ç V < n are contained in a subvariety VQ 
of F. Apply the induction hypothesis to Fo, shrinking U if necessary. Thus , 
F 0 P Z7 is the union of the closures of a number of cells which, if taken along 
with the Zt

a) provide the required cell decomposition of F . 
The conditions (1) (2) (3) of the theorem must now be checked. Condition 

(1) follows from the induction hypothesis on F0 and from the mode of con­
struction of Zi(j); (3) follows in the same way. Now (2) will be checked. 
Z^3) lies on exactly one proper ^-dimensional sheet of F, namely, t ha t deter­
mined by any simple point on it (Theorem 13). Let U\ be one of the open cells 
of the decomposition of F0 assumed in the induction hypothesis. Then , by 
this hypothesis, Ui is contained in exactly one proper sheet S of Fo. If S is a 
proper sheet of F the result is proved. Suppose 5 is not proper. Then every 
neighbourhood of every point of S contains points of F not in S. Such points 
are also not in F0 , since 5 is proper in Fo. F therefore has local dimension n 
a t such points and so the cell U\ can be discarded, being contained in one of 
the Z,<». 

The proof is thus complete for a variety F with dim^, F = n contained in 
(n + 1)-space. To prove the result for a variety F of dimension n in (n + r)-
space project F into (n + 1)-space. Let Vi be the projection and let W\ be 
the union of the projection of W and the variety of all points which are the 
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projections of more than one point of V. Apply the result already obtained 
to Vi with the subvariety Wi and lift the cell decomposition so constructed 
to V. 

LEMMA 18.3. Let V be a real algebraic variety, W a subvariety, and p a point 
of W. Then there is a neighbourhood U of p such that all points of U C\ ( V — W) 
can be joined to p by analytic arcs on V meeting W only at p. 

Proof. The proof is to be carried out by induction on dimpF. Assume that 
the result is true for any variety whose local dimension is less than n\ the 
theorem is obvious in the case of a curve. The proof will first be carried out 
taking V as w-space and W as any variety through p. There are two cases to 
consider. 

Case (1), diiripW7 < n — 1. Project W on the hyperplane xn = 0, the pro­
jection being W. Let pf be the projection of p. Apply the induction hypo­
thesis taking V as the in — 1)-space xn = 0 and replacing W by W. Then 
there is a neighbourhood U' of pf such that all points of V — W can be joined 
to p' by analytic arcs meeting W only at p\ Also apply the induction hypo­
thesis with V, W replaced respectively by Wi, W where W\ is the set of all 
points projecting on W. Then there is a neighbourhood U of p such that all 
points of U C\ (Wi — W) can be joined to p by analytic arcs in W\ meeting 
W only at p. It can be assumed that U is so small that it projects inside U' 
and it can also be assumed to be cylindrical. 

Let q be any point of U — W. If q Ç W\ there is an analytic arc in 
UC\ (Wi— W) joining p to g, meeting W only at p. On the other hand, if 
q $ Wi, Ç projects on q' Ç Ur — W and so there is an analytic arc in U' joining 
p! and qf and meeting W only at p'. This arc can clearly be lifted into an arc 
joining p and q and meeting W only at p. This completes the proof of the 
lemma with V = n-space in case (1). 

Case (2), dim^l^ = n — 1. This time W is a hypersurface. Choose co­
ordinates so that p is the origin and W has an equation of the form 

F = x^ + aiXn~l + . . . + ar = 0 

where the at are analytic in Xi, x2, . . . , xn-i at p. Let W be the projection on 
xn = 0 of the locus with equations F = dF/dxn = 0 and let Wi be the set 
of points projecting on W. Let W2 = W\ C\ W. 

Apply the induction hypothesis with V, W replaced by Wi, W^ respectively, 
thus obtaining a neighbourhood U of p such that all points of U P\ {W\ — W2) 
can be joined to p by analytic arcs in W\ meeting W only at p. Assume that 
U is cylindrical and is shrunk, if necessary, so that it has the properties of 
the neighbourhood U in Lemma 18.1. Let Zt and Zt

U) be as in that lemma. 
Apply the induction hypothesis with V, W replaced by the hyperplane 
xn = 0 and W respectively. Then there is a neighbourhood Ur of p in xn — 0 
whose points can be joined to p by analytic arcs meeting W only at p. Assume 
that U is shrunk, if necessary, so that it projects into U\ Let g be a point 
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of U — W. If q Ç Wi, it has been shown that there is an analytic arc joining 
p to q in U C\ (Wi — W)% meeting W only at p. On the other hand, if q $ W\ 
and if q does not project on a set Z* covered by the Z / ; ) then proceed as in 
case (1). If q $ W\ and q projects on Zt covered by some of the Z*(i) then 
there is an analytic arc in the interior of Zt joining the projection qf of q to 
p and meeting the frontier of Z* only at p. For the sake of definiteness assume 
that q lies between Z*(1) and Z / 2 ) and suppose that the above-mentioned 
arc from q' to p in Z* has parametric equations 

*j = />(*), J = 1,2, . . . , n - 1. 

Suppose that the points of Z*(1) and Z*(2) lying over this arc are given respec­
tively by xn — /w

(1)(0 and xn = fn
(2){t). Then the arc with equations 

*y = /*(0. j = 1,2, . . . , « - 1, 

for suitable h, k, is an analytic arc joining q to £ in £7 meeting IF only a t £ . 
This completes case (2). 

The proof will now be carried out for any real algebraic variety V with 
dimpF = n. By Lemma 18.2 there exists a neighbourhood U\ of p such that 
U\C\ V \s the union of the closures of disjoint open cells whose frontiers lie 
on a variety W\ containing W. Also the proof of Lemma 18.2 shows that the 
w-cells in this decomposition project homeomorphically on w-cells in w-space, 
the frontiers of the latter being contained in the projection of W\. All the 
cells in this decomposition whose dimensions are less than n lie on a variety 
Wi and it will be assumed that Wi contains W\. 

Apply the induction hypothesis to Wi with the subvariety W. Then there 
is a neighbourhood Ui on p such that all points of Ui C\ {Wi — W) can be 
joined to p by analytic arcs in Wi meeting W only at p. If q $ Wi then q 
is in the interior of an w-cell Z' projecting on an n-ce\\ Z in w-space. Apply 
the result already proved for w-space with the subvariety Wz which is the 
projection of W\. Then there is a neighbourhood U% of the projection of p 
in w-space such that p can be joined by an analytic arc to any point of 
Uz — Wz, and in particular to the projection of ç. Such an arc meets the frontier 
of Z only at the projection of p and so can be lifted into Z'. With a suitable 
choice of parameter a lifted arc is still analytic at p. The neighbourhood U 
required by the statement of this lemma can be taken as the smallest of 
Uu Ui, Uz. 

19. Further properties of sheets. 

THEOREM 14. Each sheet S of a real algebraic variety V is a closed set. 

Proof. If F is of dimension n it is sufficient to prove the theorem for an 
n-dimensional sheet. For every other sheet is of maximal dimension in some 
subvariety which is itself a closed set of V. 
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If p Ç S then every neighbourhood U of p meets S] let q £ U C\ S and 
assume that U is open. U is a neighbourhood of q and 5 is ^-dimensional and 
so, by definition, U contains a simple point q' of V, q' lying on S. By Lemma 
18.3, there exists an analytic arc joining p to qf on F if U is small enough. It 
follows that p lies on the sheet of V determined by the simple point q' as in 
Theorem 13. By the corollary of that theorem this sheet is 5. Since p is any 
point of S this shows that 5 is closed as required. 

COROLLARY. Every point p of a real algebraic variety belongs to some proper 
sheet. 

Proof. By Lemma 18.2 (2), there is a neighbourhood U of p which can be 
written as the union of the closures of open cells each of which is contained in 
some proper sheet. The point p is in the closure of each such cell and so is in 
the closure of some proper sheet. By the theorem just proved p lies on that 
sheet. 

THEOREM 15. The number of sheets of a real algebraic variety in Euclidean 
space is finite. 

Proof. It is sufficient to prove the theorem for sheets of dimension n of an 
^-dimensional variety V because all other sheets are contained in some sub-
variety. Assume that the variety V has infinitely many w-dimensional sheets. 
Take a point on each sheet. This set of points will have a limit point p which 
may be a point at infinity. In the latter case apply some transformation, for 
example, inversion in some hypersphere, to make the limit point finite. Then 
every neighbourhood of p meets infinitely many ^-dimensional sheets of V. 
But, by Lemma 18.2 there exists a neighbourhood U of p such that U C\ V 
is a finite union of closures of cells, each n-ce\\ lying on exactly one w-dimen-
sional sheet. Since the sheets are closed (Theorem 14), the closure of each 
of these n-ce\\s lies on exactly one n-dimensional sheet. Therefore, U meets 
only a finite number of these sheets. The contradiction so obtained proves 
the theorem. 

REFERENCES 

1. J. Nash, Real algebraic manifolds, Ann. of Math., 56 (1952), 405-421. 
2. P. Samuel, Sur Valgêbricité de certains points singuliers, J. de Math, pures et appl. (9), 

35 (1956), 1-6. 
3. A. H. Wallace, Algebraic approximation of manifolds, Proc. London Math. Soc. (3), 7 

(1957), 196-210. 
4. H. Whitney, Elementary structure of real algebraic varieties, Ann. of Math., 66 (1957), 545-

556. 

University of Toronto 

https://doi.org/10.4153/CJM-1958-028-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1958-028-5

