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Abstract

Let R ⊂ S be an extension of integral domains, with R∗ the integral closure of R in S . We study the set of
intermediate rings between R and S . We establish several necessary and sufficient conditions for which
every ring contained between R and S compares with R∗ under inclusion. This answers a key question
that figured in the work of Gilmer and Heinzer [‘Intersections of quotient rings of an integral domain’, J.
Math. Kyoto Univ. 7 (1967), 133–150].
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1. Introduction

All rings considered in this paper are integral domains, commutative with identity, and
all subrings are unital domains. The field of fractions of a ring R is denoted by q f (R)
and the integral closure by R′. We frequently use Spec(R) (respectively, Max(R)) to
denote the set of all prime (respectively, maximal) ideals of R. For convenience, we
will use the symbol Rad(R) to denote the Jacobson radical of R.

For a ring extension R ⊂ S , we denote the set of intermediate rings (that is, the
set of all rings T such that R ⊆ T ⊆ S ) by [R, S ], the conductor of R in S (that
is, (R : S ) = {x ∈ R : xS ⊆ R}) by (R : S ) and the integral closure of R in S by R∗.
If in addition, P ∈ Spec(R) and T ∈ [R, S ], then TP is the localisation TR\P. Also,
Supp(S/R) = {P ∈ Spec(R) : RP , S P} and MSupp(S/R) = Supp(S/R) ∩Max(R).

Given a ring extension R ⊂ S , we say that (R, S ) is a normal pair if each ring
in [R, S ] is integrally closed in S . The concept of a normal pair was introduced
by Griffin [13]. These pairs where later studied in case R is an integral domain by
Davis [7]. He proved that if R is quasilocal, then (R, S ) is a normal pair if and only if
there exists a divided prime ideal P of R (that is, PRP = P) such that S = RP and R/P
is a valuation ring [7, Theorem 1]. Recently, normal pairs have received considerable
attention (see [3, 5, 9, 16]).
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In recent years, there has been increasing interest in ring extensions R ⊂ S satisfying
FIP (finite intermediate rings property) or FCP (finite chain property). Following [1],
the extension R ⊂ S is said to satisfy FIP if there are only a finite number of rings
contained between R and S . A ring extension R ⊂ S is said to satisfy FCP if each chain
of distinct intermediate rings of this extension is finite. Any minimal ring extension is
an example of an FIP or FCP extension. (Recall from [10], that a ring extension R ⊂ S
is called minimal if [R, S ] = {R, S }; as usual, ⊂ denotes proper inclusion.) Moreover,
if a ring extension has FCP, then any maximal chain R = R0 ⊂ R1 ⊂ · · · ⊂ Rn = S of
intermediate rings between R and S consists of a finite number of ‘steps’ Ri ⊂ Ri+1

that are minimal extensions. Later, in [11], Gilmer studied FIP and FCP for the case of
overring extensions of integral domains. Several authors investigated the realisation of
these two conditions in the more general setting of ring extensions (see [4, 8, 9, 16]).
Notice that, in [4], Ben Nasr has independently studied the set [R, S ], in particular,
when R ⊂ q f (R) has FCP. He established an explicit description of any intermediate
ring in terms of localisations of R (see [4, Theorem 2.4]). The main tool that we use to
prove our results is Theorem 2.1 in which we generalise the last cited result.

As the title of this paper suggests, our goal is to obtain a necessary and sufficient
condition under which the integral closure is comparable with each intermediate ring.
Precisely, Theorem 2.7 states that if R ⊂ S satisfies FCP such that R ⊂ R∗ ⊂ S , then
[R, S ] = [R, R∗] ∪ [R∗, S ] if and only if, for each R ⊆ J ⊂ R∗ such that J ⊂ R∗ is a
minimal extension, (J : R∗) ⊆ M for each M ∈ MSupp(S/R∗). As a consequence,
we show that if R ⊂ S is an FCP extension such that [R, S ] = [R,R∗] ∪ [R∗, S ], then
Supp(S/R∗) contains at most two maximal ideals (Corollary 2.10). We also show that
if S = q f (R) and R ⊂ R′ ⊂ q f (R), then [R, q f (R)] = [R,R′] ∪ [R′, q f (R)] if and only if
each intermediate ring of [R,R′] \ {R′} is quasilocal (Corollary 2.14). Further examples
and counterexamples are given.

Finally, any unexplained terminology is standard as in [17].

2. Main results

For T an intermediate ring of [R, S ] and I a proper ideal of R, write

T(I) =
⋂

(M∈Max(T ),M⊇I)

TM .

If I = R, we adopt the convention T(R) = q f (R).
Recall from [10, Théorème 2.2(i) and Lemme 1.3] that if R ⊂ S is a minimal

extension, then there exists a unique maximal ideal M of R (called the crucial maximal
ideal of R ⊂ S ) such that the canonical injective ring homomorphism RM → S M can be
viewed as a minimal ring extension, while the canonical ring homomorphism RP→ S P

is an isomorphism for all prime ideals P of R, except M. If, in addition, R ⊂ S
is an integral extension, then M is precisely the conductor (R : S ) of R in S [10,
Théorème 2.2(ii)].

We begin by proving the following fundamental theorem.
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Theorem 2.1. Let R ⊂ S be an FCP extension and let T ∈ [R, S ] such that T ∩ R∗ = J.
Set C = (J : R∗). Then there exists a collection F(T ) of prime ideals of J such that
T = J(C) ∩ T1 and T1 = R∗(C) ∩ (

⋂
p∈F(T ) R∗p).

Proof. Let J∗ denote the integral closure of J in S . It is clear that J∗ = R∗. Also,
the extension J ⊂ S inherits FCP from R ⊂ S . So it suffices to prove the theorem for
J = R. The result is trivial if R∗ = R or R∗ = S . Now we assume that R ⊂ R∗ ⊂ S .
Let T ∈ [R, S ] with T ∩ R∗ = R, so that (R, T ) is a normal pair [2, Proposition 4].
According to [7, Theorem 1], for each m ∈Max(R), there exists a prime ideal p ⊆ m
with Tm = Rp. First, assume that R is quasilocal with maximal ideal m. We prove that
p = m. If p ⊂ m, then p + C [9, Corollary 3.2]. Thus, by virtue of [6, Proposition 0],
Rp = R∗p, and so T = Tm = R∗q. It follows that R = T ∩ R∗ = R∗q ∩ R∗ = R∗, which is a
contradiction. Consequently, T = R.

We turn now to the general case, that is, R need not be quasilocal. Let m ∈Max(R).
If m + C, then a fortiori p + C, and hence Rp = R∗p = R∗q for a prime ideal q of R∗ lying
over p [6, Proposition 0]. Thus Tm = R∗p. Now, if m ⊇C, we wish to show that Tm = Rm.
Since R ⊂ R∗ satisfies FCP, there is a finite maximal chain R = R0 ⊂ R1 ⊂ · · · ⊂ Rn = R∗

of rings from R to R∗. For each i = 0, . . . , n − 1, let Ci be the crucial ideal of Ri ⊂ Ri+1

and let mi = Ci ∩ R. Then, by [9, Corollary 3.2], m = mi for some i. We have Rmi ⊂ R∗mi
.

Indeed, if Rmi = R∗mi
, then, necessarily, (Ri)mi

= (Ri+1)mi
. Hence (Ri)Ci

= (Ri+1)Ci
,

although Ci is the crucial maximal ideal of the extension Ri ⊂ Ri+1, which is the desired
contradiction. As, in addition, (T ∩ R∗)m = Tm ∩ R∗m = Rm and R∗m is the integral closure
of Rm in S m, we conclude from the ‘quasilocal’ case that Tm = Rm.

Let F(T ) = {p ∈ Spec(R) : R∗p = Tm, for some m ∈Max(R),m + C}. Then

T =
⋂

m∈Max(R)

Tm =

( n−1⋂
i=0

Tmi

)
∩

( ⋂
m∈Max(R),m+C

Tm

)
=

( n−1⋂
i=0

Rmi

)
∩

( ⋂
p∈F(T )

R∗p
)
.

Finally, take T1 = [R∗(C) ∩ (
⋂

p∈F(T ) R∗p)]. We have T1 ∈ [R∗, S ] and T = R(C) ∩ T1. This
completes the proof. �

Proposition 2.2. Let R ⊂ S be an FCP extension. If each R ⊆ J ⊂ R∗ is quasilocal,
then [R, S ] = [R,R∗] ∪ [R∗, S ].

Proof. Let T ∈ [R, S ] such that T ∩ R∗ = J, J , R∗. Using Theorem 2.1, T = J(C) ∩ T1,
where C = (J : R∗) and T1 ∈ [R∗, S ]. Since, by assumption, J is quasilocal, then its
maximal ideal M necessarily contains the conductor C. Thus J(C) = JM = J and T = J.
Therefore [R, S ] = [R,R∗] ∪ [R∗, S ]. �

Corollary 2.3. Suppose that R∗ is quasilocal and R ⊂ S satisfies FCP. Then [R, S ] =

[R,R∗] ∪ [R∗, S ].

Proof. Since R∗ is quasilocal, then by integrality, each intermediate ring of [R,R∗] is
quasilocal. Hence the conclusion follows readily from Proposition 2.2. �
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Theorem 2.4 of Gilmer and Heinzer [12] leads to an investigation of domains
with Prüfer integral closure and which have a unique minimal intermediate ring.
As a consequence of Proposition 2.2, we generalise the above cited result for FCP
extensions.

Corollary 2.4. Let R ⊂ S be an FCP extension such that R is quasilocal and R ⊂ R∗

is a minimal extension. Then R∗ is the least element in the set [R, S ] \ {R}.

For an FCP extension R ⊂ S , the converse of Corollary 2.4 is not true, in general.
Indeed, in [2, Example 29], Ayache showed that there exists an FCP extension R ⊂ S
such that [R, S ] = {R} ∪ [R∗, S ] but R cannot be quasilocal. However, if S = q f (R) and
[R′, q f (R)] is finite, then [R, q f (R)] = {R} ∪ [R′, q f (R)] if and only if R is quasilocal
and R ⊂ R′ is a minimal extension [2, Corollary 28].

To facilitate the proof of Theorem 2.7, we isolate the following Proposition, which
is of some independent interest.

Proposition 2.5. Let R ⊂ S be an FCP extension such that R , R∗ and R∗ ⊂ S is a
minimal extension with crucial maximal ideal N. If [R, S ] = [R, R∗] ∪ [R∗, S ], then
(R : R∗) ⊆ N ∩ R.

Proof. Suppose, by way of contradiction, that (R : R∗) * N ∩ R. In the light of [9,
Theorem 4.2(a)], R/(R : R∗) is an Artinian ring and {m ∈ Max(R) : m ⊇ (R : R∗)} is
finite. Let {m0, . . . ,mn} be the set of maximal ideals of R containing (R : R∗). Since R ⊂
R∗ satisfies FCP, we can always find J ∈ [R,R∗] such that J ⊂ R∗ is a minimal extension.
Hence (J : R∗) is the crucial maximal ideal of J ⊂ R∗, and so (J : R∗) ∩ R = mi for
some i ∈ {0, . . . , n} [9, Corollary 3.2]. Put N′ = N ∩ J. Then N′ , (J : R∗) (indeed,
if N′ = (J : R∗), then N ∩ R = (J : R∗) ∩ R = mi and (R : R∗) ⊆ N ∩ R). It follows
that N ∩ J * (J : R∗). Then the crosswise exchange lemma [9, Lemma 2.7] provides
a ring T ∈ [J, S ] such that J ⊂ T is an integrally closed minimal ring extension.
Thus T ∩ R∗ = J. Since [R, S ] = [R, R∗] ∪ [R∗, S ], it follows that T = J, which is a
contradiction. Therefore (R : R∗) ⊆ N ∩ R. �

The following example shows that the converse of Proposition 2.5 is false.

Example 2.6. Let x be an indeterminate over K = Q(
√

2). Let S = K[x](x) = K +

xK[x](x) and V = K[x](x+1) = K + (x + 1)K[x](x+1). Set R∗ = S ∩ V . Then R∗ is a
semilocal principal ideal domain with maximal ideals M = (x)R∗ and N = (x + 1)R∗

such that R∗M = S , R∗N = V and R∗/M � R∗/N � K. Put I = M ∩ N and let R = Q + I.
Then R is a quasilocal domain with maximal ideal I and (R : R∗) = I. Let D =

Q(
√

2) × Q and set T = ϕ−1(D), the inverse image of D by the canonical epimorphism
ϕ : R∗ −→ R∗/I = K × K. Then T is a ring of [R, R∗] and T is a semilocal domain
with two maximal ideals. Denote Max(T ) = {M′, N′} such that M′ = M ∩ T and
N′ = N ∩ T . Since Q(

√
2) × Q ⊂ K × K is a minimal extension [8, Proposition III

4(b)], so is T ⊂ R∗ and hence (T : R∗) ∈ Max(T ). Without loss of generality, we
assume that (T : R∗) = M′. Take T ′ = TM′ . Then T ′ ⊂ R∗M′ is a minimal extension.
As R∗M′ ⊆ R∗M = S , it follows that T ′ ∈ [R, S ]. On the other hand, (R∗, S ) is a normal
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pair and R∗ ⊂ S is a minimal extension. Necessarily, N is the crucial maximal ideal
of R∗ ⊂ S . Furthermore, it is easy to verify that R∗ is the integral closure of R in S .
Since T ′ ∩ R∗ = T and T , T ′, it follows that T ′ is incomparable with R∗. Therefore
[R, S ] , [R,R∗] ∪ [R∗, S ], although (R : R∗) ⊆ (in fact, =) N ∩ R.

We now present the titular result.

Theorem 2.7. If R ⊂ S satisfies FCP and R ⊂ R∗ ⊂ S , then the following conditions are
equivalent:

(i) [R, S ] = [R,R∗] ∪ [R∗, S ]; and
(ii) for each R ⊆ J ⊂ R∗ such that J ⊂ R∗ is a minimal extension, (J : R∗) ⊆ M for

each M ∈MSupp(S/R∗).

Proof. (i) ⇒ (ii) Suppose that J ∈ [R, R∗] such that J ⊂ R∗ is a minimal extension
and set C = (J : R∗). Suppose, by contradiction, that there is a maximal ideal
M ∈ Supp(S/R∗) such that M + C. Set S 1 =

⋂
{R∗q : q ∈ Spec(R∗), q , M}. Then [3,

Corollary 2.6] ensures that S 1 ⊆ S and R∗ ⊂ S 1 is a minimal extension with crucial
maximal ideal M. As, in addition, R∗ is the integral closure of J in S 1 and M + C, then,
according to Proposition 2.5, [J, S 1] , [J,R∗] ∪ [R∗, S 1]. Thus there exists T ∈ [R, S ]
such that neither T * R∗ nor R∗ * T , which is the desired contradiction.

(ii) ⇒ (i) Let T ∈ [R, S ] such that T ∩ R∗ = J, J , R∗. By virtue of Theorem 2.1,
T = J(C) ∩ T ′ = (J(C) ∩ S ) ∩ T ′, where C = (J : R∗), T ′ ∈ [R∗, S ]. We prove that
J(C) ∩ S = J. Suppose that J , J(C) ∩ S and let {M1, . . . ,Mn} be the set of maximal
ideals of J containing C. First, notice that, since R ⊂ R∗ satisfies FCP, there is
J ⊆ J′ ⊂ R∗ such that J′ ⊂ R∗ is a minimal extension. By assumption, all maximal
ideals of Supp(S/R∗) contain (J′ : R∗) and, according to [9, Corollary 3.2], for
some i ∈ {1, . . . , n}, (J′ : R∗) ∩ J = Mi. Hence (J : R∗) is contained in all maximal
ideals of Supp(S/R∗). Now, since J ⊂ (J(C) ∩ S ) has FCP, it follows from [9,
Corollary 3.2] that Supp((J(C) ∩ S )/J) is nonempty. In addition, J is integrally
closed in ((J(C) ∩ S ), so, by [9, Remark 6.14(b)], MSupp((J(C) ∩ S )/J) is nonempty.
Take M ∈ MSupp((J(C) ∩ S )/J). Since (J(C) ∩ S )Mi

= (J(C))Mi ∩ S Mi = JMi for each
i ∈ {1, . . . , n}, by the definition of support, it follows that Mi < Supp((J(C) ∩ S )/J)
for each i, and so M < {M1, . . . ,Mn}. Now let M′ ∈Max(R∗) such that M = M′ ∩ J.
Clearly, Supp((J(C) ∩ S )/J) ⊆ Supp(S/J), and thus MS = S and, since MS ⊆ M′S ,
M′S = S . It follows that M′ ∈ Supp(S/R∗) and it is clear that M′ + C, which is a
contradiction. Hence J(C) ∩ S = J and T = J. Therefore [R, S ] = [R,R∗] ∪ [R∗, S ]. �

Example 2.8. Let x be an indeterminate over the field of rational numbers Q. Let
Vi = Q[x](x+i) = Q + Mi with Mi = (x + i)Vi for each i = 0, 1, 2. Set T = V0 ∩ V1 ∩ V2.
Then T is a Prüfer domain with quotient field Q(x) and the maximal ideals of T
are {Ni = Mi ∩ T = (x + i)T : 0 ≤ i ≤ 2} such that TNi = Vi and T/Ni � Q. Set R =

Q + (N0 ∩ N1), S = V2. It is easy to verify that R∗ = T and C = (R : R∗) = N0 ∩ N1. On
the other hand, it is clear that R ⊂ R∗ is a minimal extension and (R∗,S ) is a normal pair
with Supp(S/R∗) = {N0,N1}. Since C is contained in all maximal ideals of Supp(S/R∗),
from Theorem 2.7, we see that [R, S ] = {R} ∪ [R∗, S ].
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In [12], Gilmer and Heinzer asked which domains admit a unique minimal overring.
In light of Theorem 2.7, we obtain an answer to this key question.

Corollary 2.9. If R ⊂ S satisfies FCP and R ⊂ R∗ ⊂ S , then the following conditions
are equivalent:

(i) R∗ is the unique minimal ring of the set [R, S ] \ {R}; and
(ii) R ⊂ R∗ is a minimal extension and (R : R∗) ⊆ M for each M ∈MSupp(S/R∗).

Proof. (i)⇒ (ii) From the condition (i), R ⊂ R∗ is a minimal extension and each ring of
[R, S ] is comparable with R∗. Hence [R, S ] = {R} ∪ [R, S ]. According to Theorem 2.7,
(R : R∗) ⊆ M for each M ∈MSupp(S/R∗).

(ii) ⇒ (i) By virtue of Theorem 2.7, [R, S ] = [R, R∗] ∪ [R∗, S ]. Moreover, since
R ⊂ R∗ is a minimal extension, [R,S ] = {R} ∪ [R∗,S ]. This implies that R∗ is the unique
minimal ring of the set [R, S ] \ {R}. �

Corollary 2.10. Let R ⊂ S be an FCP extension such that R ⊂ R∗ ⊂ S . If [R, S ] =

[R,R∗] ∪ [R∗, S ], then |MSupp(S/R∗)| ≤ 2.

Proof. Suppose R ⊆ J ⊂ R∗ such that J ⊂ R∗ is a minimal extension. By Theorem 2.7,
(J : R∗) ⊆ M for each M ∈MSupp(S/R∗). On the other hand, since J ⊂ R∗ is a minimal
integral extension, (J : R∗) ∈Max(J). According to [14, Theorem 3.3], there exist at
most two maximal ideals M1 and M2 of R∗ such that (J : R∗) = M1 ∩ M2. It follows
that |MSupp(S/R∗)| ≤ 2. �

Remark 2.11. Suppose that [R, S ] = {R} ∪ [R∗, S ]. In view of [14, Theorem 3.3] and
Corollary 2.10, if R ⊂ R∗ is an inert (integral) minimal extension or ramified (integral)
minimal extension, then |MSupp(S/R∗)| = 1.

Corollary 2.12. Suppose that R ⊂ R∗ and R∗ ⊂ S are two minimal extensions with
crucial maximal ideals M and N, respectively. Then [R, S ] = {R,R∗, S } if and only if
M = N ∩ R.

Proof. Since R ⊂ R∗ is integral minimal extension, (R : R∗) = M. On the other
hand, R∗ ⊂ S is a minimal integrally closed extension, so [15, Lemma 3.2] gives
|Supp(S/R∗)| = 1. In addition, N ∈ Supp(S/R∗), and hence Supp(S/R∗) = {N}.
Therefore, by Theorem 2.7 and the maximality of M, we conclude that M = N ∩ R. �

Example 2.13. Let x be an indeterminate over K = Q(
√

2,
√

3). Let S = K[x](x) =

K + xK[x](x) and V = K[x](x+1) = K + (x + 1)K[x](x+1). Then R∗ = S ∩ V is a Prüfer
domain with maximal ideals M and N such that R∗M = S , R∗N = V and R∗/M � R∗/N �

K. Set R = Q(
√

2) + M. Then R∗ is the integral closure of R in S and R ⊂ R∗ is a
minimal extension with conductor (crucial ideal) M. Moreover, by [3, Corollary 2.6],
R∗ ⊂ S is a minimal extension with crucial maximal ideal M. By Corollary 2.12,
[R, S ] = {R,R∗, S }.
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If S = q f (R) and R is integrally closed in S , then, for each P ∈ Spec(R) \ {0},
PS = S . Therefore Supp(S/R) = Spec(R) \ {0}. By the application of Theorem 2.7,
we next recover the equivalence (i)⇔ (iii) of [2, Theorem 27].

Corollary 2.14. If [R, q f (R)] satisfies FCP and R ⊂ R′ ⊂ q f (R), then the following
conditions are equivalent:

(i) [R, q f (R)] = [R,R′] ∪ [R′, q f (R)]; and
(ii) each intermediate ring J (J , R′) between R and R′ is quasilocal.

Proof. (i) ⇒ (ii) Let J ∈ [R,R′], J , R′. Since R ⊂ R′ satisfies FCP, then there exists
J1 ∈ [R, R′] such that J ⊆ J1 and J1 ⊂ R′ is a minimal extension. Set C = (J1 : R′),
a maximal ideal of J1. By virtue of Theorem 2.7, the conductor C is contained
in all maximal ideals of Supp(q f (R)/R′). Since Supp(q f (R)/R′) = Spec(R′) \ {0},
C ⊆ Rad(R′). It follows from integrality that C ⊆ Rad(J1). By maximality of C, we
find that J1 is quasilocal with maximal ideal C. Hence J is quasilocal with maximal
ideal C ∩ J.

(ii)⇒ (i) Apply Proposition 2.2. �

We close this section with the following result which treats the case where S is the
product of a finite number of fields.

Proposition 2.15. Let R ⊂ S be an FCP extension such that R =
∏n

i=1 Ri, S =
∏n

i=1 Ki

and R ⊂ R∗ ⊂ S . Then:

(a) R∗ =
∏n

i=1 R∗i where R∗i is a Prüfer domain; and
(b) [R, S ] = [R, R∗] ∪ [R∗, S ] if and only if there exists i ∈ {1, . . . , n} such that

R j = R∗j = K j for each j , i, Ri ⊂ R∗i ⊂ Ki and [Ri,Ki] = [Ri,R∗i ] ∪ [R∗i ,Ki].

Proof. (a) By [8, Lemma III.3(d)], R∗ =
∏n

i=1 R∗i , where Ri ⊆ R∗i ⊆ Ki for each i. If
R∗i = Ki, then R∗i is a Prüfer domain. Suppose that R∗i ⊂ Ki. Since R∗ ⊂ S has FCP,
so does R∗i ⊂ K [9, Proposition 3.7 (d)]. Moreover, R∗i is integrally closed in Ki, and
hence (R∗i ,Ki) is a normal pair and so R∗i is a Prüfer domain.

(b) First, notice that, by [8, Lemma III.3(d)], any intermediate ring T of [R, S ]
is of the form T = T1 × · · · × Tn, where Ri ⊆ Ti ⊆ Ki for each i. Suppose there exist
i < j such that Ri ⊂ R∗i ⊂ Ki and R j ⊂ R∗j ⊂ K j. Let T = R1 × · · · × Ki · · · × K j · · · × Rn.
Then T ∈ [R, S ] and it is clear that T * R∗ and R∗ * T , which contradicts the fact that
[R, S ] = [R,R∗] ∪ [R∗, S ]. The second assertion is clear.

Conversely, as mentioned above, each ring T in [R, S ] can be uniquely expressed
as a product of rings T1 × · · · × Ti × · · · × Kn, where Ti ∈ [Ri, Ki] for each i and so
T = K1 × · · · × Ti × · · · × Kn, since R j = K j for each j , i. By assumption, Ti ⊆ R∗i or
R∗i ⊆ Ti, and hence T ⊆ R∗ or R∗ ⊆ T . �

Acknowledgement

The authors thank the referee for his/her many valuable suggestions and comments
which have improved the final version of this paper.

https://doi.org/10.1017/S0004972716000721 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972716000721


[8] When is the integral closure comparable to all intermediate rings 21

References
[1] D. D. Anderson, D. E. Dobbs and B. Mullins, ‘The primitive element theorem for commutative

algebras’, Houston J. Math. 25 (1999), 603–623; corrigendum, Houston J. Math. 28 (2002),
217–219.

[2] A. Ayache, ‘A constructive study about the set of intermediate rings’, Comm. Algebra 41 (2013),
4637–4661.

[3] A. Ayache and N. Jarboui, ‘Intermediary rings in a normal pair’, J. Pure Appl. Algebra 212 (2008),
2176–2181.

[4] M. Ben Nasr, ‘An answer to a problem about the number of overrings’, J. Algebra Appl. 15(6)
(2016).

[5] M. Ben Nasr and N. Jarboui, ‘New results about normal pairs of rings with zero-divisors’, Ric.
Mat. 63 (2014), 149–155.

[6] P. J. Cahen, ‘Couple d’anneaux partageant un idéal’, Arch. Math. 51 (1988), 505–514.
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