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SURFACE MOUNTED HEAT FLUX SENSORS
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Abstract

The dual integral equations describing heat flow about a circular Heat Flux Sensor on the
surface of a layered medium are derived and discussed, together with the extent to which
the Heat Flux Sensor measures the heat flow which would occur in the absence of a Heat
Flux Sensor. An asymptotic analysis provides new analytical results supporting those
derived previously by numerical methods.

It is suggested that some properties of the general problem of a Heat Flux Sensor on
the surface of a multiply-layered medium can be approximated by a lumped-parameter
model depending on only four non-dimensional numbers; namely, two non-dimensional
linear heat transfer coefficients, and essentially two non-dimensional thermal resistances.
Some support for the lumped parameter model is provided

1. Introduction

What are the main factors determining the relative error of a Heat Flux Sensor
(HFS) on a layered floor? How does the relative error of a HFS depend
quantatively on these factors? These two questions are of interest to the measure-
ment of heat flow through buildings, since a HFS typically measures the heat flow
through itself, whereas one usually requires the heat flow which would occur in
the absence of a HFS. Furthermore, the response of a HFS depends on the
geometry and composition of the wall, and so an analytic approach may be useful
in summarising the results of numerical models of a HFS.

The aim of this paper is to develop an analytic model of an idealised HFS in
order to address the questions above. We assume for simplicity that the HFS is
circular, and infinitesimally thin. Consequently the mathematical problem to be
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treated resembles one discussed previously by the author (Weir [6]), but extends
our earlier results in three ways. Firstly, a layered medium is introduced, and the
resulting mathematical structures detailed. Secondly, the leading term in an
asymptotic expansion of an important integral is derived, and thirdly, four
non-dimensional numbers are obtained which should be important in quantifying
the relative error of an HFS.

It is important to distinguish between surface-mounted and embedded heat flux
sensors, which are obviously positioned respectively on and within the conducting
medium. Some factors which may be important for the performance of a
surface-mounted HFS are the finite thickness of the conducting medium (floor,
wall, etc.), significant transverse temperature gradients induced by the presence of
the HFS, significant changes longitudinally in the thermal conductivity of the
medium and surface heat transfer coefficients. Some of the factors above are
omitted in discussions of embedded HFSs [4], and for the remainder of this paper
we shall understand our HFS to be surface-mounted.

Perhaps the main physical difference between surface-mounted and embedded
HFSs is that for mismatched surface heat transfer coefficients the influence of a
surface-mounted HFS is non-zero, independent of its thickness, whereas the
influence of an infinitesimally thin embedded HFS is zero. Mathematically, the
radiation boundary conditions introduce new length scales which are missing for
an embedded HFS.

2. Model formulation

A thin circular Heat Flux Sensor (HFS) of radius Ro lies on the surface of a
horizontally layered floor of unbounded horizontal extent. A steady (though
spatially variable) heat flow occurs from the lower surface Z = — ZN to Z = 0,
and we shall discuss the extent to which the HFS records the heat flow which
would occur in the absence of a HFS.

In a cylindrical coordinate system (R, Z) (see Figure 1), the model equations
are

v 2 r = o, z < o ,
T=TN, Z=-ZN,

^lT,z= -ho(T-To), Z = 0, 0<R<Ro,

KlT,z= -h,{T-T0), Z = 0, R>R0,

T and KT,Z continuous,
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131 Surface mounted heat flux sensors 283

where T is temperature, K, thermal conductivity of layer / (/ = 1 , . . . , W)> h0

and hY the linear heat transfer coefficients of the HFS and floor surface
respectively, and To and TN are constants. The thermal conductivity K, is
assumed constant within the /th layer which occupies -Zt< Z < -Z,_v and
Zo equals zero.

Z f To
h0 Ro

-z,

-zN

R

K,

KN

Figure 1. Schematic diagram of a circular Heat Flux Sensor on an /V-layered medium.

The definitions

(1)

a = h0R0/Kx,

P = h.Ro/K,,

o,

(2)

(3)

(4)

(5)
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yield the following non-dimensional equations

v f y = 0, -zN<z<0,

\p and K\p,z continuous, (6)

\p,.= -a<p + I, z = 0, 0 < r < 1,

«//,__ = -/fy, z = 0, r> 1,

where 7"u is the piecewise linear temperature distribution which results in the
absence of a HFS.

It is convenient to use Bessel Transforms

to define

G(/>)=/o*/a*o*.* onz = 0, (7)
and

Hp)=PSo(*,z + M) onz = 0. (8)

Hence

J0+ = FG/(p + /3pG) onz = 0, (9)

and

SO+>, = F/(P + PPG) onz = 0. (10)
Application of Bessel Transforms to the boundary conditions in (6) then yield

the dual integral equations

r 0, r>\, (11)

When a = /? the solution of (11) and (12) is F(p) = J^p), and Tranter's method
[2] suggests setting

F(P)= I °mJ2m + i(p), (13)
m = 0

which automatically satisfies (11), and then finite Legendre transforms

f rJ0(rp)Pn(l - 2r2) dr = p -

and the Weber-Schafheitlin integral

J2m+x(p)J2n+x{p)dp/p = KJQ- + 4")
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reduces (12) to the solution of the algebraic system

aan +(P - «)(2 + 4«) £ amKmn = (i8n,0, (14)

where

The function Kmn is independent of a. Intuitively, the series (13) appears
especially appropriate for (a//?) approximately equalling unity.

A simple expression for the surface values of \p on 0 < r < 1 can be obtained
from (9), since on z = 0

FJ0(rp)pdp

and so from (13)—(15), on z = 0,

(jB - o)(2 + An) C 4>rPn(l - 2r2) dr = an - SH 0 .

Consequently the orthogonality of the Legendre functions yields

1 +(P - a)\p = £ a m P m ( l - 2r2) on z = 0, 0 < r < 1. (16)

o
In particular, \j/, the mean value of \p over the HFS, is related linearly to a0,

Finally, we define the relative error, RE, of a HFS as the difference between
Qx and the mean heat flux through the HFS, relative to Qx, or

RE = 1 + ^—- (R° l-nRKiT^dR on Z = 0,
"0co*O J0

,rdr on z = 0,

°°F(p)Jo(rp)dp

0)Jo '"'Jo (l+PG)
-^-\r rdr

PI Jo k

=•• 07)

3. The function G(p)

To determine the functions Kmn defined in (15) we must first calculate the
function G(p) defined in (7). Firstly, since \p satisfies Laplace's Equation, within

https://doi.org/10.1017/S0334270000004938 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000004938


286 G. J. Weir [6|

each layer there are functions (^, Wt) independent of z satisfying

J^ = V,e" + W,e-", -z,<z< - z , . , , (18)

where z0 = 0, and / = 1 , . . . , N.
Application of the boundary conditions yield

VNe-pz" + WNepz" = 0,

= Kl + 1(Vl + 1e-Pz- - Wl+lePz'), (19)

where i = 1,..., N — 1, and from (7) and (18) we require

By defining

(19) becomes
wN = 0, (20a)

(Ki+l/K,)coshp(z,+1 - z,) (Ki+l/Kl)sinhp(z, + 1 - zi)\/v,+1

sinhp(zi+l- zt) cosh/?(z,+1 - z,) /lw<+i

(20b)

vlsinh pzx + WjCosh/iZj
/w, cosh pzx + pwx sinh pzx '

where the 2 X 2 matrix L, is defined between (20b) and (20c). Hence
G = wo/vo, (21)

where
/v-i

^o = ^ I / / 7 . (23)

and the indices / in the product of L, matrices are arranged in increasing order to
the right. The definition of G in (2l)-(23) shows (by induction) that under the
transformation zy -* —z-, vt are even and wt odd, for / = 0 , . . . , N — I; and so G
is odd under Zj -* —zy Similarly, G is even under the transformation p -» —p.

The product of the L, matrices involves addition and multiplication of non-
negative quantities, and so G is non-negative. For p sufficiently large, tanh(/7Zi)
tends to unity, and so from (20d)

lim pG{p) = I. (24)
/>-*oo
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Similarly,

lim pG = 1, p # 0. (25)

As p tends to zero, the product of L, yields

wi =

N

and so from (20d)

lim
p-0 ./ = !

A:.
(26)

As an alternative to the algebraic derivation of G above, one can proceed
geometrically, since the matrices L, can be interpreted as geometric transforma-
tions of the points (u,+1,w(+1) into (U,,M>,) in a two-dimensional space {v,w).
From (20b), L, is the product of a Lorentz transformation (preserving v2 — w2),
followed by a shear in the v direction. The Lorentz transformation "rotates"
points along a rectangular hyperbola in (v, w) space, whereas the shear can allow
points to cross the line v = w.

We shall assume initially that

K0<Kt< ••• <KN.

Then the definition

tanhfl, = wt/Vj,

together with (20), gives

tanhfl, = - F
J - t a n h [ 0 / + 1 + H z / + 1 - z / ) ] , i = 0,...,iV - 1, (27)

G = tanh0o.

Expanding the right-hand side of (27) recursively so as to eliminate all of the
8l + l yields an equation for G involving only expressions of the form Kit Kl+l

and tanh p(zl + l - zt) for / = 0,. . . , N — 1, and this equation is obviously valid
if the initial restriction on the magnitudes of AT, is now dropped. This is perhaps
the simplest method for calculating G.

There is an analogy with the above results and some from electromagnetism. In
Electromagnetic Theory [5] the ratio Ex/Hy on the surface z = 0 is called the
surface impedance, and since Ex is often proportional to the vertical gradient of
Hy we see from (7) that G is analogous to the surface impedance, and {v,, w() are
analogous to transmitted and reflected waves.
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Similarly, special "angular" relationships are possible, analogous to those in
Optics, since the line v = w divides one set of rectangular hyperbole (with w < v)
from another (with v < w). The line v = w is analogous to the light cone in
Special Relativity Theory. We seek the conditions under which a non-unity ratio
W ; + 1 /D 1 + 1 is mapped under L, into unity.

If vv, + 1/t;, + 1 and Kl+l/Kj are both greater than unity, we define

wl + 1/ul + 1 = coth7/, + 1,

K, + 1/K, = coth<f», + 1.

Then wl/vl is unity, provided

4>, + i =Vl + i +P(z, + i - * , ) • (28)

The same condition follows if

tanhrj, + 1 = wl + l/vl + 1 < 1,

and

Consequently, if rj, + 1 < <£, + 1, there is always one value of p satisfying (28).
Furthermore, from (20d), if for example vl = wY, then G has the same value there
as when z1 is infinite.

4. A uniform half-plane (z t = oo)

When zx is infinite the problem above reduces to that of a HFS on a uniform
half-plane, and from (25) and (15) Kmn reduces to Jmn, where

00

, + t • < 2 9 )

The behaviour of (29) is known [6] for small /?. In particular,

ôo( P) = i - W 3 * + 0 ( / ? 2 In p),

and provided a0 is the dominant term,

[ + f
•*-(-!)('-£)•

/3 «: 3TT/8 S 1.18.

Consequently the problem of small /? (and a) has been solved, and it remains to
discuss perhaps the more important problem of large /?.
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The leading term in an asymptotic expansion for •/„,„(/?) can be obtained (for

moderate m and «) by considering the following expression for Jmn

+ 2n+2s+2

( n \2

_ 2J
J

where — m — n — 2 < c < —m — n — 3/2,

M(s) = T(s + l)r(2m + s + 2)T(2n + s + 2)T(2m + 2n + s + 3),

K T ( y - m - n - \ ) \ { m - n + y + ±)T(n - m + ± + y ) '

D(y) = cos try sin2<7ry T(m + n + i + y)/T(2y),

which follows by displacing a published line integral (Equation 21, [6]) one half
integer to the left. The closed line integral in (30) is a small anti-clockwise circle
surrounding the origin, where D(y) contributes a double pole, and N(y) is
analytic. We find

D(y) 43 Y -

|

,-o 2 ' + 1
(31)

where y is Euler's constant. Equation (31) is the leading term in an asymptotic
expansion for Jmn(f$), since the remaining line integral in (30) is <9(/J~x), where
— 2 < X < — 1, which follows from a well-known property (6.1.45 in [1]) of the
Gamma function.

Consequently, for large f$,

= ^ ( l n 0 + 0.657),

and provided a0 is the dominant term,

RE a 2(/8 - a ) / 0 0 ( ^ ) / [ a + 2(j8 - a ) /

The Bessel transform expression for /QO(^) shows that for large /?, ^(yS) is a
monotonically decreasing function of /J. However, the approximation above for
Jooifi) has a maximum at approximately 1.41, and so we require

P » 1.41

for P to be considered large.
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Higher order contributions to the asymptotic expansion for •/„,„(/?) are ob-
tained by moving the first line integral in (30) to the left in successive half integer
steps, but for large /?, the leading term given in (31) should be sufficient.

5. Lumped parameter model

For a general iV-layer model the integrals to be performed are complicated,
which suggests the introduction of an approximation. Our main aim in using
approximate expressions is to derive dimensionless numbers useful in the classifi-
cation of numerical results.

For a layered floor of finite thickness the Bessel transforms in (15) are perhaps
best treated numerically, but for infinitely thick homogeneous floors, the integrals
Jmn(f}) in (29) have been determined analytically. Consequently our approach is
to replace some difficult Bessel transform for a layered floor by another simpler
transform of the type occuring for homogeneous unbounded floors.

The primary motivation for introducing such approximations is to provide a
theoretical justification for recent empirical results by H. Trethowen and N.
Isaacs [3] which indicate that the relative error for many practical Heat Flux
Sensors on the surface of a doubly layered medium can be approximately
described by one non-dimensional number, whereas an exact analysis suggests
five non-dimensional numbers as being important. We shall proceed by deriving
an approximate expression for the relative error of a HFS, which has yielded
similar results to the previous fully empirical approach. It is hoped to report these
findings at a later date.

The first approximation we consider is

where

m p*G(p*)[l + aG(0)]

fi [G(0)-G(p*)\ •
By construction, equality holds in (32) when p equals 0, p* or oo, and we are
assuming that none of the layers are infinitely thick. When one of the layers is
infinitely thick, the form of approximation in (32) still holds (from the behaviour
for large p), but now a* and /?* are obtained by considering the limiting
behaviour of the left-hand side of (32) for two values of p (perhaps 0 and 1).
Only finitely thick floors will be considered in the following discussion.
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We shall now show inductively that G is a monotonically decreasing function
of p. Firstly, for a finitely thick uniform layer, G is simply p~l tanh pzx, and so
for N = 1, G is a monotonically decreasing function of p. The inductive step is
established by considering an AMayered floor to be a composite of the lowermost
N — 1 layers plus the upper layer. Then, if GN_X is the corresponding G function
for the lower N — I layers, from (20)

= v2sinhp(z2 - zx) + w2coshp(z2 - zx)
/?[u2cosh/?(z2 - zx) + w2sinhp(z2 - zx)]

and

G =
 K2 S i n h PZ1 + PKl C O s h PZ\GN-l

p(K2coshpzl + pKx sinhpz1GN_l)

Differentiating (35) with respect to p, observing that (sinhxcoshx - x) is
positive for positive x, and assuming that GN_X is monotonically decreasing then
shows that G is indeed monotonically decreasing in p.

Consequently, from (33) and (34), both (a* - /?*) and (a - /?) have the same
sign, and so the obvious monotonicity on the right-hand side of (32) also occurs
on the left-hand side of (32). Hence the right-hand side of (32) does indeed
provide a rough approximation to the left-hand side, and clearly the use of more
general Pade approximates on the right will improve the approximation. How-
ever, in what follows, we shall use (32) since this allows an analytical (rather than
numerical) approach to be followed.

We shall define our lumped parameter model as
(i) the approximation in (32), which allows a set of coefficients a* to be

determined, and
(ii) having obtained a*, set

in formulae such as (16) and (17).
The equation for a*,

a*a* +(2 + 4n)(0* - «*) £ </„,„(/?*) = )3*Sn,0, (36)
m = 0

follows by substituting (32) into (12), and repeating the steps between (12) and
(15). Equation (36) is formally identical to the equation for an when zx is infinite.
In particular, using an obvious notation, Kf = Kv R% = Ro, and

h* = *, + 1/ £ (Z, - Z,_^/Kk for j = 0,1.
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From (33), a* is a function of only a* and /?*, and so from (17) the important
quantity RE is approximated in our lumped parameter model as a function of
only a/P, a* and /?*. In particular, for large /?*,

RE s 1 - afi*/{fi[a* + 2(0* - a*)Jm(fi*)]}, (37)
whereas for small /?*,

RE s 1 - o[l + 8(0* - a*)/3ir]/fi. (38)

Our lumped parameter model determines three asymptotic regimes. Firstly,
from (38), for small /?*,

RE-l-V*!. (39)
which implies that for small a* and /?* the surface thermal resistances h^1 and
/if1 are important. Intuitively, the isotherms are essentially horizontal and con-
tinuous within the floor. This follows since in the steady state, temperature
differences equal the product of the heat flow and the corresponding thermal
resistance. The second regime follows from (37). When G(0) is bounded, and /?*
and a* are large,

RE~ 1 - a/3*/a*p

L.-1 V* '

= 1 , = i

(40)

showing in this case that the total thermal resistance between TN and To is
important. Intuitively a boundary layer develops at the edge of the HFS, with
horizontal isotherms away from the vertical boundary layer. A third regime
follows when (7(0) is infinite, in which case /QO(^*) becomes important.

For a finitely thick floor, our lumped parameter model suggests that (40) and
(39) provide respectively lower and upper bounds for RE. Alternatively, if /? * is
greater than a*,

1 < a0 < 0• /«*, (41)
a result previously suggested (Weir [6]).

Finally, from (39) and (40), our lumped parameter model predicts that the size
of the HFS is important only in the transition region where /?* is of order unity.
Since a0 approximately varies between the two bounds in (41) in the transition
region, we anticipate that as the ratio /$*/a* varies away from unity, the
behaviour of a0 in the transition region becomes more difficult to predict.

6. Discussion

This paper has extended the results of a previous paper (Weir [6]). Firstly, we
have shown that the function G(p) is fundamental to a mathematical discussion
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of a HFS on a layered medium. Matrix expressions ((21)-(23)), terminating
continued partial fractions (27) and a geometric construction, were presented for
evaluating G(p), together with a number of algebraic ((24)-(26)) and symmetry
properties of G(p).

Secondly, an asymptotic analysis was developed for treating the large /? case for
a homogeneous half-plane of conducting material. The main step was in displac-
ing the original vertical contour in the complex plane a finite number of half
integer steps to the left, and observing that this line integral is asymptotic relative
to the traversed poles' residues. The leading term in this asymptotic series is in
good quantitative agreement for large /? with our previous numerical results (Weir
[6]).

Thirdly, a lumped parameter model was described for multiply-layered media.
Undoubtedly this is the least satisfactory, but perhaps the most interesting aspect
of this paper.

The lumped parameter model is unsatisfactory because of its non-rigorous
nature. It cannot be true generally since it contains only four non-dimensional
numbers, whereas arbitrarily many non-dimensional numbers are required to
describe a general layered media. However, the lumped parameter model is
interesting because in modelling physical systems one is often concerned with
particular, rather than the most general cases. Sometimes one seeks a qualitative
rather than a quantitative behaviour of a physical system, and if possible, the
most important non-dimensional numbers quantifying the system. The lumped
parameter model suggests four non-dimensional numbers as being important.
Their usefulness is best decided by others. However, a particularly encouraging
feature is that for a two-layered finitely thick floor, the lumped parameter model
for physically realistic parameter values not only provides the main non-dimen-
sional numbers, but has to date also approximately quantified the relative error
RE in all of over one hundred numerical tests (Harold Trethowen, personal
communication). It is hoped to report these results at a later date.

Finally, the variable p* in (33) and (34) has intentionally been left indefined.
The approximate agreement between our lumped parameter model and previous
empirical approaches referred to above has been obtained by setting p* to unity,
but we recognize that more appropriate values of p* can yield improved results.
Furthermore, simpler choices for a* and /?* are also possible. For example,

yield similar results to (33) and (34), and avoid evaluation of the tanh functions in
G(p). It is hoped to discuss these matters at a later date.
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